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Abstract. The problem associated with the stiff ordinary differential equa

tion (ODE) systems in parallel processing is that the calculus can not be started 
simultaneously on many processors with an explicit formula. The proposed al

gorithm is constructed for a special classes of stiff ODE, those of the form 
y'(t)=A(t)y(t)+g(t). It has a high efficiency in the implementation on a dis
tributed memory multiprocessor when the ODEs function has many components. 
The approximation error is equal to that produced by the analogous sequential 
algorithm. 
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1. Introduction. The subject of this paper is the parallel computing 
of the solution of stiff ordinary differential equations systems. The main 
problem associated with a stiff system is that of the stability. Explicit 
numerical methods are not suitable for the integration. More details about 
the stiff system can be found in Hairer and Wanner (1991). 

Parallelism in solving ODE can be expressed via three distinct av

enues (Iserles and Norsett, 1990): 
(l) coding a specific method so that it can be performed simultane

ously on several processors, 
(2) splitting variables in a multivariable ODE system between pro-

cessors, 
(3) exploiting parallelism in performing the request computer algebra, 

solving linear and nonlinear algebraic systems of equations. 
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The proposed algorithm is a hibrid method. It can be applied to 
linear stiff system with variable coefficients, divides the responsibilities 
of the processors on the interval of integration (second avenue), produces 
the same error like the sequential algorithm and makes use of the linearity 
of the system (third avenue). The efficiency depends on the complexity of 
the system function. The degree of parallelism depends on the dimension 
of the system. 

The numerical results show that a high efficiency can be obtained 
for a reasonable system dimension. 

2. Previous work. The parallel methods from the first avenue pre
serve the stability and accuracy of the basic sequential algorithm. Such 
methods are the predictor-corrector schemes which can be easily imple
mented in a parallel mode. Many examples are presented by Miranker 
and Liniger (1967). The application of those to stiff system is not suc
cessfully because almost all schemes are equivalent with some explicit 
formulas. The stability characteristics can be improved. In this direction 
we can mention the paper of Worland (1993), Ghoshal and et al. (1989). 

These improvements make possible to handle slightly stiff equations. 

The block methods are easily adapted to a parallel mode with no 
degradation in the accuracy of solution. The performance of Hutchinson 
and Kalaf parallel implementation (1991) is dependent on the number of 
scheme nodes. Chu and Hamilton's (1978) algorithm has a numerical 
efficiency dependent on the dimension of the solving system and on the 
complexity of the system function. 

lserles and Norsett (1990) investigate the degree of the parallelism 
of the Runge-Kutta methods. The parallelism depends on exploitation 
of the sparsity structure of the Runge-Kutta matrix. Karakashian and 
Rust's algorithm (1989) is designed to solve a linear system of ODE by 
a Runge-Kutta process. The efficiency of this algorithm depends on the 
system dimension. For the proposed test system with variable dimension, 
the parallel mode becomes competitive only for a number of components 
of hundreds order. The parallel Runge-Kutta method proposed by Evans 
and Sanugi (1989) makes also use of the special form of the method 
matrix. 
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Galligani and Ruggiero (1989) propose a parallel method which is 
suitable to be applied to a large set of linear ODE systems. The method 
has good stability properties which makes it applyable to the stiff systems. 

One parallel algorithm which subscribe also to the first avenue is 
proposed by Petcu (1994). 

The second way request a reconstruction of the class of numerical 
methods for ODE. The basic idea is that of Nivergelt (1964). The inte
gration interval is divided into equal subintervals and each processor is 
responsible for integrate the solution on only one subinterval. To make 
efficient the algorithm, the processors must be started at appropriate time 
and must work simultaneously. For this purpose it is used an starting 
value, an approximation of the solution at the beginning of the processor 
subinterval. In the special case of a stiff system, the starting value can 
not be obtained be an explicit method, only when the subintervals num
ber and the step size are very smalls. In the case of using an implicit 
starting formula, we reach the class of block methods. An other problem 
associated with the stiff case is that the approximative solution produced 
by the parallel algorithm can be unstable, also when the basic method for 
integration on each subinterval has good stability properties. The error 
of the approximative parallel solution is different from that of sequential 
solution. 

Knirsch (1992) studies a scheme for solving the stages algebraic 
equations of a Runge-Kutta method (the third way). The reason for 
unsuccessfully using of this scheme in the stiff case is the same like for 
Nivelgelt's method. 

3. The problem to be solved. We consider a stiff system of the form 

y'(t) = A(t)y(t) + g(t), t E [0, TJ, (1) 

with the initial condition y( 0) = yO. Note with D the dimension of this 
system. For the numerical integration, the integration interval is divided 
in N equals subintervals of h length. 

The class of such stiff systems is not empty. For example, Iserles 
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(1981) proposed the stiff system 

{ 
yi(t) = - (SO + 3(/+t)) Yl(t) - (40 - 5(12+ t)) Y2(t), 

y~(t) = - (40 - 5(12+ t )) YI (t) - (20 + 5(I~t)) Y2(t), 

yeO) = (~), T = 100. (2) 

4. The basic method. Applying the implicit Euler rule 

Yn+1 = Yn + h!n+l, n = 0, ... , N I , (3) 

we get 

[1 - hA(tn+J)] Yn+1 = Yn + hg(tn+I). 

The step n of the sequential algorithm consists on the following stages: 

(1) Evaluate A(tn+l) and g(tn+I)' 
(2) Solve the linear system. If we use a Gauss like procedure, the 

principal steps in solving a linear system Qx = bare: 

(a) Transform Q to an upper triangular form. 
(b) Transform b in the same manner. 
(c) Solve the upper triangular linear system in x. 

5. Splitting the computational effort. We dispose of a distributed 

memory multiprocessor with P processors connected in a circular net
work. We choose two integer values K and r so that 

KPr = N = Tjh, (4) 

and make the distribution of the points of the integration interval like in 

Fig. 1. The idea is to compute at each k stage, (1) and (2a) in parallel, 

and (2b) and (2c) in a serial mode. 

6. Outline the algorithm. There are K stages. In stage k, where 

k = 0, ... ,K - 1, the processor p (p = 0, ... ,P - 1) must execute 
the following: 
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Fig. 1. Responsibility of the processors. 

(1) for j = 1, ... , r: 

(a) evaluate A(tkrPh+prh+jh) and g(tkrPh+prh+jh); 
(b) find the matrix Gj so that Gj[I - hA(tkrPh+prh+jh)] to 

have a triangular upper form; 

(2) if P =F 0 or p = 0 and k =F O. receive from the processor 
(p - l)modP the vector YkrP+pr. else the entry vector is Yo; 

(3) for j = 1, ... ,r: 
(a) transform the entry vector by applying Gj ; 

(b) find the solution of the transformed system YkrP+pr+j; 
(4) if P 'I- P -1 or p= P -1 and k 'I- K -1. send YkrP+(p+l)r 

to processor p + ImodP and set k --+ k + 1, else stop algorithm. 

7. Study of the emclency. Note Tp the execution time of an imple
mentation of the algorithm using p processors. Tl the execution time of 
the same implementation of the algorithm using only one processor and 
To the execution time of the best implementation of the basic sequential 
algorithm. 

The efficiency of the parallel algorithm may be computed in many 
ways. The numerical efficiency of the parallel algorithm. Enum. is 
computed by the following formula 

To 
Enum = T1 ' (5) 
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The efficiency of the parallel implementation of the algorithm, Err, is 
given by the next relationship 

E par = Tl 
p T.' p p 

(6) 

The efficiency of the parallel algorithm with p processors, Ep , is given 
by the formula 

E To E Epar 
p = pTp = num p . (7) 

The ideal values of these efficiency measurements are 1. The practi
cal values are lowest: for Enum , because almost all sequential algorithms 
are very difficult to divide in a number of equal units (in the sense of the 
same computing effort), for E:ar, because the communication time be
tween the processors is greater that the computing time necessary for an 
arithmetic operation (the ratio is between 500 and 1000, depending on 
the network), and, for Ep, because Enum ~ 1 and Err ~ l. 

Let F be the medium time necessary to evaluate A(· ) and 9 (. ), U, 
the medium time necessary to determine one transforming matrix C, V, 
the medium time necessary to transform a D-dimensiona1 vector accord
ing the matrix C and to find the solution of the transformed upper tri
angular system, S, the medium time necessary to send aD-dimensional 
vector to a processor directly linked with the current processor, R, the 
medium time necessary to receive a D-dimensional vector from a proces
sor directly linked with the current processor, and G, the medium time 
necessary to solve a linear system of dimension D with the standard 
Gauss procedure. 

The first stage of the algorithm look like in Fig. 2. With a continue 
line we have note the time when a processor is busy. 

The condition that the O-processor does not wait until the P - 1 
processor finishes the first stage is 

r(U + F) + rV + S + r(U + F) 

~ r(U + F) + (P -l)(rV + S) + (P - 2)R + R + rV + S, 
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Fig. 2. The first stage, in time. 

that means 
U+F 

P - 1 :s;;; V + (8 + R)/r' (8) 

or 
(S + R)(P -1) 

r ~ U + F _ (P _ 1)V' U + F ~ (P - 1)V. (9) 

If these inequalities are satisfied, then there are not waiting times in the 
stage k > 0 (see Fig. 3). 
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Fig. 3. The stage k > 0, in time. 
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Theoretically, we have the following equations: 

Tp =K[r(U + F) + rV + S + R] 

+ (P - l)(rV + S) + (P - 2)S, 

Tl =PK[r(U + F) + rV] = PKr(U + F + V), 

and then 

Epar = ~ = 1 ( ) 
p PI: 1 + K(R+S)+(P-l)(rV+S)+(P-2)S' 10 

p Kr(V+F+V) 

Note that 

Tl = To + N(U + V - G). 

REMARKS: 

(i) S ~ R and does not depend on D; 
(ii) U, F and V depend superlinear on the system dimension. In 

addition, F depends on the system function complexity. 
(iii) The stages number K has influence on the efficiency. For system 

with a small D, K must be small, because U + F ~ S. 
(iv) The approximation error produced by the parallel algorithm is 

equal to the one produced by the sequential algorithm. 
(v) To maximize E;ar, for a given system (for which we know the 

values S. T. U, F) and a given number of integration steps, N, 
we search (P, K, r) for which 

mm 
(K,P,r)EA 

where 

K(S + R) + (P - l)(rV + S) + (P - 2)R 
Kr(U +F+ V) 

(11) 

A ={(K,P,r) E N 3 Ir[U + F - (P -l)V] 

~ (5 + R)(P -1), PKr = N}. 
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(vi) For simple system function, F ~ U and F ~ V, and U IV ~ 
(D + 1) 14. The condition that the a-processor has not dead times 
implies that 

D+3 
p~ -2-' 

8. Numerical results. We have tested the proposed algorithm on the 
system (2) and on the following system 

This system generalized in D dimension the stiff system A4 given by En
right and et al. (1975), for which D = 10. The test results are presented 
in Tables 1-2. We have use a T-800 mutiprocessor under PARIX. 

Analyzing Table 1 we conclude that the efficiency of the parallel 
implementation of the algorithm increases with the dimension D and 
descreases with the processors number P. For P = 2, E~ar is very 
close to the ideal value. 

From Table 2 we deduce that all the measurements of the efficiency 
increase with the number N of the points where the solution of the ODE 
system is numerical evaluated. 

The complexity of the system function has a significant influence on 
the numerical efficiency (compare the values P = 2 from both tables). 
For the test systems, the value of Enum is close to 0.8. 

The numerical efficiency is the principal value which has a great 
influence on the efficiency of the parallel algorithm. Hence, E p depends 
on D, P and on the complexity of the system function. 

9. Conclusions. The proposed parallel algorithm is designed to solve 
linear stiff systems of ODE with variable coefficients and a perturbation 
depending on time. The approximation error is the same like in the se
quential algorithm. The efficiency of the parallel algorithm increases with 
the dimension and the complexity of the system function and decreases 
with the number of used processors. 
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Table 1. The efficiency in the integration of system (12) with 

N = 1000 

Epar 
p Ep Enum 

D\P 2 4 8 2 4 8 

2 
3 
4 
5 
8 

10 
15 
20 

0.962 0.500 0.260 0.683 0.355 0.185 0.710 
0.973 0.610 0.303 0.700 0.440 0.218 0.720 
0.978 0.667 0.331 0.703 0.476 0.236 0.714 
0.983 0.712 0.355 0.700 0.508 0.253 0.713 
0.987 0.838 0.419 0.709 0.602 0.301 0.719 
0.989 0.908 0.456 0.716 0.657 0.330 0.724 

0.992 0.919 0.549 0.730 0.677 0.405 0.737 
0.993 0.926 0.634 0.742 0.691 0.473 0.747 

Table 2. The efficiency in the integration of the Iserles's system (2) 
with dimension D = 2 and P = 2 processors 

Ig(N) Epar 
2 E2 Enum 

1 0.644 0.453 0.704 

2 0.700 0.550 0.779 
3 0.890 . 0.703 0.789 
4 0.962 0.760 0.790 
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