
INFORMATICA, 1994, Vol. 5, No. 3--4, 373-384

A PARALLEL ALGORITHM
FOR STIFF ORDINARY DIFFERENTIAL

EQUATIONS

Dana PETCU

Department of Computer Science, Faculty of Mathematics
University of Timi~oara
1900 Timi~oara, B-dul Vasile Parvan 4, Romania

Abstract. The problem associated with the stiff ordinary differential equa

tion (ODE) systems in parallel processing is that the calculus can not be started
simultaneously on many processors with an explicit formula. The proposed al

gorithm is constructed for a special classes of stiff ODE, those of the form
y'(t)=A(t)y(t)+g(t). It has a high efficiency in the implementation on a dis
tributed memory multiprocessor when the ODEs function has many components.
The approximation error is equal to that produced by the analogous sequential
algorithm.

Key words: parallel numerical algorithm, stiff ordinary differential equations,
implementation efficiency, distributed memory multiprocessor.

1. Introduction. The subject of this paper is the parallel computing
of the solution of stiff ordinary differential equations systems. The main
problem associated with a stiff system is that of the stability. Explicit
numerical methods are not suitable for the integration. More details about
the stiff system can be found in Hairer and Wanner (1991).

Parallelism in solving ODE can be expressed via three distinct av

enues (Iserles and Norsett, 1990):
(l) coding a specific method so that it can be performed simultane

ously on several processors,
(2) splitting variables in a multivariable ODE system between pro-

cessors,
(3) exploiting parallelism in performing the request computer algebra,

solving linear and nonlinear algebraic systems of equations.

374 A parallel algorithm

The proposed algorithm is a hibrid method. It can be applied to
linear stiff system with variable coefficients, divides the responsibilities
of the processors on the interval of integration (second avenue), produces
the same error like the sequential algorithm and makes use of the linearity
of the system (third avenue). The efficiency depends on the complexity of
the system function. The degree of parallelism depends on the dimension
of the system.

The numerical results show that a high efficiency can be obtained
for a reasonable system dimension.

2. Previous work. The parallel methods from the first avenue pre
serve the stability and accuracy of the basic sequential algorithm. Such
methods are the predictor-corrector schemes which can be easily imple
mented in a parallel mode. Many examples are presented by Miranker
and Liniger (1967). The application of those to stiff system is not suc
cessfully because almost all schemes are equivalent with some explicit
formulas. The stability characteristics can be improved. In this direction
we can mention the paper of Worland (1993), Ghoshal and et al. (1989).

These improvements make possible to handle slightly stiff equations.

The block methods are easily adapted to a parallel mode with no
degradation in the accuracy of solution. The performance of Hutchinson
and Kalaf parallel implementation (1991) is dependent on the number of
scheme nodes. Chu and Hamilton's (1978) algorithm has a numerical
efficiency dependent on the dimension of the solving system and on the
complexity of the system function.

lserles and Norsett (1990) investigate the degree of the parallelism
of the Runge-Kutta methods. The parallelism depends on exploitation
of the sparsity structure of the Runge-Kutta matrix. Karakashian and
Rust's algorithm (1989) is designed to solve a linear system of ODE by
a Runge-Kutta process. The efficiency of this algorithm depends on the
system dimension. For the proposed test system with variable dimension,
the parallel mode becomes competitive only for a number of components
of hundreds order. The parallel Runge-Kutta method proposed by Evans
and Sanugi (1989) makes also use of the special form of the method
matrix.

D. Petcu 375

Galligani and Ruggiero (1989) propose a parallel method which is
suitable to be applied to a large set of linear ODE systems. The method
has good stability properties which makes it applyable to the stiff systems.

One parallel algorithm which subscribe also to the first avenue is
proposed by Petcu (1994).

The second way request a reconstruction of the class of numerical
methods for ODE. The basic idea is that of Nivergelt (1964). The inte
gration interval is divided into equal subintervals and each processor is
responsible for integrate the solution on only one subinterval. To make
efficient the algorithm, the processors must be started at appropriate time
and must work simultaneously. For this purpose it is used an starting
value, an approximation of the solution at the beginning of the processor
subinterval. In the special case of a stiff system, the starting value can
not be obtained be an explicit method, only when the subintervals num
ber and the step size are very smalls. In the case of using an implicit
starting formula, we reach the class of block methods. An other problem
associated with the stiff case is that the approximative solution produced
by the parallel algorithm can be unstable, also when the basic method for
integration on each subinterval has good stability properties. The error
of the approximative parallel solution is different from that of sequential
solution.

Knirsch (1992) studies a scheme for solving the stages algebraic
equations of a Runge-Kutta method (the third way). The reason for
unsuccessfully using of this scheme in the stiff case is the same like for
Nivelgelt's method.

3. The problem to be solved. We consider a stiff system of the form

y'(t) = A(t)y(t) + g(t), t E [0, TJ, (1)

with the initial condition y(0) = yO. Note with D the dimension of this
system. For the numerical integration, the integration interval is divided
in N equals subintervals of h length.

The class of such stiff systems is not empty. For example, Iserles

376 A parallel algorithm

(1981) proposed the stiff system

{
yi(t) = - (SO + 3(/+t)) Yl(t) - (40 - 5(12+ t)) Y2(t),

y~(t) = - (40 - 5(12+ t)) YI (t) - (20 + 5(I~t)) Y2(t),

yeO) = (~), T = 100. (2)

4. The basic method. Applying the implicit Euler rule

Yn+1 = Yn + h!n+l, n = 0, ... , N I , (3)

we get

[1 - hA(tn+J)] Yn+1 = Yn + hg(tn+I).

The step n of the sequential algorithm consists on the following stages:

(1) Evaluate A(tn+l) and g(tn+I)'
(2) Solve the linear system. If we use a Gauss like procedure, the

principal steps in solving a linear system Qx = bare:

(a) Transform Q to an upper triangular form.
(b) Transform b in the same manner.
(c) Solve the upper triangular linear system in x.

5. Splitting the computational effort. We dispose of a distributed

memory multiprocessor with P processors connected in a circular net
work. We choose two integer values K and r so that

KPr = N = Tjh, (4)

and make the distribution of the points of the integration interval like in

Fig. 1. The idea is to compute at each k stage, (1) and (2a) in parallel,

and (2b) and (2c) in a serial mode.

6. Outline the algorithm. There are K stages. In stage k, where

k = 0, ... ,K - 1, the processor p (p = 0, ... ,P - 1) must execute
the following:

Y

D. Peteu 377

(tJ

p p: :p p p: p p p: :p
I I ' 'I I I ' I I I ' 'I

0: :0 0
,

0 0 0: :0 0 0,
C C' ,c C C' C C C' 'C
e e' 'e e e' e e e' ,'e
8 8 ' '8 8 8 : 8 8 8 ' '8
8 S : •••. : s s s " ... s s s : : s
0 0, ,0 0 0' 0 0 0' '0
I I' 'I I I ,. I I I ' 'I
I', :

, , , ,
:0:,1, :P 0 1 : p 0 1 : :P
, " , , - ,

i
, , ;.

, " , '1 , , , 1

O~ rh 2rh .. Prh ... 2Prh .. (K-1}Prh ... T=Prh t

Fig. 1. Responsibility of the processors.

(1) for j = 1, ... , r:

(a) evaluate A(tkrPh+prh+jh) and g(tkrPh+prh+jh);
(b) find the matrix Gj so that Gj[I - hA(tkrPh+prh+jh)] to

have a triangular upper form;

(2) if P =F 0 or p = 0 and k =F O. receive from the processor
(p - l)modP the vector YkrP+pr. else the entry vector is Yo;

(3) for j = 1, ... ,r:
(a) transform the entry vector by applying Gj ;

(b) find the solution of the transformed system YkrP+pr+j;
(4) if P 'I- P -1 or p= P -1 and k 'I- K -1. send YkrP+(p+l)r

to processor p + ImodP and set k --+ k + 1, else stop algorithm.

7. Study of the emclency. Note Tp the execution time of an imple
mentation of the algorithm using p processors. Tl the execution time of
the same implementation of the algorithm using only one processor and
To the execution time of the best implementation of the basic sequential
algorithm.

The efficiency of the parallel algorithm may be computed in many
ways. The numerical efficiency of the parallel algorithm. Enum. is
computed by the following formula

To
Enum = T1 ' (5)

378 A parallel algorithm

The efficiency of the parallel implementation of the algorithm, Err, is
given by the next relationship

E par = Tl
p T.' p p

(6)

The efficiency of the parallel algorithm with p processors, Ep , is given
by the formula

E To E Epar
p = pTp = num p . (7)

The ideal values of these efficiency measurements are 1. The practi
cal values are lowest: for Enum , because almost all sequential algorithms
are very difficult to divide in a number of equal units (in the sense of the
same computing effort), for E:ar, because the communication time be
tween the processors is greater that the computing time necessary for an
arithmetic operation (the ratio is between 500 and 1000, depending on
the network), and, for Ep, because Enum ~ 1 and Err ~ l.

Let F be the medium time necessary to evaluate A(·) and 9 (.), U,
the medium time necessary to determine one transforming matrix C, V,
the medium time necessary to transform a D-dimensiona1 vector accord
ing the matrix C and to find the solution of the transformed upper tri
angular system, S, the medium time necessary to send aD-dimensional
vector to a processor directly linked with the current processor, R, the
medium time necessary to receive a D-dimensional vector from a proces
sor directly linked with the current processor, and G, the medium time
necessary to solve a linear system of dimension D with the standard
Gauss procedure.

The first stage of the algorithm look like in Fig. 2. With a continue
line we have note the time when a processor is busy.

The condition that the O-processor does not wait until the P - 1
processor finishes the first stage is

r(U + F) + rV + S + r(U + F)

~ r(U + F) + (P -l)(rV + S) + (P - 2)R + R + rV + S,

Processor 0

Processor 1

D. Peteu

I--_T~{~U~+~F..I...)_--+I_T,,;,V-+-I S=---li Stage 1
I

t--_T..I-.{_U,;",+ F~)'-----il .rY T~ i R I T V I S-j Stage 1

I ,
(P-l}(r V+S) +

379

I (U-I-F) . + {P-2}R R rV S
Processor P-11 ~ __ T--I---':'~_--II ~ I I I!

: Stage 0
t=O

I

: b.t ',.
I ,
I

pr'

Fig. 2. The first stage, in time.

that means
U+F

P - 1 :s;;; V + (8 + R)/r' (8)

or
(S + R)(P -1)

r ~ U + F _ (P _ 1)V' U + F ~ (P - 1)V. (9)

If these inequalities are satisfied, then there are not waiting times in the
stage k > 0 (see Fig. 3).

Processor 0

Processor 1

Processor P-l

T{U+F) 1,R, TV lSi Stage k+l

Stage k-l

b.t

I

T{~+F) ,Ri TV I SI Stage k+l
,

I .'

~(U+F)

I b.t I
I.+'~ ____ --J>-I~ ,

Fig. 3. The stage k > 0, in time.

380 A parallel algorithm

Theoretically, we have the following equations:

Tp =K[r(U + F) + rV + S + R]

+ (P - l)(rV + S) + (P - 2)S,

Tl =PK[r(U + F) + rV] = PKr(U + F + V),

and then

Epar = ~ = 1 ()
p PI: 1 + K(R+S)+(P-l)(rV+S)+(P-2)S' 10

p Kr(V+F+V)

Note that

Tl = To + N(U + V - G).

REMARKS:

(i) S ~ R and does not depend on D;
(ii) U, F and V depend superlinear on the system dimension. In

addition, F depends on the system function complexity.
(iii) The stages number K has influence on the efficiency. For system

with a small D, K must be small, because U + F ~ S.
(iv) The approximation error produced by the parallel algorithm is

equal to the one produced by the sequential algorithm.
(v) To maximize E;ar, for a given system (for which we know the

values S. T. U, F) and a given number of integration steps, N,
we search (P, K, r) for which

mm
(K,P,r)EA

where

K(S + R) + (P - l)(rV + S) + (P - 2)R
Kr(U +F+ V)

(11)

A ={(K,P,r) E N 3 Ir[U + F - (P -l)V]

~ (5 + R)(P -1), PKr = N}.

D. Petcu 381

(vi) For simple system function, F ~ U and F ~ V, and U IV ~
(D + 1) 14. The condition that the a-processor has not dead times
implies that

D+3
p~ -2-'

8. Numerical results. We have tested the proposed algorithm on the
system (2) and on the following system

This system generalized in D dimension the stiff system A4 given by En
right and et al. (1975), for which D = 10. The test results are presented
in Tables 1-2. We have use a T-800 mutiprocessor under PARIX.

Analyzing Table 1 we conclude that the efficiency of the parallel
implementation of the algorithm increases with the dimension D and
descreases with the processors number P. For P = 2, E~ar is very
close to the ideal value.

From Table 2 we deduce that all the measurements of the efficiency
increase with the number N of the points where the solution of the ODE
system is numerical evaluated.

The complexity of the system function has a significant influence on
the numerical efficiency (compare the values P = 2 from both tables).
For the test systems, the value of Enum is close to 0.8.

The numerical efficiency is the principal value which has a great
influence on the efficiency of the parallel algorithm. Hence, E p depends
on D, P and on the complexity of the system function.

9. Conclusions. The proposed parallel algorithm is designed to solve
linear stiff systems of ODE with variable coefficients and a perturbation
depending on time. The approximation error is the same like in the se
quential algorithm. The efficiency of the parallel algorithm increases with
the dimension and the complexity of the system function and decreases
with the number of used processors.

382 A parallel algorithm

Table 1. The efficiency in the integration of system (12) with

N = 1000

Epar
p Ep Enum

D\P 2 4 8 2 4 8

2
3
4
5
8

10
15
20

0.962 0.500 0.260 0.683 0.355 0.185 0.710
0.973 0.610 0.303 0.700 0.440 0.218 0.720
0.978 0.667 0.331 0.703 0.476 0.236 0.714
0.983 0.712 0.355 0.700 0.508 0.253 0.713
0.987 0.838 0.419 0.709 0.602 0.301 0.719
0.989 0.908 0.456 0.716 0.657 0.330 0.724

0.992 0.919 0.549 0.730 0.677 0.405 0.737
0.993 0.926 0.634 0.742 0.691 0.473 0.747

Table 2. The efficiency in the integration of the Iserles's system (2)
with dimension D = 2 and P = 2 processors

Ig(N) Epar
2 E2 Enum

1 0.644 0.453 0.704

2 0.700 0.550 0.779
3 0.890 . 0.703 0.789
4 0.962 0.760 0.790

Acknowledgement. The author is grateful to the peers of the TEM

PUS program for providing the opportunity to work on this paper at the

University of Heidelberg.

REFERENCES

Chu, M.T., and H.Hamilton (1978). Parallel solution of ODE's by multi-block

D. Petcu 383

methods. SIAM 1. Sci. Statistic Comput., 27,413-420.

Enright, W.H., T.E.Hull and B.Lindberg (1975). Comparing numerical methods for
ordinary differential equations. BIT, 15, 1-48.

Evans, DJ., and B.B.Sanugi (1989). A parallel Runge-Kutta integration method.

Parallel Computing, 11, 245-251.

Hutchinson, D., and B.M.S.Khalaf (1991). Parallel algorithms for solving initial

value problems: front broadening and embedded parallelism. Parallel Comput
ing, 17, 957-968.

Galligani, r., and v'Ruggiero (1989). Solving large systems of linear ordinary

differential equations on a vector computer. Parallel Computing, 9, 359-365.

Ghoshal, S.K., M.Gupta and v'Rajarman (1989). A parallel multistep predictor-co

rector algorithm for solving ordinary differential equations. Journal of Parallel
and Distributed Computing, 6, 636-648.

Hairer, E. and G.Wanner (1991). Solving Ordinary Differential Equations I1 Stiff

and Differential-Algebraic Problems. Springer-Verlag, Heidelberg. 540pp.
Iserles, A. (1981). Quadrature methods for stiff ordinary differential systems. Math

ematics of Computing, 36, 171-182.
Iserles, A., and S.P.Norsett (1990). On the theory of parallel Runge-Kutta methods.

IMA Journal of Numerical Analysis, 10, 463-488.
Karakashian, O.A., and W.Rust (1989). On the parallel implementation of implicit

Runge-Kutta methods. SIAM Review, 31, 1023-1028.
Knirsch, R. (1992). A parallel implicit Runge-Kutta method. In G.Bader,

R.Rannacher, G. Wittum (Eds.), Parallel Solution Methods for Differential Equa

tions, Preprint Nr. 698, UniversWit Heidelberg, Stochastiche Mathematische

Modelle.
Miranker, W.L., and W.Liniger (1967). Parallel methods for the numerical inte

gration of ordinary differential equations. Mathematics of Computation, 21,

303-320.

Nivergelt, J. (1964). Parallel methods for integrating ordinary differential equations.

Communications of the ACM, 7(12), 731-733.

Petcu, D. (1994). Numerical Methods for Solving the Stiff Differential Systems.

Ph.D. Thesis, University of Timi~oara (in Romanian).

Worland, P.B. (1993). Parallel methods for ODEs with improved absolute stability

boundaries. Journal of Parallel and Distributed Computing, 18, 25-32.

Received September 1994

384 A parallel algorithm

D. Petcu born in 1966, received the M.S. degree in informatics from
the Mathematics Faculty of the University of Timi~oara and the Ph.D.
degree in numerical analysis in 1994. At present she is lecturer in the
above mentionated institute. Her research interests include the numerical
analysis, especially the ordinary differential equation, as well the parallel
computing.

