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Abstract. The performance evaluation of public charging service quality is frequently viewed as
the multiple attribute group decision-making (MAGDM) issue. In this paper, an extended TOPSIS
model is established to provide new means to solve the performance evaluation of public charging
service quality. The TOPSIS method integrated with FUCOM method in probabilistic hesitant fuzzy
circumstance is applied to rank the optional alternatives and a numerical example for performance
evaluation of public charging service quality is used to test the newly proposed method’s practica-
bility in comparison with other methods. The results display that the approach is uncomplicated,
valid and simple to compute. The main results of this paper: (1) a novel PHF-TOPSIS method is
proposed; (2) the extended TOPSIS method is developed in the probabilistic hesitant fuzzy environ-
ment; (3) the FUCOM method is used to obtain the attribute weight; (4) the normalization process
of the original data has adapted the latest method to verify the precision; (5) The built models and
methods are useful for other selection issues and evaluation issues.
Key words: multiple attributes group decision making (MAGDM), probabilistic hesitant fuzzy
sets (PHFS), FUCOM method, TOPSIS method, performance evaluation, public charging service
quality.

1. Introduction

Many management decision-making problems in the real world, such as logistics park
location, supplier selection, medical service evaluation, fault diagnosis, etc., can be con-
sidered from the perspective of MADM (Garg et al., 2018; Akram et al., 2021; Waseem
et al., 2019; Lu et al., 2021; Wei et al., 2022). As an important branch of management
science and modern decision science, MADM theory and methods have been widely used
in many practical decision-making problems (Yang and Pang, 2019; Xu and Zhang, 2019;
Zavadskas et al., 2013; Ning et al., 2022). In the actual MAGDM process, due to the
complexity and uncertainty of objective things, the limitations of human cognition and
the ambiguity of thinking, it is difficult to use quantitative and accurate information to de-
scribe decision objects (Wang et al., 2022; Zhang H. et al., 2022; Liu et al., 2019; Li et al.,
2021). In 1965, Zadeh (1965) was the first to define a novel fuzzy sets (FSs) to cope with
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information in the fuzzy new domain (Garg and Kumar, 2018; Garg, 2018b; Zhang and
Xu, 2015; Su et al., 2022; Jiang et al., 2022; Lei et al., 2022). To extend the FSs, the in-
tuitionistic fuzzy sets (IFSs) (Atanassov, 1989) were also defined. Subsequently, FSs and
its related extension knowledges were predominantly exploited in decision analysis do-
mains (Yu et al., 2017; Wan and Li, 2014; Zhang D. et al., 2022; Zhang et al., 2022a). Su
et al. (2011) proposed the interactive method for dynamic IF-MAGDM. Arya and Yadav
(2018) defined the intuitionistic fuzzy super-efficiency slack-based measure. Tian et al.
(2017) studied the partial derivative and complete differential of binary IF-mathematical
functions. Garg (2018a) proposed the improved cosine similarity measure for IFSs. Tan
(2011) constructed the Choquet integral-based TOPSIS method for IF-MADM. Zhao et
al. (2017) defined the Interactive intuitionistic fuzzy algorithms for multilevel program-
ming problems. Li (2011) built the GOWA operator to MADM using IFSs. Buyukozkan
et al. (2018) selected the transportation schemes with integrated intuitionistic fuzzy Cho-
quet integral method. Joshi et al. (2018) defined the Jensen-alpha-Norm dissimilarity
measure for IFSs. De and Sana (2018) defined the The (p, q, r, l) method for random
demand with Bonferroni mean under IFSs. Li et al. (2018) defined the time-preference
and VIKOR-based dynamic method for IF-MADM. Niroomand (2018) defined the multi-
objective based direct solution method for linear programming along with intuitionistic
fuzzy parameters. Zhao et al. (2021) perfected TODIM for IF-MAGDM on the strength
of cumulative prospect theory. Yu S. et al. (2017) defined the derivatives and differentials
for multiplicative IFSs. Yu (2012) defined the generalized prioritized geometric operators
under IFSs. Xiao et al. (2020) built the intuitionistic fuzzy taxonomy method. Wu and
Zhang (2011) built the IF-MADM based on weighted entropy. Verma and Sharma (2014)
defined the measure of inaccuracy IF-MADM. Iakovidis and Papageorgiou (2011) defined
the cognitive maps for medical decision making under IFSs.

Then the hesitant fuzzy element (HFE) proposed by Xia and Xu (2011) is to solve the
problem of determining the element’s membership to a set on account of the uncertainty
between different numbers and then prove the intuitionistic fuzzy set and hesitant fuzzy
set. With the proposition of the HFE, the idea of correspondent operators to aggregate
hesitant fuzzy information was obtained. Not long after this, Xu and Xia (2011) raised
the idea of the score function, deviation function and the comparison rule, and set the
basis on the calculation. Xu and Cai (2010) provided the aggregating operators to inte-
grate the hesitant fuzzy information. Nevertheless, HFE can be regarded as a particular
equivalent form whose occurring probabilities of the possible value are equal. The prob-
abilistic hesitant fuzzy set and the corresponding score function, deviation function and
its comparison law were proposed by Xu and Zhou (2017). Moreover, the probabilistic
hesitant fuzzy weighted averaging geometric operators were introduced by Xu and Zhou
(2017) to process PHFE information. Then the improved PHFS was introduced by Zhang
et al. (2017) to give more space for hesitation, the integrations of the improved PHES
can be calculated by the improved operators. Farhadinia and Xu (2021) gave the compar-
ison techniques of PHFEs. Krishankumar et al. (2021a) built the COPRAS approach to
PHFSs. Krishankumar et al. (2021b) proposed to extend a well-known VIKOR method
to the PHFS context. Lin et al. (2021) put forward a novel probabilistic hesitant fuzzy
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MULTIMOORA method. Liu et al. (2021) defined the DEA cross-efficiency with prob-
abilistic hesitant fuzzy preference relations. Yang and Xu (2021) defined the measure of
probabilistic hesitant I-fuzzy sets and decision making for strategy choice. Song and Chen
(2021) extended the COPRAS method to solve MADM problems under probabilistic hes-
itant fuzzy environment. Liu and Guan (2021) devised a new PHFE comparison method
and then defined the comprehensive characteristic distance measure based on four char-
acteristics.

Technique for order performance by similarity to ideal solution (TOPSIS) was origi-
nally developed by Hwang and Yoon (1981) for the sake of addressing a MADM prob-
lem. Lai et al. (1994) expanded TOPSIS to deal with a diverse objective decision mak-
ing problem for Bow River Valley water quality management. Chen (2000) proposed the
TOPSIS approach for group decision-making within the fuzzy environment. Wang and
Elhag (2006) employed the fuzzy TOPSIS approach on the basis of alpha level sets for
bridge risk assessment. Taleizadeh et al. (2009) designed a novel method which combined
Pareto, TOPSIS and genetic algorithm to solve the multi-product multi-constraint inven-
tory control systems with random fuzzy replenishments. Zhang et al. (2022b) defined the
TOPSIS method for spherical fuzzy MAGDM based on cumulative prospect theory. Wei
(2010) developed the TOPSIS method to cope with 2-tuple linguistic MAGDM with in-
complete weight information. Nilashi et al. (2019) used two MADM techniques, Decision
Making Trial and Evaluation Laboratory (DEMATEL) and Fuzzy TOPSIS, to reveal the
interrelationships among the factors and to find the relative importance of these factors in
the decision making model. In this paper, we extend the TOPSIS method to probabilistic
hesitant fuzzy (PHF) environment based on the FUCOM method to deal with the flexible
and complicated decision-making circumstance. The following is the innovation of this
paper: (1) a novel PHF-TOPSIS method is proposed; (2) the extended TOPSIS method
is developed in the probabilistic hesitant fuzzy environment; (3) the FUCOM method is
used to obtain the attribute weight; (4) the normalization process of the original data has
adapted the latest method to verify the precision.

The whole thread of the article is as follows: Section 2 gives a simple introduction of
the PHF information, Section 3 structures the model of TOPSIS and Section 4 illustrates
an example for performance evaluation of public charging service quality to prove the
practicability of this new method. Section 5 gives a sensitivity analysis and comparison
analysis with other existing models.

2. Preliminaries

Definition 1 (Xu and Zhou, 2017). Assume q is a fixed set, and probabilistic hesitant
fuzzy sets on E, which range from 0 to 1, and the probabilistic hesitant fuzzy element
(PHFE) is described as follows:

Vq = {
vq

(
taq

∣∣ ga
q

) ∣∣ taq , ga
q

}
, (1)
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where taq ∈ R, 0 � taq � 1, a = 1, 2, . . . , #t , and #t represents the total number of ele-
ments, taq shows the degree of membership, while ga

q is the probability of the membership
degree,

∑#t
a=1 taq = 1.

The first and significant step is the normalization process and we adapt the normal-
ization approach proposed by Li et al. (2020) to break the limitation when processing
multiplication of the sets which include different probabilities.

Definition 2 (Li et al., 2020). Let v(ti |gi) = {t i (gi)}, v1(ta|ga) = {ta1 (ga
1 )} and

v2(tb|gb) = {tb2 (gb
2)} be three PHFEs, i = 1, 2, . . . , #t , a = 1, 2, . . . , #t1, b =

1, 2, . . . , #t2.

Step 1. Define the first element. If g1
1 < g1

2 , then t1
1 (g1

1) = t1
1 (g1

1) and t1
2 (g1

2) = t1
2 (g1

2),
otherwise, t1

1 (g1
1) = t1

1 (g1
2) and t1

2 (g1
2) = t1

2 (g1
2).

Step 2. Determine the second element. If g1
1 < g1

2 and g1
2 − g1

1 � g2
1 , then t2

1 (g2
1) =

t2
1 (g1

2 −g1
1) and t2

2 (g2
2) = t1

2 (g1
2 −g1

1). If g1
1 < g1

2 and g1
2 −g1

1 > g2
1 , then t2

1 (g2
1) = t2

1 (g2
1)

and t2
2 (g2

2) = t1
2 (g2

1). If g1
1 � g1

2 and g1
1 − g1

2 � g2
2 , then t2

1 (g2
1) = t1

1 (g1
1 − g1

2) and
t2
2 (g2

2) = t2
2 (g1

1 − g1
2). If g1

1 � g1
2 and g1

1 − g1
2 � g2

2 , then t2
1 (g2

1) = t1
1 (g2

2) and t2
2 (g2

2) =
t2
2 (g2

2).

Step 3. Determine the third element. If g1
1 � g1

2 , g1
1 −g1

2 � g2
2 and g1

2 � g2
2 −g1

1 +g1
2 , then

t3
1 (g3

1) = t2
1 (g2

1) and t3
2 (g3

2) = t2
2 (g2

1). If g1
1 � g1

2 , g1
1 − g1

2 � g2
2 and g1

2 > g2
2 − g1

1 + g1
2 ,

then t3
1 (g3

1) = t2
1 (g2

2 +g1
2 −g1

1) and t3
2 (g3

2) = t2
2 (g2

2 +g1
2 −g1

1). If g1
1 � g1

2 , g1
1 −g1

2 > g2
2

and g2
1 � g2

2+g3
2 , then t3

1 (g3
1) = t2

1 (g3
2) and t3

2 (g3
2) = t3

2 (g3
2). If g1

1 � g1
2 , g1

1−g1
2 > g2

2 and
g2

1 < g2
2 +g3

2 , then t3
1 (g3

1) = t2
1 (g2

1 −g2
2) and t3

2 (g3
2) = t3

2 (g2
1 −g2

2). If g1
1 < g1

2 , g1
2 −g1

1 �
g2

1 and g2
1 +g1

1 � g2
2 +g1

2 , then t3
1 (g3

1) = t2
1 (g2

1 −g1
2 +g1

1) and t3
2 (g3

2) = t2
2 (g2

1 −g1
2 +g1

1).
If g1

1 < g1
2 , g1

2 − g1
1 > g2

1 and g1
2 + g2

1 � g3
1 + g1

1 , then t3
1 (g3

1) = t3
1 (g1

2 − g1
1 − g2

1) and
t3
2 (g3

2) = t1
2 (g1

2 −g1
1 −g2

1). If g1
1 < g1

2 , g1
2 −g1

1 > g2
1 and g1

2 +g2
1 > g3

1 +g1
1 , then t3

1 (g3
1) =

t3
1 (g3

1) and t3
2 (g3

2) = t1
2 (g3

1), where g1
1 +g2

1 +· · ·+g
#t1
1 = 1 and g1

2 +g2
2 +· · ·+g

#t2
2 = 1,

#t1 = #t2.

Definition 3 (Xu and Zhou, 2017). Calculate the score function = by Eq. (2):

s
(
v̄(ḡ)

) =
#t∑

i=1

t̄ i ḡi , (2)

where t̄ i shows the i-th largest elements of normalized PHFE, and ḡi is the probability of
occurrence of the corresponding element.

Definition 4 (Sha et al., 2021). Compare v̄1(ḡ1) = {t̄ a1 (ḡa
1 )} and v̄2(ḡ2) = {t̄ b2 (ḡb

2)} by
the following laws:

(1) v̄1(ḡ1) > v̄2(ḡ2), if s(v̄1(ḡ1)) > s(v̄2(ḡ2));
(2) v̄1(ḡ1) > v̄2(ḡ2), if s(v̄1(ḡ1)) > s(v̄2(ḡ2)) and d(k̄1(j̄1)) < d(k̄2(j̄2));
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(3) v̄1(ḡ1) = v̄2(ḡ2), if s(v̄1(ḡ1)) = s(v̄2(ḡ2)) and d(k̄1(j̄1)) = d(k̄2(j̄2));
(4) v̄1(ḡ1) < v̄2(ḡ2), if s(v̄1(ḡ1)) = s(v̄2(ḡ2)) and d(k̄1(j̄1)) > d(k̄2(j̄2)).

Definition 5 (Sha et al., 2021). v̄1(ḡ1) = {t̄ a1 (ḡa
1 )} and v̄2(ḡ2) = {t̄ b2 (ḡb

2)} are normalized
PHFEs, where #t1 = #t2 = #t and ga

1 = gb
2 = gi . The Lance distance between them is

given as Eq. (3):

d
(
v̄1(ḡ1), v̄2(ḡ2)

) = 1

#t

#t∑
a=b=1

|t̄ a1 ḡa
1 − t̄ b2 ḡb

2 |
t̄ a1 ḡa

1 + t̄ b2 ḡb
2

. (3)

Definition 6 (Li et al., 2020). The k̄1(j̄1) = {f̄ a
1 (j̄ a

1 )} and k̄2(j̄2) = {f̄ b
2 (j̄ b

2 )} are nor-
malized PHFEs and the algorithms about them are as follows:

(1) v̄1(ḡ1) ⊕ v̄2(ḡ2) =
⋃

a=1,...,#t̄1, b=1,...,t̄2

{(
t̄ a1 + t̄ b2 − t̄ a1 t̄ b2

)
(ḡi)

}; (4)

(2) v̄1(ḡ1) ⊗ v̄2(ḡ2) =
⋃

a=1,...,#t̄1, b=1,...,t̄2

{
t̄ a1 t̄ b2 (ḡi)

}
. (5)

Definition 7 (Liao et al., 2021, 2022). Let fc (c = 1, 2, . . . , l) be a non-empty collec-
tion, and the PHF weighted averaging (PHFWA) operator is calculated by Eq. (6):

PHFWA
(
f̄1(ḡ1), f̄2(ḡ2), . . . , f̄l(ḡl)

)
=

l⊕
c=1

(f̄cḡc) =
⋃

t̄1∈f̄1,t̄2∈f̄2,...,t̄l∈f̄l

{
1 −

l∏
c=1

(1 − t̄c)
uc

(
ḡi

)}
, (6)

where uc = (u1, u2, . . . , ul) represents the weight between the PHFEs and
∑l

c=1 uc = 1,
uc ∈ [0, 1].

Definition 8 (Liao et al., 2021, 2022). The laws of PHF weighted geometric (PHFWG)
operator are shown as follows:

PHFWG = (
f̄1(ḡ1), f̄2(ḡ2), . . . , f̄l(ḡl)

)
=

l⊕
c=1

(f̄c)
uc =

⋃
t̄1∈f̄1,t̄2∈f̄2,...,t̄l∈f̄l

{ l∏
c=1

(t̄c)
uc

(
ḡi

)}
. (7)

3. PHF-TOPSIS Method for MAGDM

The MAGDM decision matrix is V c = [vc
rx(grx)]s×y , and the optional alternatives are

defined as Qr = {Q1,Q2, . . . ,Qs} and the attribute is shown as Ix = {I1, I2, . . . , Iy}
and the decision makers (DMs) are defined as c = {c1, c2, . . . , cl}, while the weighting
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Fig. 1. Framework of the proposed PHF-TOPSIS.

vector between the DMs is defined as uc = {0.3, 0.3, 0.4} and the weighting vector among
the criterions is jx which is unknown,

∑l
c=1 uc = 1,

∑y

x=1 jx = 1 (c = i, 2, . . . , l).

V c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vc
11 . . . vc

1x . . . vc
1y

...
. . .

...
. . .

...

vc
r1 . . . vc

rx . . . vc
ry

...
. . .

...
. . .

...

vc
s1 . . . vc

sx . . . vc
sy

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

s×y

; r = 1, . . . , s, x = 1, . . . , y, c = 1, . . . , l.

With the above conventions, the operation of the PHF-TOPSIS is as follows: the whole
operation flow chart is shown in Fig. 1.

Step 1. Normalize the original decision matrices through Eq. (8).

{
v̄rx(ḡrx) = {ter (ger )}, if the attribute is positive attribute,
v̄rx(ḡrx) = {(1 − trx)(grx)}, if the attribute is negative attribute.

(8)

Then using the introduction in Definition 2 to get normalized matrices.

Step 2. Acquire the criterion weights p̂x using FUCOM method.
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The full consistency (FUCOM) method proposed by Pamučar et al. (2018) is the lat-
est model for weighting the coefficients of attributes. Compared to other methods, such
as the best worst method (BWM) and the analytic hierarchy process (AHP) method, the
FUCOM method can give more appropriate results when considering the relation between
the criterions and the number of comparisons (only y − 1). The application of this new
model for criterion weight has been used in numerous fields, such as assessment of al-
ternative fuel vehicles for sustainable road transportation (Pamucar et al., 2021), safety
evaluation of road sections (Simić et al., 2020), sustained academic quality assurance
and ABET accreditation (Ahmad and Qahmash, 2020) and so on. Bozanic et al. (2020)
built the MADM with Z-numbers based on FUCOM and MABAC. Durmić et al. (2020)
combined FUCOM-Rough SAW model. Bozanić et al. (2021) built the FUCOM-Fuzzy
RAFSI model for selecting the group of construction machines for enabling mobility
with D-numbers. Pamucar and Ecer (2020) prioritized the weights of the evaluation cri-
teria under fuzziness through the fuzzy full consistency method-FUCOM-F. Stević and
Brković (2020) built novel integrated FUCOM-MARCOS model for evaluation of human
resources in a transport company. Simić et al. (2020) built the CRITIC-fuzzy FUCOM-
DEA-fuzzy MARCOS model for safety evaluation of road sections based on geometric
parameters of road. Fazlollahtabar et al. (2019) defined the FUCOM method in group
decision-making for selection of forklift in a warehouse. Durmić (2019) evaluated the
criteria for sustainable supplier selection using FUCOM method. Baig et al. (2022) used
FUCOM and FQFD for prioritizing the vulnerabilities and identifying those capabilities
that can ensure protection against these vulnerabilities.

The specific process to get the weight is as follows:
(i) Rank the criterions and get the set from I c

x = {I c
1 , I c

2 , . . . , I c
y } which is according to

the relative importance of the criteria. Thus, the parameters rank is obtained by the values
of the weight coefficient:

I c
y(1) > Ic

y(2) > · · · > Ic
y(k),

where k denotes the order of the criterions.
(ii) The comparison priorities between the adjacent attributes ψc

x−1
x

, x = 1, 2, . . . , y,
which denotes the value of the Nc

y(x−1) relative to Nc
y(x), then we get the set of the criterion

comparative preference:

ψc = {
ψc

1
2
, ψc

2
3
, . . . , ψc

x−1
x

}
.

(iii) Get the final weight coefficients of the attributes pc
x = {pc

1, p
c
2, . . . , p

c
y}, which

should meet the conditions showing as follows:

• The comparison priorities ψc
x−1
x

calculated in (ii) are supposed to be equal to the ratio
of the weight coefficient through Eq. (9):

ψc
x−1
x

= pc
x−1

pc
x

. (9)
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• The second condition is about the weight coefficients which should satisfy the following
rule by using Eq. (10):

pc
x−2

pc
x

= ψc
x−2
x−1

⊗ ψc
x−1
x

. (10)

Thus, the inequality constraints for this model are shown in Eq. (11):

min χc,

s.t.
∣∣∣∣ψc

x−1
x

− pc
x−1

pc
x

∣∣∣∣ � χc,

∣∣∣∣p
c
x−2

pc
x

− ψc
x−2
x−1

⊗ ψc
x−1
x

∣∣∣∣ � χc, (11)

y∑
x=1

pc
x = 1, pc

x � 0.

With the help of the MATLAB software, we get the final result of the weighting vector
of the evaluation criterions for each DM. Then the integrated weight p̂x is finally obtained
by geometric means.

Step 3. Integrate the decision matrices by different DMS into one matrix v̂rx(ĝrx) =
{t̂rx(ĝrx)]s×y , using Eq. (12):

PHFWA
(
v̄l
rx, v̄

2
rx, . . . , v̄

l
rx

)
=

l⊕
c=1

(
v̄c
rxuc

) =
⋃

t̄1
rs∈v̄1

rs ,t̄
2
rs∈v̄2

rs ,...,t̄
l
rs∈v̄l

rs

{
1 −

l∏
c=1

(
1 − t̄ crs

)uc (ḡ)

}
. (12)

Step 4. Figure out the score function of the integrated decision matrix by using Eq. (13)

s
(
v̂rs(ĝrs)

) =
#t∑

i=1

t̂ irs ĝ
i
rs . (13)

Step 5. Determine the v̂∗
x and v̂−

x indexes by the following equation by using Eq. (14):
⎧⎨
⎩

v̂∗
x(ĝ∗

x) = max
r

s(v̂rx),

v̂−
x (ĝ−

x ) = min
r

s(v̂rx).
(14)

Step 6. Calculate the positive and negative distance by using Eqs. (15)–(16)

d∗
r

(
v̂rx(ĝrx), v̂

∗
x

(
ĝ∗

x

)) =
y∑

x=1

p̂x

1

#t

#t∑
a=b=1

|t̂ a∗
x ĝa∗

x − t̂ brx ĝ
b
rx |

t̂ a
∗

x ĝa∗
x + t̂ brx ĝ

b
rx

, (15)

d−
r

(
v̂rx(ĝrx), v̂

−
x

(
ĝ−

x

)) =
y∑

x=1

p̂x

1

#t

#t∑
a=b=1

|t̂ a−
x ĝa−

x − t̂ brx ĝ
b
rx |

t̂ a
−

x ĝa−
x + t̂ brx ĝ

b
rx

. (16)
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Step 7. Compute out the relative closeness to the ideal solution.
The relative closeness of alternative Qr with the probabilistic hesitant fuzzy positive

ideal solution Q∗ is described by using Eq. (17):

Hr = d−
r (v̂rx(ĝrx), v̂

−
x (ĝ−

x ))

d∗
r (v̂rx(ĝrx), v̂∗

x(ĝ∗
x)) + d−

r (v̂rx(ĝrx), v̂
−
x (ĝ−

x ))
. (17)

Step 8. Get the final ranking.
The final rank is determined by the value of relative closeness, and the sort rule is: the

bigger the relative closeness is, the more appropriate the scheme is.

4. Case Study

Public service is provided by the public sector to the public at a professional level accord-
ing to its own social responsibility. In my country, public service is provided to the external
public by government departments and institutions with public management functions ac-
cording to the law. If there are public services, the problem of public service charges will
inevitably arise. The public service charges mentioned here do not include taxes, but in-
clude administrative management fees, which mainly refer to the specific fees charged by
the departments and institutions that provide public services to the public in need of ser-
vices, so that they can enjoy the right to and benefits of public services. The logic of public
service charging is roughly as follows: first, to provide public services, costs will inevitably
occur, and fees can compensate for the cost input of public services; second, public ser-
vices are public goods, and public goods are noncompetitive and non-exclusive, and their
external effect is obvious, and it is easy to generate “free-rider” behaviour. Charging fees
can curb waste in public service consumption and improve the quality and efficiency of
public services. Social investment can increase funding sources for public services. How-
ever, since currently in our country public services are mainly provided by government
departments, and the government is also responsible for the examination and approval
of charging items and charging standards for public services, as well as supervising and
inspecting charging behaviours, public services are basically monopoly industries. With
low efficiency and poor quality, people feel that public service charges and public ser-
vice utility are asymmetrical, so there are many criticisms about public service charges.
The performance evaluation of public charging service quality is frequently viewed as
the multiple attribute group decision-making (MAGDM) issue. In this paper, an extended
TOPSIS model is established to provide new means to solve the performance evaluation
of public charging service quality. The TOPSIS method integrated with FUCOM method
in probabilistic hesitant fuzzy circumstance is applied to rank the optional alternatives
and a numerical example for performance evaluation of public charging service quality is
used to test the newly proposed method’s practicability in comparison with other methods.
Therefore, to illustrate the method presented in this paper, we will give a numeric-based
example for performance evaluation of public charging service quality using the PHFSs
in this part. Five applicable new public charging service sections Ai (i = 1, 2, 3, 4, 5)
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Table 1
Decision matrix c1 given by the first DM.

Alternative I1 I2 I3 I4

Q1 {0.4(0.1), 0.2(0.5), 0.3(0.4)} {0.6(0.3), 0.2(0.7)} {0.3(0.4), 0.6(0.1), 0.2(0.5)} {0.3(0.2), 0.7(0.2), 0.4(0.6)}
Q2 {0.3(0.2), 0.6(0.4), 0.7(0.4)} {0.5(0.3), 0.7(0.4), 0.4(0.3)} {0.7(0.5), 0.5(0.3), 0.2(0.2)} {0.6(0.3), 0.5(0.5), 0.4(0.2)}
Q3 {0.5(0.3), 0.2(0.6), 0.3(0.1)} {0.3(0.4), 0.2(0.5), 0.4(0.1)} {0.4(0.3), 0.5(0.3), 0.2(0.4)} {0.4(0.2), 0.6(0.3), 0.3(0.5)}
Q4 {0.6(0.3), 0.4(0.1), 0.2(0.6)} {0.2(0.5), 0.3(0.5)} {0.3(1)} {0.5(1)}

Table 2
Decision matrix c2 given by the second DM.

Alternative I1 I2 I3 I4

Q1 {0.5(0.2), 0.3(0.5), 0.2(0.3)} {0.5(0.4), 0.4(0.2), 0.2(0.4)} {0.2(0.8), 0.5(0.1), 0.6(0.1)} {0.4(0.5), 0.3(0.2), 0.2(0.3)}
Q2 {0.4(0.1), 0.7(0.7), 0.5(0.2)} {0.3(0.2), 0.7(0.4), 0.5(0.4)} {0.5(0.2), 0.4(0.6), 0.7(0.2)} {0.2(0.1), 0.6(0.4), 0.7(0.5)}
Q3 {0.3(0.4), 0.6(0.3), 0.4(0.3)} {0.5(0.2), 0.3(0.5), 0.1(0.3)} {0.4(0.3), 0.3(0.7)} {0.3(0.4), 0.2(0.6)}
Q4 {0.4(0.3), 0.2(0.4), 0.3(0.3)} {0.4(0.4), 0.6(0.2), 0.2(0.4)} {0.1(0.7), 0.5(0.3)} {0.5(0.4), 0.2(0.6)}

Table 3
Decision matrix c3 given by the third DM.

Alternative I1 I2 I3 I4

Q1 {0.4(0.5), 0.3(0.2), 0.6(0.3)} {0.3(0.8), 0.5(0.2)} {0.6(0.3), 0.2(0.7)} {0.4(0.2), 0.8(0.1), 0.3(0.7)}
Q2 {0.5(0.4), 0.4(0.1), 0.7(0.5)} {0.2(0.2), 0.7(0.6)0.6(0.2)} {0.5(0.3), 0.4(0.2), 0.7(0.5)} {0.5(0.3), 0.6(0.6), 0.7(0.1)}
Q3 {0.1(0.3), 0.4(0.7)} {0.5(0.3), 0.3(0.7)} {0.3(0.3), 0.2(0.6), 0.5(0.1)} {0.3(0.5), 0.4(0.5)}
Q4 {0.2(0.6), 0.3(0.4)} {0.4(0.4), 0.2(0.5), 0.6(0.1)} {0.3(0.2), 0.4(0.4), 0.2(0.4)} {0.2(0.1), 0.4(0.7), 0.5(0.2)}

are considered. To evaluate the five applicable new public charging service sections by
three experts dλ (λ = 1, 2, 3), four attributes are given: ①G1 is the infrastructure; ②G2 is
the urban-rural integration; ③G3 is the economic development; ④G4 is the resources and
environment. For the performance evaluation of public charging service quality, there are
four attributes to be chosen, in which three DMs select the suppliers whose expert weight-
ing is uc = {0.3, 0.3, 0.4}. The following is the process of numerical example applying
this model. The evaluation result is listed in Tables 1–3.

Then, the PHF-TOPSIS method is used to deal with the performance evaluation of
public charging service quality with PHFNs.

Step 1. Obtain the normalized matrices (see Tables 4–6).

Step 2. Use FUCOM method to calculate the criterion weight.

• Calculate the criterion weight for DM 1.

(i) The DM 1 gives the ranking of significance of different attributes:

I 1
1 > I 1

2 > I 1
3 > I 1

4 .

(ii) Table 7 shows the priorities of each attribute which is range from 1 to 4, based on
the comparison in the former step. According to the data in Table 7, we get the comparative
priorities as follows.
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Table 4
The standardized decision matrix by the first DM.

Alternative I1 I2

Q1 {0.4(0.1), 0.2(0.1), 0.2(0.4), 0.3(0.2), 0.3(0.2)} {0.6(0.1), 0.2(0.1), 0.2(0.4), 0.2(0.2), 0.6(0.2)}
Q2 {0.3(0.1), 0.3(0.1), 0.6(0.4), 0.7(0.2), 0.7(0.2)} {0.5(0.1), 0.4(0.1), 0.7(0.4), 0.5(0.2), 0.4(0.2)}
Q3 {0.3(0.1), 0.5(0.1), 0.2(0.4), 0.5(0.2), 0.2(0.2)} {0.4(0.1), 0.2(0.1), 0.2(0.4), 0.3(0.2), 0.3(0.2)}
Q4 {0.4(0.1), 0.6(0.1), 0.2(0.4), 0.6(0.2), 0.2(0.2)} {0.2(0.1), 0.3(0.1), 0.3(0.4), 0.2(0.2), 0.2(0.2)}
Alternative I3 I4

Q1 {0.6(0.1), 0.2(0.1), 0.2(0.4), 0.3(0.2), 0.3(0.2)} {0.3(0.1), 0.3(0.1), 0.4(0.4), 0.4(0.2), 0.7(0.2)}
Q2 {0.5(0.1), 0.7(0.1), 0.7(0.4), 0.2(0.2), 0.5(0.2)} {0.6(0.1), 0.5(0.1), 0.5(0.4), 0.6(0.2), 0.4(0.2)}
Q3 {0.4(0.1), 0.5(0.1), 0.2(0.4), 0.4(0.2), 0.5(0.2)} {0.6(0.1), 0.3(0.1), 0.3(0.4), 0.6(0.2), 0.4(0.2)}
Q4 {0.3(0.1), 0.3(0.1), 0.3(0.4), 0.3(0.2), 0.3(0.2)} {0.2(0.1), 0.2(0.1), 0.2(0.4), 0.2(0.2), 0.2(0.2)}

Table 5
The standardized decision matrix by the second DM.

Alternative I1 I2

Q1 {0.2(0.1), 0.3(0.1), 0.3(0.4), 0.2(0.2), 0.5(0.2)} {0.4(0.1), 0.4(0.1), 0.5(0.4), 0.2(0.2), 0.2(0.2)}
Q2 {0.4(0.1), 0.7(0.1), 0.7(0.4), 0.7(0.2), 0.5(0.2)} {0.3(0.1), 0.3(0.1), 0.7(0.4), 0.5(0.2), 0.5(0.2)}
Q3 {0.4(0.1), 0.6(0.1), 0.3(0.4), 0.4(0.2), 0.6(0.2)} {0.1(0.1), 0.3(0.1), 0.3(0.4), 0.1(0.2), 0.5(0.2)}
Q4 {0.4(0.1), 0.3(0.1), 0.2(0.4), 0.4(0.2), 0.3(0.2)} {0.6(0.1), 0.6(0.1), 0.4(0.4), 0.2(0.2), 0.2(0.2)}

Alternative I3 I4

Q1 {0.5(0.1), 0.6(0.1), 0.2(0.4), 0.2(0.2), 0.2(0.2)} {0.2(0.1), 0.4(0.1), 0.4(0.4), 0.2(0.2), 0.3(0.2)}
Q2 {0.5(0.1), 0.5(0.1), 0.4(0.4), 0.4(0.2), 0.7(0.2)} {0.2(0.1), 0.7(0.1), 0.7(0.4), 0.6(0.2), 0.6(0.2)}
Q3 {0.4(0.1), 0.3(0.1), 0.3(0.4), 0.4(0.2), 0.3(0.2)} {0.2(0.1), 0.2(0.1), 0.2(0.4), 0.3(0.2), 0.3(0.2)}
Q4 {0.5(0.1), 0.1(0.1), 0.1(0.4), 0.5(0.2), 0.1(0.2)} {0.2(0.1), 0.2(0.1), 0.2(0.4), 0.5(0.2), 0.5(0.2)}

Table 6
The standardized decision matrix by the third DM.

Alternative I1 I2

Q1 {0.6(0.1), 0.4(0.1), 0.4(0.4), 0.6(0.2), 0.3(0.2)} {0.5(0.1), 0.5(0.1), 0.3(0.4), 0.3(0.2), 0.3(0.2)}
Q2 {0.4(0.1), 0.7(0.1), 0.5(0.4), 0.7(0.2), 0.7(0.2)} {0.2(0.1), 0.3(0.1), 0.7(0.4), 0.7(0.2), 0.6(0.2)}
Q3 {0.1(0.1), 0.4(0.1), 0.4(0.4), 0.4(0.2), 0.1(0.2)} {0.5(0.1), 0.3(0.1), 0.3(0.4), 0.5(0.2), 0.3(0.2)}
Q4 {0.2(0.1), 0.2(0.1), 0.3(0.4), 0.2(0.2), 0.2(0.2)} {0.6(0.1), 0.2(0.1), 0.2(0.4), 0.4(0.2), 0.4(0.2)}
Alternative I3 I4

Q1 {0.6(0.1), 0.2(0.1), 0.2(0.4), 0.2(0.2), 0.6(0.2)} {0.8(0.1), 0.3(0.1), 0.3(0.4), 0.3(0.2), 0.4(0.2)}
Q2 {0.5(0.1), 0.7(0.1), 0.7(0.4), 0.5(0.2), 0.4(0.2)} {0.7(0.1), 0.5(0.1), 0.6(0.4), 0.6(0.2), 0.5(0.2)}
Q3 {0.3(0.1), 0.5(0.1), 0.2(0.4), 0.2(0.2), 0.3(0.2)} {0.3(0.1), 0.4(0.1), 0.3(0.4), 0.4(0.2), 0.4(0.2)}
Q4 {0.3(0.1), 0.3(0.1), 0.4(0.4), 0.2(0.2), 0.2(0.2)} {0.2(0.1), 0.4(0.1), 0.4(0.4), 0.4(0.2), 0.5(0.2)}

Table 7
The priorities of criteria of DM 1.

Criteria I1
1 I1

2 I1
3 I1

4

N1
y(x−1)

1 2.7 3.8 4
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Table 8
The priorities of criteria of DM 2.

Criteria I2
1 I2

2 I2
3 I2

4

N1
y(x−1)

3.2 4.8 2.3 1

(iii) A finite model for criterion weight coefficient meeting the condition which is
introduced in the above:

min χ1

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣p1
1

p1
2

− 2.70

∣∣∣∣ <= χ1,

∣∣∣∣p1
2

p1
3

− 1.41

∣∣∣∣ <= χ1,

∣∣∣∣p1
3

p1
4

− 1.05

∣∣∣∣ <= χ1,

∣∣∣∣p1
1

p1
3

− 3.80

∣∣∣∣ <= χ1,

∣∣∣∣p1
1

p1
4

− 1.48

∣∣∣∣ <= χ1,

y∑
x=1

p1
x = 1, p1

x � 0.

(18)

The weight can be calculated by the software Lingo, and the result is pi
x = {0.531, 0.197,

0.140, 0.133}, and the result of χ1 is 0.00.

• Calculate the criterion weight for DM 2 (see Table 8).

(i) The DM 1 gives the ranking of significance of different attributes

I 2
4 > I 2

3 > I 2
1 > I 2

2 .

(ii) According to the data in Table 8, we get the comparative priorities as follows:

min χ2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣p2
4

p2
3

− 2.30

∣∣∣∣ <= χ2,

∣∣∣∣p2
3

p2
1

− 1.39

∣∣∣∣ <= χ2,

∣∣∣∣p2
1

p2
2

− 1.50

∣∣∣∣ <= χ2,

∣∣∣∣p2
4

p2
1

− 3.20

∣∣∣∣ <= χ2,

∣∣∣∣p2
3

p2
2

− 2.09

∣∣∣∣ <= χ2,

y∑
x=1

p2
x = 1, p2

x � 0.

(19)

The weight can be calculated by the software LINGO, and the result is p2
x = {0.160,

0.106, 0.222, 0.511}, and the result of χ2 is 0.00.

• Calculate the criterion weight for DM 3 (see Table 9).

(i) The DM 1 gives the ranking of significance of different attributes

I 3
4 > I 3

3 > I 3
1 > I 3

2 .
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Table 9
The priorities of criteria of DM 3.

Criteria I3
1 I3

2 I3
3 I3

4

N1
y(x−1)

2.6 1 4.2 3.3

Table 10
The integrated decision matrix.

Alternative I1 I2

Q1 {0.444(0.1), 0.315(0.1), 0.315(0.4), 0.418(0.2), 0.367(0.2)} {0.506(0.1), 0.392(0.1), 0.341(0.4), 0.242(0.2), 0.384(0.2)}
Q2 {0.372(0.1), 0.613(0.1), 0.599(0.4), 0.700(0.2), 0.650(0.2)} {0.332(0.1), 0.295(0.1), 0.700(0.4), 0.592(0.2), 0.517(0.2)}
Q3 {0.261(0.1), 0.497(0.1), 0.315(0.4), 0.432(0.2), 0.319(0.2)} {0.370(0.1), 0.271(0.1), 0.271(0.4), 0.340(0.2), 0.367(0.2)}
Q4 {0.327(0.1), 0.376(0.1), 0.242(0.4), 0.404(0.2), 0.231(0.2)} {0.508(0.1), 0.376(0.1), 0.295(0.4), 0.287(0.2), 0.287(0.2)}

Alternative I3 I4

Q1 {0.572(0.1), 0.350(0.1), 0.200(0.4), 0.231(0.2), 0.418(0.2)} {0.559(0.1), 0.332(0.1), 0.362(0.4), 0.304(0.2), 0.490(0.2)}
Q2 {0.500(0.1), 0.650(0.1), 0.631(0.4), 0.392(0.2), 0.539(0.2)} {0.561(0.1), 0.571(0.1), 0.608(0.4), 0.600(0.2), 0.506(0.2)}
Q3 {0.362(0.1), 0.447(0.1), 0.231(0.4), 0.327(0.2), 0.367(0.2)} {0.384(0.1), 0.315(0.1), 0.271(0.4), 0.444(0.2), 0.372(0.2)}
Q4 {0.367(0.1), 0.245(0.1), 0.290(0.4), 0.332(0.2), 0.204(0.2)} {0.200(0.1), 0.287(0.1), 0.287(0.4), 0.381(0.2), 0.424(0.2)}

Table 11
The score of the integrated decision matrix.

Alternative I1 I2 I3 I4

Q1 0.359 0.351 0.302 0.393
Q2 0.608 0.565 0.553 0.577
Q3 0.352 0.314 0.312 0.341
Q4 0.294 0.321 0.285 0.324

(ii) According to data in Table 9, we get the comparative priorities as follows:

min χ3

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣p3
2

p3
1

− 2.60

∣∣∣∣ <= χ3,

∣∣∣∣p3
1

p3
4

− 1.27

∣∣∣∣ <= χ3,

∣∣∣∣p3
4

p3
3

− 1.27

∣∣∣∣ <= χ3,

∣∣∣∣p3
2

p3
4

− 3.30

∣∣∣∣ <= χ3,

∣∣∣∣p3
1

p3
3

− 1.62

∣∣∣∣ <= χ3,

y∑
x=1

p3
x = 1, p3

x � 0.

(20)

The weight can be calculated by the software LINGO, and the result is p3
x =

{0.200, 0.519, 0.124, 0.157}, and the result of χ3 is 0.00.
The final criterion weight is obtained by the integration weight combined with experts’

decision weight, and the result is p̂x = {0.287, 0.299, 0.158, 0.256}.
Step 3. Integrate the decision matrices by different DMS into one matrix (see Table 10).

Step 4. Figure out the score function of the integrated decision matrix (see Table 11).

Step 5. Determine the v̂∗
x and v̂−

x indexes (see Tables 12–13).
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Table 12
The positive index v̂∗

x .

I1 I2

{0.372(0.1), 0.613(0.1), 0.599(0.4), 0.700(0.2), 0.650(0.2)} {0.332(0.1), 0.295(0.1), 0.700(0.4), 0.592(0.2), 0.517(0.2)}
I3 I4

{0.500(0.1), 0.650(0.1), 0.631(0.4), 0.392(0.2), 0.539(0.2)} {0.561(0.1), 0.571(0.1), 0.608(0.4), 0.600(0.2), 0.506(0.2)}

Table 13
The positive index v̂−

x .

I1 I2

{0.327(0.1), 0.376(0.1), 0.242(0.4), 0.404(0.2), 0.231(0.2)} {0.370(0.1), 0.271(0.1), 0.271(0.4), 0.340(0.2), 0.367(0.2)}
I3 I4

{0.367(0.1), 0.245(0.1), 0.290(0.4), 0.332(0.2), 0.204(0.2)} {0.200(0.1), 0.287(0.1), 0.287(0.4), 0.381(0.2), 0.424(0.2)}

Table 14
The positive and negative distance.

d∗
1 (v̂rx (ĝrx ), v̂∗

x(ĝ∗
x )) 0.232 d−

1 (v̂rx (ĝrx ), v̂−
x (ĝ−

x )) 0.152
d∗

2 (v̂rx (ĝrx ), v̂∗
x(ĝ∗

x )) 0.000 d−
2 (v̂rx (ĝrx ), v̂−

x (ĝ−
x )) 0.266

d∗
3 (v̂rx (ĝrx ), v̂∗

x(ĝ∗
x )) 0.219 d−

3 (v̂rx (ĝrx ), v̂−
x (ĝ−

x )) 0.083
d∗

4 (v̂rx (ĝrx ), v̂∗
x(ĝ∗

x )) 0.290 d−
4 (v̂rx (ĝrx ), v̂−

x (ĝ−
x )) 0.034

Step 6. Calculate the positive and negative distance (see Table 14).

Step 7. Compute out the relative closeness to the ideal solution.

Then the result is Hr = {0.396, 1.000, 0.274, 0.105}, and we a get rank Q2 > Q1 >

Q3 > Q4.

5. Comparison and Discussion

In this section, TODIM (PHF-TODIM) method (Zhang et al., 2018), PHFWA operator
(Xu and Zhou, 2017), PHFWG operator (Xu and Zhou, 2017) are utilized to compare
with the PHF-FUCOM-TOPSIS method to test its feasibility and practicability. In order
to compare the results more intuitively, we represent the result as a line chart in Fig. 2 and
Table 15 where the original result is processed by the same manner in range 0 to 1.

From the above detailed analysis, it could be seen that these four given models have
the same optimal choice Q2 and the order of these four methods is the same. This ver-
ifies that the PHF-FUCOM-TOPSIS is reasonable & effective. These four given models
have their given advantages: (1) PHFWA operator emphasizes group decision influences;
(2) PHFWG operator emphasizes individual decision influences; (3) The PHF-TODIM
method is an interactive multi-criteria decision-making method. The method is based on
the value function of prospect theory, establishes the relative dominance function of a cer-
tain plan compared with other plans according to the psychological behaviour of decision
makers, and selects the best plan according to the size of the dominance, so as to deter-
mine the optimal plan. At the moment, the TODIM method is continuously improved and
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Fig. 2. The comparison of different methods.

Table 15
The sequence from different methods.

Method The sequence The best alternative

PHF-TODIM (Zhang et al., 2018) Q2 > Q1 > Q3 > Q4 Q2
PHFWA operator (Xu and Zhou, 2017) Q2 > Q1 > Q3 > Q4 Q2
PHFWG operator (Xu and Zhou, 2017) Q2 > Q1 > Q3 > Q4 Q2
PHF-FUCOM-TOPSIS Q2 > Q1 > Q3 > Q4 Q2

widely used in decision-making in various fields. (4) The “ideal solution” and “negative
ideal solution” in the PHF-FUCOM-TOPSIS method are two basic concepts of the TOP-
SIS method. The so-called ideal solution is an assumed optimal solution (scheme), and
its various attribute values reach the best value among the alternative schemes; while the
negative ideal solution is the assumed worst solution (scheme), and each of its attribute
values achieve the worst value among the alternatives. The rule for sorting the schemes is
to compare the alternatives with the ideal solution and the negative ideal solution. If one
of the alternatives is closest to the ideal solution while far from the negative ideal solution,
then this scheme is the best one among the alternatives.

6. Conclusions

In this study, we propose a new PHF-FUCOM-TOPSIS model for performance evaluation
of public charging service quality and apply it in the probabilistic hesitant fuzzy environ-
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ment. A novel extended TOPSIS model integrated with FUCOM method was proposed to
evaluate green selection supplier. Finally, we apply this method in a numerical study for
performance evaluation of public charging service quality and compare the results with
other methods to test its validity. The specific contributions of it are as follows:

(1) It integrates classical TOPSIS method and FUCOM method in the probabilistic hesi-
tant fuzzy environment including more information to make the decision-making pro-
cess more reasonable.

(2) It extends the FUCOM method to calculate criterion weight in the probabilistic hesi-
tant fuzzy environment.

In the future, we firmly believe that PHF-FUCOM-TOPSIS method will be applied
in a larger number of fields. Meanwhile, we should consider the attributes of the actual
situation when solving the performance evaluation of public charging service quality and
apply this new model in more fields.
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