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Abstract. In this paper, at first, we define the notion of general fuzzy automaton over a field; we
call this automaton vector general fuzzy automaton (VGFA). Moreover, we present the concept of
max-min vector general fuzzy automaton. We show that if two max-min VGFA are similar, they
constitute an isomorphism. After that, we prove that if two VGFA constitute an isomorphism with
threshold α, they are equivalent with threshold α, where α ∈ [0, 1]. Also, some examples are given
to clarify these new notions.
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1. Introduction

Theoretical computer science is the mathematical study of models of computation. As
such, it originated in the 1930s, well before the existence of modern computers, in the
work of the logicians Church, Godel, Kleene, Post, and Turing. This early work has had
a profound influence on the practical and theoretical development of computer science.
Not only has the Turing machine model proved essential for theory, but the work of these
pioneers presaged many aspects of computational practice that are now commonplace and
whose intellectual antecedents are typically unknown to users. Control theory is a branch
of mathematics that deals with the behaviour of dynamical systems studied in terms of
inputs and outputs.

Automata theory is one of the longest-established areas in computer science. Standard
applications of automata theory include pattern matching, syntax analysis, and formal ver-
ification. In recent years, novel applications of automata-theoretic concepts have emerged
from numerous sciences, like biology, physics, cognitive sciences, control, linguistics,
and biology. For more information, see Aceto et al. (2007), Cassandras and Lafortune
(2009), Shamsizadeh et al. (2020), Dovier et al. (2004), Even (1965), Roggenbach and
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Majster-Cederbaum (2000), Shamsizadeh et al. (2016), Shamsizadeh and Zahedi (2019).
Directable automata were introduced in Starke (1969), and also definite automata by
Kleene (1956). Wee (1967) and Santos (1968) have introduced the idea of fuzzy automata.
Accordingly, fuzzy finite automata have been applied in many areas, such as learning sys-
tems, the model of computing with words, pattern recognition, lattice-valued fuzzy finite
automata, and clinical monitoring, and also used as models of machine learning systems
(Ying, 2002; Li and Shi, 2000). In general, fuzzy automata have provided an attractive
systematic way of generalizing discrete applications (Cattaneo et al., 1997; Doostfatemeh
and Kremer, 2003; Reiter, 2002; Srivastava and Tiwari, 2002). Moreover, fuzzy automata
developed capabilities that are hardly achievable by other tools (Ying, 2002).

Several researchers have contributed to the growth of the fuzzy automata theory.
Among these works, the work of Jin and his coworkers (Jin et al., 2013) is directed towards
the algebraic study of fuzzy automata based on Po-monoids; the work of Abolpour and
Zahedi (Abolpour et al., 2020; Abolpour and Zahedi, 2017) is directed towards the use of
categorical concepts in the study of general fuzzy automata with membership values in
different lattice structures; the work of Qiu (2001, 2002) is directed towards the algebraic,
topological and categorical study of fuzzy automata theory based on residuated lattices;
the work of Peeva (1988, 1991) relates to the study of minimizing the states of fuzzy au-
tomata and its application to study pattern recognition; the work of Pal and their coworkers
(Pal et al., 2019) is directed towards the study of fuzzy automaton based on the residuated
and co-residuated lattice, the work of Shamsizadeh and coworkers (Shamsizadeh et al.,
2021; Raisi Sarbizhan et al., 2022; Shamsizadeh and Zahedi, 2022; Shamsizadeh, 2022)
is directed towards the study of fuzzy automaton based on graph theory and multiset the-
ory and neutrosophic sets; Ghorani, Moghari and coworkers (Ghorani and Moghari, 2022;
Ghorani et al., 2022) study fuzzy tree automata based on lattice-valued.

In this paper, we define the notion of general fuzzy automaton over a field. We call this
automaton vector general fuzzy automaton (VGFA). Moreover, we present the concept
of max-min vector general L-fuzzy automaton. VGFA are used for generation of linear
codes, detection and correction of errors, construction of testing sequence, and genera-
tion of pseudo-random sequences of numbers. They are also used in experiments that re-
quire Monte Carlo methods, in the protection of data stored in computer systems and radio
location. We show that if two max-min VGFA are similar, then they constitute an isomor-
phism. After that, we prove that if two VGFA constitute an isomorphism with threshold
α, they are equivalent with threshold α, where α ∈ [0, 1]. Also, some examples are given
to clarify these new notions.

2. Preliminaries

In this section, we review some notions which are needed in the next section.

Definition 1 (Mordeson and Malik, 2002). A fuzzy finite state machine (ffsm) is a triple
M = (Q,X, υ), where Q is a finite set of states, X is a set of input symbols and υ :
Q × X × Q → [0, 1] is a fuzzy transition function.
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As usual, X∗ denotes the set of all words of elements of X of finite length, including
the empty word � in X∗ and |x| denotes the length of x, for any x ∈ X∗.

Definition 2 (Zahedi et al., 2008). A fuzzy finite state automaton (FFA) is a six-tuple
denoted by F̃ = (Q,X,R,Z, δ, ω), where:

• Q = {q1, q2, . . . , qn} is a finite set of states,
• X = {a1, a2, . . . , am} is a finite set of input symbols,
• R is the start state of F̃ ,
• Z = {b1, b2, . . . , bk} is a finite set of output symbols,
• δ : Q × X × Q → [0, 1] is the fuzzy transition function which is used to map a state

(current state) into another state (next state) upon an input symbol, attributing a value
in the interval [0, 1],

• ω : Q → Z is the output function.

In an FFA, as can be seen, associated with each fuzzy transition a membership value in
[0, 1]. We call this membership value, the value of the transition.

Definition 3 (Doostfatemeh and Kremer, 2005). A general fuzzy automaton (GFA) F̃ is
an eight-tuple machine denoted by F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2), where:

• Q = {q1, q2, . . . , qn} is a finite set of states,
• X = {a1, a2, . . . , am} is a finite set of input symbols,
• R̃ ⊆ P̃ (Q) is the set of fuzzy start states,
• Z = {b1, b2, . . . , bk} is a finite set of output symbols,
• δ̃ : (Q × [0, 1]) × X × Q → [0, 1] is the augmented transition function,
• ω : Q → Z is the output function,
• F1 : [0, 1]×[0, 1] → [0, 1] is called the membership assignment function. The function

F1(μ, δ), as is seen, is motivated by two parameters μ and δ, where μ is the membership
value of a predecessor and δ is the value of a transition. In this definition, the process
that takes place upon the transition from state qi to qj on an input ak is represented as

μt+1(qj ) = δ̃
((

qi, μ
t (qi)

)
, ak, qj

) = F1
(
μt(qi), δ(qi, ak, qj )

)
.

Which means that membership value (MV) of the state qj at time t + 1 is computed by
function F1 using both the membership value of qi at time t and the membership value
of the transition. There are many options which can be used for the function F1(μ, δ).
It can be, for example, max{μ, δ}, min{μ, δ}, μ+δ

2 or any other applicable mathematical
function.

• F2 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function. The multi-
membership resolution function resolves the multi-membership active states and as-
signs a single non-membership value to them.
[0, 1]∗ is the set of elements in [0, 1]. The multi-membership resolution function F2 is
a function which specifies the strategy that resolves the multi-membership active states
and assigns a single mv to them.
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Definition 4 (Bag and Samanta, 2003). Let U be a linear space over a field F . A fuzzy
subset N of U × R is called a fuzzy norm on U if and only if for every x, u ∈ U and
c ∈ F ,

1. For every t ∈ R with t � 0, N(x, t) = 0,
2. For every t ∈ R, t > 0, N(x, t) = 1 if and only if x = 0,
3. For every t ∈ R, t > 0, N(cx, t) = N(x, t

|c| ) if c �= 0,
4. For every s, t ∈ R, x, u ∈ U , N(x + u, s + t) � min{N(x, s),N(u, t)},
5. N(x, .) is a non-decreasing function of R and limt→∞ N(x, t) = 1.

The pair (U,N) will be referred to as a fuzzy normed linear space.

Example 1 (Bag and Samanta, 2003). Let (U, ‖‖) be a normed linear space. Define

N(x, t) =
⎧⎨
⎩

t

t + ‖x‖ , when t (> 0) ∈ R, ∀x ∈ U,

0, when t (� 0) ∈ R, ∀x ∈ U.

(1)

Then (U,N) is a fuzzy normed linear space.

Example 2 (Bag and Samanta, 2003). Let (U, ‖‖) be a normed linear space. Define

N(x, t) =
{

0, if t � ‖x‖,
1, if t > ‖x‖. (2)

Then (U,N) is a fuzzy normed linear space.

3. Vector General Fuzzy Automaton

Definition 5. Let F be a field and n ∈ N0. By Fn we denote the vector space of column
vectors of dimension n over F . A vector general fuzzy automaton (VGFA) is an automaton
F̃v = (Q,X, R̃, Z, δ̃, ω̃, F1, F2, F3, F4) with the following properties:

(i) There exists a field F and integers k,m, r ∈ N0, such that
1. Q = Fk is a nonempty finite set of states, Q = {u1, u2, u3, . . .}, where u1 =

(u
(1)
1 , u

(2)
1 , . . . , u

(k)
1 ) ∈ Fk ,

2. X = Fm is a finite set of input symbols, X = {a1, a2, a3, . . .}, where a1 =
(a

(1)
1 , a

(2)
1 , . . . , a

(m)
1 ) ∈ Fm,

3. R̃ ⊆ P(Q̃) is the set of L-fuzzy start symbols,
4. Z = Fr is a finite set of output symbols, Z = {z1, z2, z3, . . .}, where z1 =

(z
(1)
1 , z

(2)
1 , . . . , z

(r)
1 ) ∈ Fr ;

(ii) There exist a k × k matrix A, a k × m matrix B, and a r × k matrix C, all over F ,
such that
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1. δ̃ : (Q × [0, 1]) × X × Q → [0, 1] is the augmented transition function, where
δ(u, a,Au + Ba) ∈ �.

2. ω̃ : (Q × [0, 1]) × Z → [0, 1] is the augmented output function.
3. F1 : [0, 1] × [0, 1] → [0, 1] is called the membership assignment function. The

function F1(μ, δ), as is seen, is motivated by two parameters μ and δ, where μ is
the membership value of a predecessor and δ is the value of a transition. In this
definition, the process that takes place upon the transition from state ui to uj on
an input ak is represented as

μt+1(uj ) = δ̃
((

ui, μ
t (ui)

)
, ak, uj

) = F1
(
μt(ui), δ(ui, ak, uj )

)
.

Which means that membership value (MV) of the state uj at time t+1 is computed
by function F1 using both the membership value of ui at time t and the membership
value of the transition. There are many options which can be used for the function
F1(μ, δ). For example, it can be max{μ, δ}, min{μ, δ}, μ+δ

2 or any other applicable
mathematical function.

4. F2 : [0, 1] × [0, 1] → [0, 1] is called the membership assignment output func-
tion. F2(μ, ω) as is seen, is motivated by two parameters μ and ω, where μ is the
membership value of present state and ω is the membership value of an output
function. Then

ω̃
((

u,μti (u)
)
, z

) = F2
(
μti (u), ω(u, z)

)
.

Notice that ω(u, z) > 0 if and only if z = Cu.
5. F3 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function. The

multi-membership resolution function resolves the multi-membership active states
and assigns a single membership value to them.

6. F4 : [0, 1]∗ → [0, 1] is called the multi-membership resolution output func-
tion. The multi-membership resolution output function resolves the output multi-
membership active state and assigns a single output membership value to it.

We let the set of all transitions of F̃v is denoted by �. Now, suppose that Qact (ti) be
the set of all active states at time ti , for all i � 0. We have Qact (t0) = R̃ and

Qact (ti) = {(
Au + Ba,μti (Au + Ba)

)∣∣ ∃u ∈ Qact (ti−1), ∃a ∈ X,

δ(u, a,Au + Ba) ∈ �
}
,

where � = {δ(u, a,Au + Ba) |u ∈ Q, a ∈ X} for every i � 1. Since Qact (ti) is a
fuzzy set, to show that a state u belongs to Qact (ti) and T is a subset of Qact (ti), we write
u ∈ Domain(Qact (ti)). Hereafter, we denote these notations by

u ∈ Qact (ti) and T ⊆ Qact (ti).

The combination of the operations of functions F1 and F3 on a multi-membership
state uj leads to the multi-membership resolution algorithm. By using (Doostfatemeh and
Kremer, 2005; Shamsizadeh and Zahedi, 2015) we have the following algorithms.
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Algorithm: Multi-membership resolution for transition function:
If there are several simultaneous transitions to the active state uj at time t + 1, then

the following algorithm will assign a unified membership value to that.

Step 1. Input: δ1(ui, ak, uj ), μt(ui), i, j = 1, 2, . . . , m, and k = 1, 2, . . . , l,
Step 2. For i, j = 1, 2, . . . , m, and k = 1, 2, . . . , l, compute δ̃1((ui, μ

t (ui)), ak, uj ) =
F1(μ

t (ui), δ1(ui, ak, uj )),
Step 3. For j = 1, 2, . . . , m, μt+1(uj ) = (F3)

n−1(x1, x2, . . . , xn), where n is the num-
ber of simultaneous transitions to the active state uj at time t + 1 and xr =
F1(μ

t (ui), δ1(ui, ak, uj )), 1 � r � n,
Step 4. Output: for j = 1, 2, . . . , m, print: μt+1(uj ).

Algorithm: Multi-membership resolution for output function:
If there are several simultaneous outputs to the active state ui at time t , the following

algorithm will assign a unified membership value to it.

Step 1. Input: ω1(ui, zk), μt(ui), i = 1, 2, . . . , m, k = 1, 2, . . . , l,
Step 2. For i = 1, 2, . . . , m, k = 1, 2, . . . , l, compute:

ω̃1
((

ui, μ
t (ui)

)
, zk

) = F2
(
μt(ui), ω1(ui, zk)

)
,

Step 3. For i = 1, 2, . . . , m, ωt
1(ui) = Fn−1

4 (x1, x2, . . . , xn), where n is the number of
simultaneous outputs to the active state ui at time t , xr = F2(μ

t (ui), ω1(ui, zj )),
1 � r � n,

Step 4. Output: for i = 1, 2, . . . , m, print: ωt
1(ui).

Remark 1. For every u ∈ Q, such that u /∈ R̃, we have μt0(u) = 0 and q ∈ R̃ implies
that μt0(q) > 0.

Definition 6. We shall often want to refer to a finite non-empty set Fm as a vector alpha-
bet. If Fm is a vector alphabet, let F+

m consist of all finite sequences

(
a

(1)
1 , a

(2)
1 , . . . , a

(m)
1

)
.
(
a

(1)
2 , a

(2)
2 , . . . , a

(m)
2

)
, . . . ,

(
a

(1)
k , a

(2)
k , . . . , a

(m)
k

)
, (3)

where (a
(1)
i , a

(2)
i , . . . , a

(m)
i ) ∈ Fm and 1 � i � k.

The multiplication given by (3) then corresponds to just a simple position:
(
a

(1)
1 , a

(2)
1 , . . . , a

(m)
1

)
.
(
a

(1)
2 , a

(2)
2 , . . . , a

(m)
2

) = (
a

(1)
1 a

(1)
2 , a

(2)
1 a

(2)
2 , . . . , a

(m)
1 a

(m)
2

)
.

Definition 7. Let F̃v = (Q,X, R̃, Z, δ̃, ω̃, F1, F2, F3, F4) be a VGFA. We define the
max-min vector general fuzzy automaton F̃ ∗

v = (Q,X, R̃, Z, δ̃∗, ω̃, F1, F2, F3, F4), such
that δ̃∗ : Qact×X∗×Q → [0, 1]×[0, 1], where Qact = {Qact (t0),Qact (t1),Qact (t2), . . .}
and for every i � 0,

δ̃∗((u1, μ
ti (u1)

)
,�, u2

) =
{

1, if u1 = u2,

0, otherwise.
(4)
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Also, for every i � 0, δ̃∗((u1, μ
ti (u1)), ai+1, u2) = δ̃((u1, μ

ti (u1)), ai+1, u2) and
recursively,

δ̃∗((u1, μ
t0(u1)

)
, a1a2 . . . an−1, un

)
= ∨{

δ̃
((

u1, μ
t0(u1)

)
, a1, u2

) ∧ δ̃
((

u2, μ
t1(u2)

)
, a2, u3

) ∧ · · · ∧
δ̃
((

un−1, μ
tn−2(un−1)

)
, an−1, un

) ∣∣ u2 ∈ Qact (t1), . . . , un−1 ∈ Qact (tn−1)
}
,

(5)

in which ai ∈ X for every 1 � i � n − 1, and assume that ai+1 is the entered input at
time ti , for every 0 � i � n − 2.

Actually, the fact that the VGFA acts in discrete time we will also use the notation

ut+1 = Aut + Bat , (6)
ωut = Cut , (7)

where ut ∈ Qact (t), at ∈ X, ωqt ∈ Z for t ∈ N0.
Notice that when we want to consider a word, we can write it as enumeration. If we

have

w = (a1, a2, . . . , ak)(b1, b2, . . . , bk)(b1, b2, . . . , bk)(c1, c2, . . . , ck),

for use of equation (6), we consider w as follows:

(a1, a2, . . . , ak) = σ1, (b1, b2, . . . , bk) = σ2,

(b1, b2, . . . , bk) = σ3, (c1, c2, . . . , ck) = σ4.

Since field F and matrices A, B and C entirely characterize the vector general fuzzy
automaton (VGFA), we shall also denote automaton by 13-tuple machine (F,Q,X,A,B,

C, R̃, Z, δ̃, ω̃, F1, F2, F3, F4).

Example 3. Let L be a bounded lattice as in Fig. 1. Let F̃v = (F,Q,X,A,B,C, R̃, Z, δ̃,

ω̃, F1, F2, F3, F4) be a VGFA defined over field F = Q2 of integers modulo 2, such that

A =
[

0 1
1 0

]
, B =

[
1
1

]
, C = [ 0 1 ], Q =

{[
0
0

]
,

[
1
1

]
,

[
0
1

]
,

[
1
0

]}
, X = {[0], [1]},

R̃ =
([

0
0

]
, 1

)
, Z = {[0], [1]} and δ, ω are defined as follows:

δ

([
0
1

]
,
[
0
]
,

[
1
0

])
= α, δ

([
0
1

]
,
[
1
]
,

[
0
1

])
= α,

δ

([
0
0

]
,
[
0
]
,

[
0
0

])
= β, δ

([
0
0

]
,
[
1
]
,

[
1
1

])
= β,

δ

([
1
0

]
,
[
0
]
,

[
0
1

])
= γ, δ

([
1
0

]
,
[
1
]
,

[
1
0

])
= γ,
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Fig. 1. The bounded lattice L of Example 3.

δ

([
1
1

]
,
[
0
]
,

[
1
1

])
= α, δ

([
1
1

]
,
[
1
]
,

[
0
0

])
= α,

ω

([
0
1

]
,
[
1
]) = γ, ω

([
1
0

]
,
[
0
]) = η,

ω

([
0
0

]
,
[
0
]) = β, ω

([
1
1

]
,
[
1
]) = γ.

If we choose F1 = ∧ and F2 = ∨ and μt0

([
0
0

])
= 1, we have

μt1

([
0
0

])
= F1(μ

t0

([
0
0

])
, δ

([
0
0

]
,
[
0
]
,

[
0
0

])
= 1 ∧ β = β,

μt1

([
1
1

])
= F1(μ

t0

([
0
0

])
, δ

([
0
0

]
,
[
1
]
,

[
1
1

])
= 1 ∧ β = β,

μt2

([
0
0

])
= F1(μ

t1

([
0
0

])
, δ

([
0
0

]
,
[
0
]
,

[
0
0

])

∨ F1

(
μt1

([
1
1

])
, δ

([
1
1

])
,
[
1
]
,

[
0
0

])

= (β ∧ β) ∨ (β ∧ α) = β ∨ α = β,

μt2

([
1
1

])
= F1(μ

t1

([
0
0

])
, δ

([
0
0

]
,
[
1
]
,

[
1
1

])

∨ F1(μ
t1

([
1
1

])
, δ

([
1
1

]
,
[
0
]
,

[
1
1

])

= (β ∧ β) ∨ (β ∧ α) = β ∨ α = β.

Notice that there exists no μt1

([
1
0

])
, since δ

([
0
0

]
,
[
0
]
,

[
1
0

])
does not belong to �. By

choosing a different Matrices A and B, it is possible to obtain μt1

([
1
0

])
and μt1

([
0
1

])
.
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Fig. 2. The vector general fuzzy automaton F̃v of Example 3.

Now, we have

ω̃t1

(([
0
0

]
, μt1

([
0
0

]))
,
[
0
]) = F2

(
μt1

([
0
0

])
, ω

([
0
0

]
,
[
0
]))

= β ∧ β = β,

ω̃t1

(([
1
1

]
, μt1

([
1
1

]))
,
[
1
]) = F2

(
μt1

([
1
1

])
, ω

([
1
1

]
,
[
1
]))

= β ∧ γ = η.

The diagram of VGFA is presented on Fig. 2.

4. Equivalence and Isomorphism for Vector General Fuzzy Automata

Theorem 1. Let a VGFA F̃v = (F,Q,X,A,B,C, R̃, Z, δ̃, ω̃, F1, F2, F3, F4) be given.
Then the following properties hold:

1. ut = Atu0 + ∑t−1
i=0 At−i−1Bai , for every t ∈ N ,

2. ωt = CAtu0, for every t ∈ N0.

Proof. 1. We prove the claim by induction on t . If t = 1, then we have

Au0 +
0∑

i=0

A1−i−1Bai = Au0 + A0Ba0 = Au0 + Ba0 = u1.

Now, suppose the claim holds for t = n, so we have un = Anu0 + ∑n−1
i=0 An−i−1Bai . Let

t = n + 1. Then
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un+1 = Aun + Ban = A

(
Anu0 +

n−1∑
i=0

An−i−1Bai

)
+ Ban

= An+1u0 + A

n−1∑
i=0

An−i−1Bai + Ban

= An+1u0 +
n∑

i=0

An−iBai .

2. By induction on t , it is omitted.

Definition 8. Let F̃vi = (F,Qi,X,Ai, Bi, Ci, R̃i , Z, δ̃i , ω̃i , F1, F2, F3, F4) where i =
1, 2, be two VGFAs. We say that F̃v1 is similar to F̃v2 if there exists a nonsingular matrix P ,
such that

i. u ∈ R̃1 if and only if Pu ∈ R̃2,
ii. A2 = PA1P

−1,
iii. B2 = PB1,
iv. C2 = C1P

−1.

Definition 9. Let F be a field. Let F̃vi = (Qi,X,Ai, Bi, Ci, R̃i , Z, δ̃i , ω̃i , F1, F2, F3,

F4) where i = 1, 2, be two VGFAs. A homomorphism from F̃v1 onto F̃v2 with threshold α,
is a function ϕ from Q1 onto Q2 such that for every u, u′ ∈ Q1 and a ∈ X and z ∈ Z the
following conditions hold:

I. μt0(u) > α if and only if μt0(ϕ(u)) > α,
II. δ1(u, a, u′) > α if and only if δ2(ϕ(u), a, ϕ(u′)) > α.

Actually, I and II show that δ̃1((u, μt (u)), a, u′) > α if and only if

δ̃2
((

ϕ(u), μt
(
ϕ(u)

))
, a, ϕ

(
u′)) > α.

III. ω̃1((u, μti (u)), z) > α implies that ω̃2((ϕ(u), μti (ϕ(u))), z) > α.
We say that ϕ constitutes an isomorphism with threshold α if ϕ constitutes an a ho-
momorphism with threshold α that is one-to-one and ω̃1((u, μti (u)), z) > α if and
only if ω̃2((ϕ(u), μti (ϕ(u))), z) > α.

If ϕ constitutes an isomorphism with threshold 0, then we say that ϕ constitutes an iso-
morphism.

Theorem 2. Let F̃vi = (F,Qi,X,Ai, Bi, Ci, R̃i , Z, δ̃i , ω̃i , F1, F2, F3, F4) where i =
1, 2, be two VGFAs. If F̃v1 is similar to F̃v2, then F̃v1 and F̃v2 constitute an isomorphism.

Proof. Let P be a nonsingular matrix such that A2 = PA1P
−1, B = PB1, C2 = C1P

−1.
Let ϕ : Q1 → Q2 be a map such that ϕ(u) = Pu, for every u ∈ Fk . It is clear that ϕ is
well defined. Now, let ϕ(u1) = ϕ(u2), for every u1, u2 ∈ Q1. Then Pu1 = Pu2. Since
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P is a nonsingular matrix, then u1 = u2. Therefore, ϕ is one-one. Hence, ϕ is bijection.
Now, let μt0(u) > 0, where u ∈ Fk . Then u ∈ R̃1. Since ϕ(u) = Pu and by considering
Definition 8 we have Pu ∈ R̃2, so ϕ(Pu) > 0. Suppose that μt0(ϕ(u)) > 0 thus, ϕ(u) ∈
R̃2. By using Definition 8, we have μt0(u) > 0 and u ∈ R̃1. Let δ1(u, a, u′) > 0. Then by
Definition 5, we have δ1(u, a, u′) ∈ �. It implies that u′ = A1u + B1a. Therefore,

ϕ
(
u′) = Pu′ = P(A1u + B1a)

= PA1u + PB1a

= PA1P
−1Pu + PB1a

= (
PA1P

−1)Pu + PB1a

= A2ϕ(u) + B2a.

By Definition 5, δ2(ϕ(u), a,A2ϕ(u) + B2a) = δ2(ϕ(u), a, ϕ(u′)) ∈ �, hence, δ2(ϕ(u),

a, ϕ(u′)) > 0. Now, let δ2(v, a, v′) > 0, where v, v′ ∈ Q2. Then there exists u, u′ ∈ Q1,
such that ϕ(u) = v and ϕ(u′) = v′. So,

δ2
(
v, a, v′) = δ2

(
ϕ(u), a, ϕ

(
u′)) > 0 =⇒ δ2

(
Pu, a, Pu′) > 0

=⇒ δ2
(
Pu, a, Pu′) ∈ �

=⇒ Pu′ = A2Pu + B2a

=⇒ Pu′ = PA1P
−1Pu + PB1a

=⇒ Pu′ = PA1u + PB1a

=⇒ u′ = A1u + B1a

=⇒ δ
(
u, a, u′) ∈ �

=⇒ δ
(
u, a, u′) > 0.

We show that δ1((u, μt0(u)), a, u′) > 0 if and only if δ2((ϕ(u), μt0(ϕ(u))), a, ϕ(u′)) > 0.
Let ω̃1((u, μti (u)), z) > 0. Then μti (u) > 0 and ω1(u, z) > 0. By Definition 5, we have
z = C1u. By considering Definition 8, we have z = C1u = C2Pu = C2ϕ(u). Thus,
ω2(ϕ(u), z) > 0. Also, we have μti (u) > 0 if and only if μti (ϕ(u)) > 0. Therefore,
ω̃2((ϕ(u), μti (ϕ(u))), z) > 0. The opposite can be proved in a similar way.

The opposite of Theorem 2 is not true because there exist isomorphic VGFA which
are not similar. As an illustration, let us give the following example.

Example 4. Let L be a bounded lattice as in Fig. 1, Q7 be a field and

F̃v1 = (
Q7,

{[0], [1], [2], . . . , [6]}, {[0]}, [3], [0], [2], {[0], μt0
)([0]) = α

}
,

[1], δ̃1, ω1, F1, F2, F3, F4
)
,
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and

F̃v2 = (
Q7,

{[0], [1], [2], . . . , [6]}, {[0]}, [5], [0], [2], {[0], μt0
)([0]) = α

}
,

[1], δ̃2, ω2, F1, F2, F3, F4
)
,

where α ∈ [0, 1]. Also, let ϕ : Q1 → Q2 be a map such that ϕ([m]) = [m] and
δ1([u], [0], [3][u]) = α, for every [u] ∈ Q1 and δ2([u], [0], [5][u]) = α, for every
[u] ∈ Q2, and suppose that ωi([u], [2][u]) = α, for every [u] ∈ Q1 = Q2 and i = 1, 2.
It is clear that F̃v1 and F̃v2 are isomorphic but not similar because the matrix [3] is not
similar to matrix [5] over the field Q7 of integers modulo 7.

Definition 10. Let F̃ = (F,Q,X,A,B,C, R̃, Z, δ̃, ω̃, F1, F2, F3, F4) be a max-min
VGFA. The language with threshold α, α ∈ [0, 1], recognized by F̃ , is a subset of F ∗

m

defined by

Lc(F̃ ) = {
x ∈ F ∗

m

∣∣ δ̃∗((u,μt0(u)
)
, x, v

) ∧ ω̃
((

v, μt0+|x|(v)
)
, z

)
> α,

for some u, v ∈ Fk, z ∈ Z, for i = 1, . . . , n
}
.

Definition 11. Two max-min VGFAs F̃v1 and F̃v2 are called equivalent with threshold
α if Lα(F1) = Lα(F2), where α ∈ [0, 1].

Theorem 3. Let F̃v1 and F̃v2 be two max-min VGFAs. Let F̃v1 and F̃v2 be isomorphic
with threshold α, where α ∈ [0, 1]. Then they are equivalent with threshold α.

Proof. Let F̃vi = (F,Qi,X,Ai, Bi, Ci, R̃i , Z, δ̃i , ω̃i , F1, F2, F3, F4), i = 1, 2, be two
max-min VGFAs and ϕ : Q1 → Q2 be a homomorphism. Now, let a1a2 . . . ak =
x ∈ L(F̃v1). Then there exist u, v ∈ Fk and z ∈ Fr , such that δ̃∗

1((u, μt0(u)), x, v) ∧
ω̃1((v, μt0+|x|(v)), z) > α, where α ∈ [0, 1]. So, δ̃∗

1((u, μt0(u)), x, v) > α and
ω̃1((v, μt0+|x|(v)), z) > α. Then there exists u1, u2, . . . , uk−1 ∈ Q1, such that

μt0(u) > α, δ1(u, a1, u1) > α, . . . , δ1(uk−1, ak, v) > α,ω(v, b) > α.

By Definition 9, we have

μt0
(
ϕ(u)

)
> α, δ2

(
ϕ(u), a1, ϕ(u1)

)
> α, . . . , δ2

(
ϕ(uk−1), ak, ϕ(v)

)
> α,ω

(
ϕ(v), z

)
> α.

It is implied that x ∈ L(F̃v2). Therefore, L(F̃v1) ⊆ L(F̃v2). In a similar way L(F̃v2) ⊆
L(F̃v1). Hence, L(F̃v1) = L(F̃v2).

5. General Fuzzy Automaton on Fuzzy Normed Linear Space

Definition 12. Let F be a field and n ∈ N0. By Fn we denote the vector space of column
vectors of dimension n over F . A general automaton on fuzzy normed linear space (or sim-
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ply fuzzy norm general automata (FNGA)) is an automaton F̃n = (Q,X, I, Z, δ̃, ω̃, N1,

N2,∨,∨) with the following properties:

(i) There exist a field F and integers k,m, r ∈ N0, such that
1. Q = Fk is a nonempty finite set of states, Q = {u1, u2, u3, . . .}, where u1 =

(u
(1)
1 , u

(2)
1 , . . . , u

(k)
1 ) ∈ Fk ,

2. X = Fm is a finite set of input symbols, X = {a1, a2, a3, . . .}, where a1 =
(a

(1)
1 , a

(2)
1 , . . . , a

(m)
1 ) ∈ Fm,

3. I ⊆ Q is the set of start symbols,
4. Z = Fr is a finite set of output symbols, Z = {z1, z2, z3, . . .}, where z1 =

(z
(1)
1 , z

(2)
1 , . . . , z

(r)
1 ) ∈ Fr ;

(ii) There exist a k × k matrix A, a k ×m matrix B, and a r × k matrix C, all over F such
that
1. δ̃ : (Q × R) × X × Q → [0, 1] is the augmented transition function, where

δ(u, a,Au + Ba) ∈ R, δ(u,�,Au + B�) = 0, and R is set of real number,
2. ω̃ : (Q × R) × Z → [0, 1] is the augmented output function,
3. N1 : U × R → [0, 1] is called the membership assignment function. In this

definition, the process that takes place upon the transition from state ui to uj on
an input a ∈ X is represented as follows:

μt+1(uj ) = δ̃
((

ui, μ
t (ui)

)
, a, uj

) = Na
1

(
Aui + Ba,μt (ui)

)
,

where N1 is a fuzzy normed linear space and U is a linear space over a fileld F ,
4. N2 : U × R → [0, 1] is called the membership assignment output function.

N2(μ, ω), as it seems, is motivated by two parameters μ and ω, where μ is the
membership value of present state and ω is the membership value of an output
function. Then

ω̃
((

u,μti (u)
)
, z

) = N2
(
Cu,μti (u)

)
.

We let the set of all transitions of F̃v be denoted by �. Now, suppose that Qact (ti) is
the set of all active states at time ti , for all i � 0. We have Qact (t0) = I and

Qact (ti) = {(
Au + Ba,μti (Au + Ba)

)∣∣ ∃u ∈ Qact (ti−1), ∃a ∈ X,

δ(u, a,Au + Ba) ∈ �
}
,

where � = {δ(u, a,Au+Ba) |u ∈ Q, a ∈ X} for every i � 1. Qact (ti), i > 0 is a fuzzy
set.

Remark 2. For every u ∈ Q, such that u /∈ I , we have μt0(u) = 0 and q ∈ I implies that
μt0(q) > 0.

Definition 13. Let F̃n = (Q,X, I, Z, δ̃, ω̃, N1, N2,∨,∨) be a FNGA. We define the
max-min fuzzy norm general automaton F̃ ∗

n = (Q,X, I, Z, δ̃∗, ω̃, N1, N2,∨,∨), such
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that δ̃∗ : Qact × X∗ × Q → [0, 1], where Qact = {Qact (t0),Qact (t1),Qact (t2), . . .} and
for every i � 0,

δ̃∗((u1, μ
ti (u)

)
,�, u2

) =
{

1, if u2 = Au1 + B�,

0, otherwise.
(8)

Also, for every i � 0, δ̃∗((u1, μ
ti (u1)), ai+1, u2) = δ̃((u1, μ

ti (u1)), ai+1, u2) and
recursively,

δ̃∗((u1, μ
t0(u1)

)
, a1a2 . . . an−1, un

)
= ∨{

δ̃
((

u1, μ
t0(u1)

)
, a1, u2

) ∧ δ̃
((

u2, μ
t1(u2)

)
, a2, u3

) ∧ · · · ∧
δ̃
((

un−1, μ
tn−2(un−1)

)
, an−1, un

)∣∣ u2 ∈ Qact (t1), . . . , un−1 ∈ Qact (tn−1)
}
,

(9)

in which ai ∈ X, for every 1 � i � n − 1, and assume that ai+1 is the entered input at
time ti , for every 0 � i � n − 2.

Example 5. Let F̃v = (F,Q,X,A,B,C, R̃, Z, δ̃, ω̃, N1, N2,∨,∨) be an FNGA de-
fined over field F = Q2 of integers modulo 2 such that A =

[
0 1
1 0

]
, B =

[
1
1

]
, C =[

0 1
]
, Q =

{[
0
0

]
,

[
1
1

]
,

[
0
1

]
,

[
1
0

]}
, X = {[0], [1]}, R̃ =

([
0
0

]
, 1

)
, and Z = {[0], [1]}.

Let μt0

([
0
0

])
= 9. If we consider Na

1 as Example 1, and N2 as Example 1, then we have:

μt1

([
0
0

])
= N

[0]
1

([
0
0

]
, μt0

([
0
0

]))
= 1

1 + 0
= 1,

μt1

([
1
1

])
= N

[1]
1

([
1
1

]
, μt0

([
0
0

]))
= 1

1 + √
2

= 0.414,

μt2

([
0
0

])
= N

[0]
1

([
0
0

]
, μt1

([
0
0

]))
∨ N

[1]
1

([
0
0

]
, μt1

([
1
1

]))

= 1

1 + 0
∨ 0.414

0.414 + 0
= 1 ∨ 1 = 1,

μt2

([
1
1

])
= N

[1]
1

([
1
1

]
, μt1

([
0
0

]))
∨ N

[0]
1

([
1
1

]
, μt1

([
1
1

]))

= 1

1 + √
2

∨
(

0.414

0.414 + √
2

)
= 0.414.

Now, we have

ω̃

(([
0
0

]
, μt1

([
0
0

]))
,
[
0
]) = N2

([
0
]
, μt1

([
0
0

]))
= 1,



Isomorphism Between Two Vector General Fuzzy Automata 631

ω̃

(([
1
1

]
, μt1

([
1
1

]))
,
[
1
]) = N2

([
1
]
, μt1

([
1
1

]))
= 0.

6. Conclusion

General fuzzy automaton over a field are used for generation of linear codes, detection and
correction of errors, construction of testing sequence, and generation of pseudo-random
sequences of numbers. They are also used in experiments that require Mote Carlo methods,
in the protection of data stored in computer systems and radio-location.

In the recent study, we defined the notion of general fuzzy automaton and max-min
general fuzzy automaton over a field; we call this automaton vector general fuzzy automa-
ton. Moreover, we presented the concept of max-min vector general fuzzy automaton.
We proved that if two max-min VGFA are similar, they constitute an isomorphism. More-
over, we showed that if two VGFA constitute an isomorphism with threshold α, they are
equivalent with threshold α, where α ∈ [0, 1]. Also, we presented a general automaton
on fuzzy normed linear space.

Further, we try to present a connection between VGFA and similar automata. Also, we
try to present fuzzy finite tree automaton over a fuzzy normed linear space.
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