
INFORMATICA, 2023, Vol. 34, No. 1, 121–146 121
© 2023 Vilnius University
DOI: https://doi.org/10.15388/23-INFOR510

Causal Knowledge Modelling for Agile
Development of Enterprise Application Systems

Karolis NOREIKA, Saulius GUDAS∗
Institute of Data Science and Digital Technologies, Vilnius University,
Akademijos str. 4, LT-08412 Vilnius, Lithuania
e-mail: karolis.noreika@mif.vu.lt, saulius.gudas@mif.vu.lt

Received: July 2022; accepted: February 2023

Abstract. Experience shows that Agile project management tools such as Atlassian Jira capture the
state of EAS projects by relying solely on expert judgement that is not supported by any knowl-
edge model. Therefore, the assessment of project content against strategic objectives and business
domain features are not supported by any tool. This is one of the reasons why Agile project manage-
ment still does not provide sufficient EAS project delivery results. In order to address this problem,
the Enterprise Application Software (EAS) development using Agile project management is sum-
marized in a conceptual model. The model highlights the knowledge used and indicates its nature
(empirical or causal digitized). The modified Agile management process we have developed and
described in previous works is based on causal knowledge models that supports EAS development
and Agile management processes. The purpose of this article is to specify knowledge repository
to ensure the Agile management solutions of an EAS project are aligned with strategic goals and
business domain causality. It is worth noticing that strategic goals have been identified and speci-
fied as capabilities using some enterprise architecture framework (NAF, MODAF, ArchiMate, etc.).
The novelty of the proposed method is incorporating the business domain causal knowledge mod-
elling approach into the Agile project management process. The causal knowledge unit is considered
as a Management Transaction (MT), which includes closed loop dependence of its components. The
modified Agile activity hierarchy (theme, initiative, epic, user story) defines the required content of
their mutual interactions. An important new results obtained are the conceptual model of causal
knowledge base (KB) and specification of enhanced Agile management tool components: project
management database and project state assesment knowledge base. Causal KB includes specifica-
tion of causal knowledge unit (MT metamodel) and specifications of traditional and causal Agile
hierarchy meta-models. These conceptual models define the causal knowledge components neces-
sary to evaluate the state of Agile activities in the EAS development project using intelligent Agile
project management tool.
Key words: Agile management method, causal modelling, management transaction, knowledge
base.

∗Corresponding author.

https://doi.org/10.15388/23-INFOR510


122 K. Noreika, S. Gudas

1. Introduction

The main competitive advantage of modern-day enterprises is the ability to innovate and
use information technology to support their business: help to manage the ever-increasing
quantity of information, deal with the complexity of business processes, external regula-
tions, and support operational activities.

Enterprise application software (EAS) are complex information systems used in
modern-day enterprises as they service more than one enterprise management activity.
EAS development and its development project management is a complex process and re-
quires a specific approach in order to maximize the value and minimize the cost of devel-
opment. Furthermore, translating the specifics of business domain internal interactions,
such as business processes, strategy policies, regulations and general best practices to the
requirements for EAS development projects is not a trivial task.

Business domain modelling allows to save costs when business processes are repre-
sented in a virtual environment to ensure processes are optimized: bringing most value
to the enterprise with least cost or effort. In other case, when there is no modelling per-
formed, the EAS is developed through trial and error approach, where the whole system
is developed only based on the knowledge of business experts. Given the scenario of such
development, there would be no option to simulate business processes and to optimize it
in a virtual environment without making changes to real-world activities and processes
to make sure that EAS supports them. EAS development in such a way is theoretically
possible, but is the least optimal and most costly. Another example of not optimal EAS
development is when there are IT development teams distributed across different depart-
ments in the company with direct reporting to the specific department manager (non-IT).
The flaw of this approach is the gap between IT strategy, governance and best practices and
the way anchored IT teams work. In order to optimize EAS development, the distributed
teams must have a way to align their practices so there would not be too many differences
in coding standards, quality assurance practices, etc. or be anchored in the IT department
with allocated resources to service the needs of different departments.

Enterprise application software engineering today is based on model-driven archi-
tecture (MDA) and model-driven development (MDD) practices. Model-driven develop-
ment (MDD) of the Enterprise Application Software (EAS) heavily relies on the business
domain experts knowledge when enterprise business process models are created to sup-
port software development. MDA provides guidelines to model abstraction hierarchy and
model transformations aimed to use business domain knowledge (captured on the compu-
tation independent modelling (CIM) layer) for EAS project development, separating the
system project (Platform independent model (PIM) layer) from its implementation on a
specific platform (Platform specific model (PSM) layer and code) (OMG, 2022a). MDD
relies on domain experts to translate contextual business domain knowledge into models,
as EAS development begins with business domain analysis and requirements gathering,
which are transformed to CIM layer models. MDD allows to increase quality of complex
software because meaningful validations can be executed on the high-level (CIM and PIM)
models. This acquired knowledge is the basis for the transformation of the created models



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 123

into project models (PIM and PSM layers) of the new application software system. It is
obvious that the quality and validity of further project solutions depend on the adequacy
of the initial knowledge about the business domain and the understanding of the inter-
nal causal interactions discovered there. The MDD methodology creates the possibility
to generate project solutions using the UML specifications, therefore full compatibility of
UML models is required.

However, this method has limitations in understanding the causal relationship of the
business domain, revealing the information content and causes of the processes, as it uses
empirical modelling. Real-world processes in the business domain are modelled from the
perspective of external observation using BPMN, UML, SysML or some other notations
(OMG, 2022b). Causality (regularities) of a definite type of real-world domain (i.e. an en-
terprise in our case) must be understood and any representation of domain (model, frame-
work) must fit those causality characteristics. The relatively new Agile approach to Model
Driven Development (AMDD) does not ensure satisfactory EAS project delivery results,
as only every 3rd project is completed as successful (KPMG, AIPM, IPMA, 2019). The
analysis of the interaction between Enterprise Application Software (EAS) development
and Agile management environment was carried out in order to determine the sources of
knowledge and their nature (empirical or causal) that are used in these processes.

Causal modelling is a necessary basis in the analysis and development of the phys-
ical or cyber-physical systems, cyber-biological systems, as well as in the creation of
cyber-enterprise systems. Understanding the behaviour of an enterprise requires a deep
knowledge of the internal interactions of processes, so the study and discovery of busi-
ness domain causality is a prerequisite. Other types of systems, i.e. for machine learning
are also using causal analysis (Li et al., 2022). Causal knowledge consists of the essential
causal dependencies, which are inherent to the subject domain according to some theory
or methodology (Gudas et al., 2019). Our approach to Agile development management
for EAS is based on the causal knowledge model named management transaction (MT),
and the theoretical underpinning presented in Gudas (2012), Gudas and Lopata (2016).
Sufficient control over the EAS design process is necessary to manage the complex Agile
interaction efforts.

Researches (KPMG, AIPM, IPMA, 2019; digital.ai, 2020) prove the advantages of Ag-
ile methods over traditional project management methods. As the EAS development man-
agement process is complex, traditional project management methods like waterfall are
falling short to support the complexity. As the obtained causal knowledge will eventually
be implemented to a software solution, Agile methods are used for software development
management. Agile methods help to deal with the complexity of EAS development by
enabling transparency via inspection and adaptation to the software development process.

Although Agile methods do not define a specific way to ensure the decomposition of
EAS project requirements, it is a general practice to capture the business requirements us-
ing a “user story”. User stories provide an abstract but detailed enough description of the
business problem. Nevertheless, the user story on its own is not enough to make sure that
it will help to fulfill a business goal of a higher level, and additional levels of requirements
are used. These Agile activities all together are called “TIES” standing for themes, initia-
tives, epics, and user stories (Prior, 2022). As one of the ways to deal with the complexity



124 K. Noreika, S. Gudas

of EAS project requirements specifications, using the Agile activities in the TIES format
allows to link the Agile hierarchy elements and helps to manage complexity. Furthermore,
if the activity on the lower level would not be completed (i.e. user story), the activity on
the higher level (i.e. epic) would not be completed as well. This forms a cause-and-effect
relationship. Despite that, the links between TIES structure elements are currently defined
by human interaction and communication between project managers, Agile leaders, and
business managers. This is where we believe the information about the deep causal knowl-
edge is lost due to the lack of formalization of patterns, laws, and regularities of the real
world – i.e. why a specific set of user stories are linked to a specific epic, a set of epics is
linked to a specific initiative and a set of initiatives form a specific theme. This means that
an additional definition of coordination between business and IT management is required
to ensure business and IT alignment. This is not resolved by following the traditional re-
quirements traceability approach (Gotel and Finkelstein, 1994). Although requirements
traceability provides some structured way to map the requirements to business needs and
project objectives, it still does not capture the causal knowledge of the domain. Discov-
ering causal knowledge is essential to manage the complexity of business strategy and IT
alignment and to create intelligent systems.

The modified Agile management model we have developed and described in detail in
our previous works (Gudas and Noreika, 2022) comprises of causal knowledge models
that influences EAS development and Agile management processes.

The purpose of this article is to examine the EAS engineering process, the sources
of knowledge used there to formulate the requirements for the structure of the knowledge
base of project management, based on the activity causal modelling method, and to specify
the conceptual model of the knowledge base of the Agile project management system.

The remainder of the paper is structured as follows: Section 2 explains principles
of MDA approach and explains the additional steps in the MDA/MDD process. Also,
Agile Model Driven Development (AMDD) and causal modelling driven MDA/MDD
approaches are discussed. Section 3 explains the causal Agile management process and
contains the verification of developed models. Enhanced Agile project management tool
architecture and Agile Development Management system knowledge base are described
in Section 4. Section 5 presents conclusions that summarize the features of the developed
conceptual model of causal knowledge base and the specification developed for the causal
Agile management repository.

2. Related Works

2.1. Transformations in MDA/MDD

Model-Driven Architecture (MDA) is a software development approach by the OMG. The
MDA approach includes the modelling of these layers: Computation Independent Model
(CIM), Platform Independent Model (PIM), Platform Specific Model (PSM), and model
transformations (inside each layer and between these layers) (OMG, 2022a).



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 125

Fig. 1. Conceptual diagram of the MDA/MDD approach.

Traditional MDD is a model transformation process aimed to generate (semi automat-
ically) the target model from the source model (Kleppe et al., 2003). One of the shortcom-
ings of the current MDD methods is that the initial knowledge about the business domain
processes is described using empirical methods and models, relying on external obser-
vation and experience. Current MDD methods are not focused to understand the causes
of internal interactions, to find the so-called deep knowledge. As stated in Gudas and
Valatavičius (2020), “real world domain modelling at CIM layer is constructing of black
boxes”, therefore including causal modelling is a must from a theoretical point of view.

The conceptual diagram in Fig. 1 highlights the sources of knowledge that influence de-
cisions in the MDA/MDD process – i.e. “Business management strategy”, “Expert knowl-
edge” about the “Business domain” and the “Request to develop EAS”. These elements
depict knowledge (preconditions) required for starting the MDA/MDD process of creating
models in the CIM layer aligned with the business strategy.

Computation Independent Model (CIM) is designed to represent business domain pro-
cesses (e.g. using BPMN and DMN notations, which are an OMG standard, OMG, 2022b),
Platform Independent Model (PIM) specifies the EAS design model without regard to
the hosting platform. Platform Specific Model (PSM) is the EAS project implementation
model and includes concepts of the hosting platforms. Model transformations between the
CIM, PIM, and PSM (inside each layer and between these layers) are defined.

MDD is a promising methodology for the development of cyber-physical-social sys-
tems (CPSS), cyber-enterprise systems (CES), cyber-physical systems (CPS), and other
types of complex systems. Kulkarni et al. over the years have presented several papers aim-
ing to improve the development of their component-based development environment Mas-
tercraft (Kulkarni and Reddy, 2004). Mastercraft is a model-driven development toolset
for developing large business-critical applications. It contains a meta-modelling tool to
specify an abstract view. This represents the capture of predefined knowledge (i.e. grey-
box approach). The MDA/MDD lies in one of the components of the Mastercraft tool – i.e.
a set of code generators that transform each view instance to the desired implementation
artifacts. Barat et al. has presented a configurable code generator meta-model to transform
models to code (Barat and Kulkarni, 2010). Although some information that is required
to smoothly conduct transformations are missing (i.e. “various non-functional concerns,
namely, design strategies, technology platform, and architecture”) the model described in
Kulkarni and Reddy (2004) is well defined to be used for the MDD approach. The model
transformation rules specify the mapping between MDA layers and lead to the specifica-
tion of the computer code for implementation of the solution. The transformations between
CIM, PIM, and PSM layers must comply with relevant meta-models (den Haan, 2008).



126 K. Noreika, S. Gudas

To summarize, current MDA/MDD methods do not contain the element of domain
causality modelling.

2.2. Agile MDA/MDD Methodology

Agile Model Driven Development (AMDD) is an attempt to use the benefits of the fast-
paced and responsive to change Agile development and the quality-focused and stable
structures of Model-Driven Development. Ambler coined the term Agile Model Driven
Development (Ambler, 2002). By examining the blended concepts of Agile and MDD it
should be noted that MDD is a model-centric approach and values the thoroughness of
models which take time for development. Agile, on the other hand, values working soft-
ware, and the attention to models is little to none. Using the Agile approach, extensive
models are considered as not required, and as Ambler states even with the AMDD ap-
proach, “an agile model is a model that is just barely good enough” (Ambler, 2004). Agile
models need to exhibit a set of traits like fulfilling purpose, being sufficiently detailed,
etc. However, it is not explained how the knowledge is obtained and there is no mention-
ing of performing model transformations as required by the MDD approach. This shows
that model transformations are left to the MDD side of the AMDD approach. Further-
more, Ambler states that in order to perform modelling, fundamental information gather-
ing skills are required and names observation as one of them (Ambler, 2004). This leads
to the conclusion that Agile modelling is external observation-based (black-box). Am-
bler also stated that “AMDD is <only> about modelling MDD models more effectively”
(Ambler, 2004).

Kulkarni et al. introduced a “meta sprint” based software development approach. Re-
sults show that there was a decrease in turnaround time from requirement specification to
delivery, the increase of productivity of the development team, and less rework by using
their developed tool Mastercraft (Kulkarni et al., 2011). However, this approach is very
similar to the dual Scrum or dual Agile approach (Miller, 2005) which later evolved into
the so-called “design sprint” (Knapp, 2016). The dual-track Agile and design sprint was
inspired by the “double diamond” methodology (British Design Council, 2007) formu-
lated by the British Design Council. Furthermore, the approach by Kulkarni et al. does
not describe the causal knowledge that the meta-models should explain.

Matinnejad (2011) has presented criteria how to evaluate the attributes of the fast-
paced and flexible approach of Agile and thorough, well-thought, and complete approach
of MDD and analysed the AMDD processes of Sage (Kirby, 2006), Hybrid MDD (Guta
et al., 2009), MDD-SLAP (Zhang and Patel, 2011) and the AMDD high-level life cycle
(Ambler, 2004).

To summarize, after a thorough research to the best of our knowledge, there is no
attempt to add the component of intelligence (causal knowledge capture) to Agile MDD
methods.

2.3. Causal Modelling Driven MDA/MDD Approach

The traditional MDA/MDD method and AMDD method start with the analysis and mod-
elling of the business area using the standard OMG notation BPMN, which allows to con-



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 127

Fig. 2. The causal MDA/MDD transformations. Based on Gudas and Valatavičius (2020).

struct models from (Input, Process, Output) elements, connect them, create hierarchies
(sub-processes). It is essentially an empirical modelling approach that creates black-box
models without revealing the causality of the business domain. More advanced is DMN
(Decision model and notation), which uses decision tables and is good at specifying com-
plex business rules (OMG, 2022b). DMN models partially reveal causality dependencies
and can be classified as a grey box type. Therefore, both the traditional MDA/MDD ap-
proach and the AMDD approach does not contain the domain causality aspect, therefore
it is missing the key feature of creating an intelligent software development management
system.

In order to improve this, we will utilize the causal modelling approach. Specific do-
main causality awareness is the prerequisite for discovering deep knowledge (i.e. regular-
ities, laws) in a given domain. Causation methods are common in statistics, econometrics,
cybernetics, computer science, data science, and other complex sciences to study cause-
effect relationships and construct causal models in order to predict and control the possible
dynamics of the systems (Gudas, 2021). From the causal modelling viewpoint, an enter-
prise is a subject domain, considered as a self-managed system driven by internal needs
(strategy, management, system goals).

Based on causal modelling viewpoint the MDA/MDD approach was enhanced with a
new layer (above CIM layer) of the domain knowledge discovery in Gudas and Valatavičius
(2020) and the causal knowledge discovery (CKD) technique tailored for the enterprise
domain. The peculiarities of the causal MDA/MDD method is illustrated in Fig. 2. In this
block diagram rectangle means component, arrow – interaction.

We focus only on the stage of building a causal domain model and transforming it
into a CIM layer, as these key steps apply to our approach to EAS development manage-
ment using a modified Agile management hierarchy. As in this article we investigate the
content of project management processes, in Fig. 1 the “Business domain“ means project
management domain (processes).

Causal domain models in the CIM layer are built using transformation specification
rules, which defines mapping of the domain causality meta-model to causal CIM meta-
model, and both meta-models are relevant to MT framework (predefined causal knowl-
edge) (Gudas, 2021; Noreika and Gudas, 2021). The same principle is applied in the
modified Agile management process (Noreika and Gudas, 2021), when predefined causal



128 K. Noreika, S. Gudas

Table 1
Analysis of causal perspective in the AMDD methods.

MDA
transformation
specification
type

Domain
model

Domain
Meta-model

Domain knowledge type/modelling approach
Observation-based/
Black-box

Rule-based/
Grey-box

Causal
knowledge/
White-box

Meta-model Yes Yes – Kulkarni and Reddy
(2004)

–

Meta-model – Yes Kirby (2006),
Lano et al. (2015)

– –

DSL – – Grigera et al. (2012),
Nakicenovic (2012)

Robles Luna et al.
(2009)

–

Meta-model Yes – – Rivero et al. (2013),
Rivero et al. (2014),
Cáceres et al. (2004)

–

Meta-model Causal Causal – – Gudas and Lopata
(2016), Gudas and
Valatavičius (2020),
Gudas (2021)

knowledge (meta-model of Agile management hierarchy) is used to verify the status of
EAS project solutions (project content) which is recorded in the standard Jira tool.

Alfraihi et al. have conducted a thorough systematic literature review on the topic of
the integration of Agile development and MDA/MDD transformations (Alfraihi and Lano,
2017). We examined the results to determine if there is a description of how to capture
causal domain knowledge. The conclusions are presented in Table 1 and are based on
the causal modelling approach as described in Gudas and Valatavičius (2020), Noreika
and Gudas (2021). The papers that do not have MDA transformations specified are not
included. The last line in italic indicates a gap in the established MDD/MDA transfor-
mation approaches where the MDD/MDA methods are converging to a causal knowledge
based transformation rules. “DSL” stands for “Domain specific language”. Three types of
knowledge are shown in Table 1:

• Observation–based knowledge (external modelling) corresponds to black-box ap-
proach, when the model elements are black boxes of the input-process-output type and
their sequence does not have to form a feedback loop.

• Rule-based knowledge corresponds to a grey-box approach where deeper knowledge
(fragments of causality) is known, but not yet sufficiently captured (external and internal
modelling are mixed).

• Causal knowledge corresponds to the white-box approach when the domain causal
model is known. In our case this is defined as the MT framework (Gudas, 2012; Gudas
and Lopata, 2016; Gudas and Valatavičius, 2020).

Many tools support the Agile software project management process. Atlassian Jira
software is one of the leaders (digital.ai, 2020). Current state of Jira only supports the
themes, initiatives, epics, and user stories or similar structure. It does not provide for-
malities to ensure that the links between the different activities in the levels of the Agile



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 129

hierarchy are properly identified and justified in the business context. It means that it is
not ensured that each and every user story, epic, initiative, and theme links to one of the
strategic business objectives. Links are determined by experts working on project delivery
and are subjective, which means that the links definition are prone to errors.

Furthermore, as it was presented in Table 1, only a few AMDD methods contain causal-
ity modelling, including meta-model, and in those articles there is a lack of definition of
causal-based knowledge base or a similar repository, therefore a more thorough and de-
tailed research is required.

3. Conceptual Model of EAS Development Management

The principles of the modified (causal) Agile process are as follows:

a) Agile hierarchy activities (theme, initiative, epic, user story) are implemented as man-
agement transactions, i.e. internal structure and interactions of Agile activities are cor-
responding to the definition of MT in Fig. 4;

b) Vertical interactions between levels of Agile hierarchy (theme, initiative, epic, user
story) are implemented as management transactions corresponding to the definition of
MT in Fig. 4;

c) Top level Agile activities themes are related to the strategic objectives of the enterprise,
represented as capabilities specification in Fig. 6.

The conceptual scheme in Fig. 3 consists of two parts and shows an interface of tra-
ditional MDA/MDD development (on the left) and the modified Agile development man-
agement (on the right), based on the causal modelling. This conceptual diagram follows
the notation of the MODAF Operational Node Relationship View OV-2 (British Ministry
of Defence, 2010). A node here denotes a unit (hardware, software, organizational units,
people, etc.) required to implement a specific EAS development capability (functionality).
A node also expresses information flows requirements between nodes (British Ministry of
Defence, 2010). A description of the nodes is presented in Table 2.

The conceptual model in Fig. 3 is divided into two different perspectives: the real-
world (nodes M1, M3, M4, M6, and M7), and the virtual world (nodes M2, M5, and
M7∗). The link between the parts of the “Virtual World” and “Real World” as depicted by
the relations of M2-M3, M2-M1 and M5-M3 illustrates the methodology of engineering –
i.e. how the knowledge from the real world is translated to the requirements for EAS – in
our case – the MDA/MDD approach. Content of M2 and M5 based on partly discovered
M4 (through the experience of M1 and M3).

The brief characteristics of the nodes, defined in Table 2 are as follows:

• M1 – Experience-based business management processes (activities and responsibili-
ties), related to the enterprise strategy requirements, operational goals. Corresponds to
management functions (support activities of Porter’s Value Chain Model).

• M2 – the virtual business process models, specified in some standard modelling nota-
tion (BPMN, UML, MODAF, etc.);



130 K. Noreika, S. Gudas

Fig. 3. Conceptual model of causal EAS development management.

Table 2
Causal Agile Development Management model nodes description.

Node ID Name of node Description

M1 Business management
activities

Real-world processes (support activities of Porter’s VCM, Porter, 1985)

M2 Business domain
external modelling

Virtual models M2 describe the M3 and M1 activities

M3 Enterprise operations Real-world processes (primary activities of Porter’s VCM, Porter, 1985)
M4 Domain causality Real-world causation (regularity) that is inherent for domain type
M5 EAS solutions EAS development activities (development, testing, deployment)
M6 Agile project

management tool
Computerized tool, supporting the enterprise strategy alignment with
EAS solutions

M7 Causality of Agile
management

Real-world activities, causal interactions between Agile activities
(theme, initiative, epic, user story)

M7∗ Causal knowledge base
of Agile management

Based on the causal models: modified Agile hierarchy, and the
management transaction (MT) framework

• M3 – Real-world processes (primary activities of Porter’s Value Chain Model), i.e.
physical processes (manufacturing, development) of products or services. Controls
from M1 have impact to M3;

• M4 – Real-world regularities (patterns) that could be known to a certain extent as causal
knowledge (deep knowledge). Causal dependencies of M1 and M3;

• M5 – EAS solution including project solutions and code, based on empirical models
(M2) and experience related to M3 and M1;

• M6 – Intelligent Agile management environment, based on the causal Agile manage-
ment model, focused on the enterprise strategy alignment with EAS solutions. Con-
tains the recorded state of the EAS development (scope, status of completed features),
including validation of project state against the causal model of Agile management in-
teractions;



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 131

• M7 – The inherent interactions between items in the Agile hierarchy (theme, initiative,
epic, user story);

• M7∗ – Causal knowledge constructs related to Agile management, i.e. causal knowledge
base consisting of:

a) meta-model of the modified Agile management hierarchy;
b) project state (data) mapping to modified Agile management hierarchy, i.e. project

state evaluation (verification) records.

Causal knowledge base specifies the causal knowledge as meta-models: management
transaction (MT) meta-model (Gudas, 2021), modified Agile hierarchy and project state
evaluation metrics (Gudas and Noreika, 2022).

We will examine traditional EAS development (Fig. 3 left side) and its relationship
with causal Agile management processes (Fig. 3 right side) in order to describe the knowl-
edge structures required to implement such a system.

3.1. Model of the Traditional EAS Development

The traditional EAS development part in Fig. 3 includes real world interactions between
business management and operations (nodes M1–M3), and experience–based interactions
between nodes (M1–M4–M2), (M3–M4–M2), (M3–M4–M5) and (M2–M5) that are ex-
plained in this subsection below. The interactions between nodes (M1–M4) and (M3–M4)
shows the causality understood through experience – i.e. performing the real world activ-
ities multiple times reveals the peculiarities of the business domain and allows to capture
the causality. The interaction between nodes (M4–M2), (M4–M5) means that the expert
(business analyst or developer) must understand the business domain, i.e. understand the
causality of it.

The traditional MDA methodology relies on the external business domain analysis of
activities (M1–M3) and analyst’s experience when the CIM layer models are constructed.
There is no requirement that the domain causality M4 must be directly theoretically stud-
ied and used to develop M2 and M5.

The domain causality M4 exists as causality is a permanent feature of the real world
and has impact on interactions between real world processes M1 and M3.

Business domain modelling is based on external observation, creating business domain
models (M2) based on experience and using them to design EAS solutions M5. Content of
M2 and M5 based on partly discovered knowledge M4 (through experience). However, this
experience is not clearly expressed as a particular model(s) of domain causal knowledge.

The project management is considered as real-world process with its permanent causal-
ity (node M7) that needs to be understood thoroughly and modelled (M7∗) to develop
an intelligent project management system. Therefore, we model the Agile project man-
agement process as EAS engineering process following MDA approach. Thus, the Agile
project management process as a causal process is described in Fig. 2.

The interactions between the aforementioned nodes are described as follows:

• The transitions (M1–M4–M2), (M3–M4–M2), (M3–M4–M5) imply that the causal-
ity of domain M4 has impact on modelling, i.e. creation of M2 and M5. However,



132 K. Noreika, S. Gudas

in traditional EAS development, this experience is not clearly expressed as a partic-
ular model(s) of domain causal knowledge;

• The transition M2–M5 means that business domain models M2 are translated (based
on experience) to the requirements for EAS and directly used in the design of EAS
solutions (node M5);

• It is important to note that usually M2 is specified in some standard modelling notation
(BPMN, DMN, UML, etc.), which describes operational processes and data, but does
not include the modelling of business strategic goals;

• Since the modelling of business strategic goals is a crucial moment in the modified Ag-
ile management process, we conclude that the content of node M2 needs to be supple-
mented by applying enterprise architecture frameworks that include strategy modelling
specifications (e.g. MODAF, ArchiMate, NAF, etc.). The strategic goals are decom-
posed and finally represented by the “capability” concept defined in the before men-
tioned enterprise architecture frameworks.

Current MDA/MDD models on CIM layer are built through external observation, so
the notations used for modelling do not distinguish between what is the control function
(i.e. information transformation activity) and the controlled process (i.e. physical/material
transformation activity). These notations do not require verification of the feedback loop,
which must be created to ensure control causality.

It is not explicitly clear if there are only fragments of the whole system observed in
node M2 or the whole components of the system and causal interactions are captured.
In real-world EAS development projects this is often the case, because initially a lot of
information about the processes are context-based, so the analyst or developer (external
observer) cannot perceive the process in full, until it has sufficient knowledge of it and
various exceptions, workarounds, etc. Only then proper modelling can be done.

We assume that business domain causality (M4) can be (partially) discovered and spec-
ified in the knowledge base. To achieve this goal, we apply the management transaction
framework (MT), which is described in detail in previous works (Gudas and Noreika,
2022).

3.2. Modified Agile Project Management

Based on the analysis of the traditional Agile development management method, a mod-
ification is proposed in Gudas and Noreika (2022), Noreika and Gudas (2021) that is the
conceptual background to create an intelligent EAS development management tool.

Conceptual model in Fig. 3 shows that causal Agile management tool M6 (right side
of Fig. 3) is interacting with the traditional EAS development nodes (left side of Fig. 3)
on the basis of experience and is supported with virtual transitions (M6–M2), (M6– M5)
and (M6–M7–M7∗).

Node M6 indicates the EAS project management tool (e.g. Jira, Azure Boards, Mon-
day.com, Wrike, etc.), with a database about the current state of project execution (data)
(state of project).



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 133

Fig. 4. Conceptual model of Management Transaction. Based on Gudas (2012).

M7 denotes EAS project management causality between Agile hierarchy of themes,
initiatives, epics, user stories. These are real world activities, that we (partly) model using
the meta-model of causal Agile management hierarchy (Fig. 6a)

Node M7∗ refers to project management knowledge base content described in Sec-
tion 4: traditional Agile hierarchy meta-model, causal Agile hierarchy meta-model, and
causal knowledge unit (MT meta-model).

The integration of M6 with M7∗ enables the creation of an intelligent Agile manage-
ment environment, based on causal model of Agile management hierarchy (M7).

Due to these knowledge components, the node M7∗ enables to assess the project state
specifications recorded in node M6 (project management tool database) and indicate the
gaps against required causal Agile management hierarchy specifications (M7∗). In our
approach towards intelligent Agile management tools development, domain causation is
the regularity of the enterprise management, defined as a management transaction (Gu-
das, 2012) and forms the basis of the knowledge base M7. Management transaction (MT)
is considered as a causal knowledge unit. Recognized, discovered domain processes are
specified by examining (verifying) whether they conform to the MT framework.

We provide further specifications for the knowledge base as part of node M7 and
project management tool database additions as part of node M7 that allows to build an
intelligent project management tool. The purpose of displaying M7 here as a component
of the EAS development management is to demonstrate that we acknowledge that domain
causality must be understood by the analysts, developers and any personnel working with
EAS development to make sure that the developed EAS meets the real world processes.

The causal business domain model M4 is defined using the Management Transac-
tion (MT) framework (Gudas, 2012; Gudas and Lopata, 2016). Management Transaction
MT = (P, F, A, V) is relevant to some enterprise goal (G), captures knowledge on man-
agement function (F), enterprise process (P), informational input flow (state attributes A),
informational output flow (controls V). MT includes a feedback loop between F and P
composed of A and V flows.

A conceptual management transaction model presented in Fig. 4 also captures the
enterprise goal (G), which is not specified explicitly in the formal MT definition.



134 K. Noreika, S. Gudas

Fig. 5. Agile management hierarchy (traditional), aggregation relationship.

Knowledge base (KB) is a crucial component of any intelligent system. KB contains
the real-world knowledge captured by experts and is an internal model following the Inter-
nal model principle defined by Francis and Wonham (1976). The causal MDA/MDD ap-
proach uses predefined knowledge to ensure causality-based transformations (as depicted
in Fig. 2). We believe that the KB needs to be created to support MDA transformations
for developing EAS in an Agile setup.

3.3. The Modified Agile Hierarchy

Traditional Agile management hierarchy is based on the TIES hierarchy as explained in
the Section 1 of this paper. Basically, concepts of themes, initiatives, epics and user sto-
ries represent the requirements for EAS development in different levels of abstraction. The
mentioned concepts are activities – meaning actions are required to fulfil them – analysis,
development, testing, etc. A set of initiatives form a theme, a set of epics form an initia-
tive and a set of user stories form an epic. The traditional Agile management hierarchy is
presented in Fig. 5. It must be noted that we do not investigate the link between strategic
objective and theme in this paper, as this is a task of such complexity that it requires sep-
arate investigation. However, there are attempts to specify it using enterprise architecture
frameworks (Noreika, 2021).

Analysis of traditional Agile hierarchy from the causal modelling perspective revealed
a few new aspects to be considered in EAS project management as follows:

a) Different enterprise management functions are involved in EAS development (software
development management and business development management);

b) There is an information flow between any two adjacent levels of the Agile hierarchy
activities (themes – initiatives – epics – user stories);

c) The interaction of two activities from adjacent levels of the Agile hierarchy is a com-
plex process with a feedback loop (there is circular causality).

By evaluating these characteristics of a real-world Agile process, we defined a modified
(causal) Agile hierarchy model. This causal Agile management model is based on the
business domain causality model and is focused on the enterprise strategy alignment with
EAS solutions.

In the modified Agile hierarchy (Fig. 6a) any activity on each level:

• Is defined as management transaction MT = (P, F, A, V), i.e. themes, initiatives, epics,
and user stories have a predefined semantical structure;

• Is considered as a white box in mutual interactions in the Agile hierarchy including
horizontal and vertical interactions.

The detailed view of the modified Agile hierarchy is presented in Fig. 6a. An example
of different activities in the Agile hierarchy layers is represented in Fig. 6b, here the axis



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 135

Fig. 6. Modified Agile hierarchy: a) detailed view; b) example of Agile activity hierarchy.

AG (aggregation) indicates the hierarchy of Agile activities (vertical interactions), the
axis GE (generalization) indicates the classification of Agile activities into types. T01 in
Fig. 6b represents example of themes in Fig. 6a, I01 – initiatives, E01 – epics and S01,
S02 – user stories respectively. In our approach, the interaction of activities T01 and I01 is
a management transaction that is a complex process and it is defined as a set of information
flows specified in the element “Interaction specification: MT(Theme – Initiative) (Fig. 6a)
and so on, respectively (I01 – E01, E01 – S01, E01 – S02).

Any vertical interaction between activities of different levels (theme, initiative, epic,
user story, . . . ) is conceptualized as management transaction MT(P, F, A, V), where
a higher level activity is considered as “management function” (role = F), relevant lower-
level activities are considered as “processes” (role = P), also a feedback loop between
higher-level activity (F) and lower-level activity (P) is predefined (state attributes flow A
and controls flow V). Management Transaction is detailed in Fig. 4.

Vertical interactions of activities on the different Agile layers are overlapping. For ex-
ample, the internal interaction in MT (initiative, epic) is as follows: the role of the higher-
level element “initiative” is “control function” (F), and the role of the lower-level element
“epic” is “process” (P). Next, the role of epic in internal interaction MT (epic, user story)
changes: the role of epic here is F, the role of the user story is P.

A horizontal interaction between Agile activities must have a coordinating message be-
tween two management transactions MT(P, F, A, V) and MT∗(P∗, F∗, A∗, V∗). Horizontal
interactions differs depending on the management function of the managing function – i.e.
software development management and business management.

3.4. Verification of the Modified Agile Process

The objective of model verification is determining if the implementation of the model is
correct, i.e. conforms to the model requirement specification. The modified (causal) Agile
process model must be verified to ensure that it meets causal modelling requirements
defined as follows:



136 K. Noreika, S. Gudas

a) Agile hierarchy activities (theme, initiative, epic, user story) are implemented as man-
agement transactions, i.e. internal structure and interactions of Agile activities are cor-
responding to the definition of MT in Fig. 4;

b) Vertical interactions between levels of Agile hierarchy (theme, initiative, epic, user
story) are implemented as management transactions corresponding to the definition of
MT in Fig. 4;

c) The modified (causal) Agile process model ensure an interlink with enterprise strategy;
d) The knowledge repository structure ensures storage of internal elements of Agile ac-

tivities defined as MTs in Fig. 4.

The verification rules a), b) and c) define requirements to conceptual model of the
causal Agile management process and help to evaluate if the modified Agile process is
performing the way it should following causal modelling paradigm.

The verification rule a) defines requirement that internal structure of Agile activities
must include all MT elements (F, P, A, V). Verification rule b) defines the requirement
that the internal structure of the interaction between the levels of the Agile hierarchy cor-
responds to the MT definition, i.e. would be a transaction with a feedback loop.

Verification rule c) defines the requirement that the Agile hierarchy must meet the
strategic goals of the enterprise. Verification rule d) checks whether the causal elements
of the Agile process, whose internal structure corresponds to the MT definition, can be
stored in the designed project knowledge repository (Fig. 9).

The verification rule a) is satisfied because all activity types of causal Agile hierarchy
(theme, initiative, epic, user story) are considered having internal structure defined as
MT(P, F, A, V). For example, starting with the theme (Th), the internal structure is defined
as MT(Th) = MT(P, F, A, V) as depicted in Fig. 8. The formal specifications of all causal
Agile hierarchy activities, which are based on the MT definition, are discussed in detail
in our article (Gudas and Noreika, 2022).

The verification rule b) is satisfied because causal model of each item of causal Agile
hierarchy is defined as MT(P, F, A, V) (see rule a), thus by definition it includes vertical
interaction between higher level and lower level activities.

In order to specify the content of MT more precisely, we include both identifiers of
the higher level and lower level items in the specifications of MT structure. For example,
in MT(Th,I) = MT(P, F, A, V), a lower-level activity “initiative” is considered as process
(P) associated with a higher level activity “theme”. The role of activity “theme” in this
interaction is “management function (F)” (Gudas and Noreika, 2022). Therefore, we have
the following specification: theme (Th) is defined as MT(Th, I) = MT(P, F, A, V) and
includes a vertical interaction with initiative (I) which is defined as MT(I, E) = MT(P∗,
F∗, A∗, V∗) (Gudas and Noreika, 2022) as illustrated in Fig. 8. The same structure of
vertical interaction exists among all causal Agile hierarchy activities. The causal Agile
hierarchy interaction specifications are discussed in detail in Gudas and Noreika (2022).
Thus, the lower Agile activity satisfies the “needs for information” of the higher level
activity – requirements for complete information about its state, i.e. a vertical interaction
corresponds to required MT structure.

The verification rule c) is satisfied by the modified Agile process because top-level
Agile activities themes are related to the strategic goals of the enterprise represented as



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 137

Fig. 7. Enhanced Agile project management tool architecture.

capabilities specification in Fig. 6 and attribute ID_CAPABILITY in the table Agile_ac-
tivity in the knowledge repository (Fig. 9b). At the model implementation level, data stor-
age tables (Agile_activity, MT in Fig. 9) have relationship with the data storage table
(CAPABILITY).

Verification rule d) is satisfied because all Agile activities are saved as management
transactions, because all internal MT elements (F, P, A, V) are specified in data storage
tables (MT, A flow attributes, V flow attributes) in Fig. 9.

In addition, an example of the enhanced Jira tool database record in Table 3 demon-
strates that the designed knowledge base meets the requirements of the causal Agile pro-
cess.

4. Specification of the Knowledge Base for Agile Development Management

To develop EAS in an intelligent way and ensure that every task in the EAS project con-
tributes to strategic business objectives and domain causality, using predefined knowl-
edge is a must. By following the principles of modified Agile hierarchy the aim is to shift
from the black-box or grey-box approaches to the white-box approach by capturing do-
main causal knowledge via MT framework. The architecture of the enhanced Agile project
management tool that follows these principles is presented in Fig. 7. In this block diagram
the ellipse means actor, dotted line – grouping, rectangle – component and arrow – inter-
action.

“User” in Fig. 7 represents the managers for the Agile EAS project. They are interact-
ing with the enhanced Agile project management tool (i.e. Jira or any other that would be
enhanced by the AI component).



138 K. Noreika, S. Gudas

The “Intelligent Agile project management tool” is represented by nodes M6–M7∗ in
the conceptual model of EAS development management (Fig. 3). The intelligent Agile
project management tool includes components as follows:

• “Agile project management engine” – regular features that Agile management tools
have, i.e. backlog, sprint backlog, various attributes, reports, etc.;

• The “Interface component” is the user interface which ensures the real-time interaction
with all of the components of the enhanced Agile project management tool. The “In-
terface component” interacts with the knowledge repository (node M7∗ in Fig. 3) and
project management database (node M6 in Fig. 3);

• The “enhanced project management database” contains the information about TIES
activities, like task descriptions, etc.;

• “Causal Knowledge Repository” includes the causal knowledge frameworks (meta-
models), used for validation of the EAS development solutions: modified Agile hi-
erarchy Meta-Model, capabilities specifications, MT-based specifications of vertical
interactions in the Agile hierarchy and is represented by node M7∗ in Fig. 3. “Causal
Knowledge Repository” consists of three interrelated parts: causal knowledge unit – the
MT meta-model, traditional Agile hierarchy meta-model, and meta-model of the causal
(modified) Agile hierarchy, including meta-models of the closed loop interactions be-
tween Agile hierarchy levels: meta-model of MT(theme, initiatives), meta-model of
MT(initiative, epics) and meta-model of MT(epic, user stories). These interaction meta-
models of the levels of the Agile hierarchy are considered subclasses of the unit of causal
knowledge – the MT meta-model, and therefore, inherit upper level class features: they
have function-MT, process-MT, Flow A and Flow V in their structure.

The “EAS project specifications” element under the “EAS Project repository” repre-
sents node M5 from Fig. 3. It contains EAS project specifications (in UML, SySML, etc.)
that are used for EAS development.

The “Business process specifications” element under the “EAS project repository”
represents the node M2 from Fig. 3. It contains the observation-based business domain
models (in BPMN, DMN, etc.).

The system architecture in Fig. 7 is used as a roadmap to define the conceptual model
(Fig. 8) and components of the causal knowledge repository (Fig. 9).

The conceptual model of the causal knowledge repository includes knowledge struc-
tures as follows (Fig. 8): a meta-model of traditional Agile hierarchy integrated with the
capabilities specifications (relationship to strategic goals), causal (modified) Agile hier-
archy meta-model and meta-model of causal knowledge unit (i.e. MT meta-model) which
predefines required content of interlevel interactions that must match the MT definition.

Traditional Agile hierarchy meta-model defines the types of activities at different lev-
els of the Agile hierarchy and the rule that the activity type “themes” is linked to the
capabilities specification. This relationship ensures tracing of capability relationship to
all hierarchy levels – from themes to initiatives, epics, and user stories.

This traditional Agile hierarchy meta-model supplemented by the connection with the
capability is related to the Causal Agile hierarchy meta-model. The meta-model of causal



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 139

Fig. 8. Conceptual model of causal knowledge repository (UML Class diagram).

Agile hierarchy defines interlevel interactions of activity types (theme – initiative, initia-
tive – epic, epic – user story). The internal structure (content) of these all vertical interac-
tions is predefined by the Causal knowledge unit (here it is the MT meta-model).

Therefore, the Causal knowledge unit (MT meta-model) has a particular role in en-
suring causality-driven vertical interactions: all interactions in the Agile hierarchy must
match the MT definition: MT (theme, initiative) and MT(initiative, epic) and MT(epic,
user,story) are defined as MT = (P, F, A, V).

The causal Agile management meta-model that is used for validating the interlevel
interactions is explained in more detail in Gudas and Noreika (2022).

The causal knowledge unit (MT meta-model) in Fig. 8 specifies requirements for the
content of all interlevel interactions and is used by the intelligent system for validating the
expert solutions (project state).

4.1. Defining Agile Project Management Data Structures

The causal Agile management repository specification (Fig. 9) is developed following the
conceptual model of causal knowledge repository in Fig. 8. The causal Agile manage-
ment repository in Fig. 9 consists in to two parts: enhanced project management database
(Fig. 9b) and project state assement knowledge base (Fig. 9a).

Enhanced project management database (prototype is the Jira database) is supple-
mented with new DB tables CAPABILITY, BUSINESS_OWNER and new attributes
required by the conceptual model in Fig. 8. The table CAPABILITY contains identi-
fier (ID_capability) and description of strategic goal item. For ease of visualization,



140 K. Noreika, S. Gudas

Fig. 9. Causal Agile management repository specification.

the CAPABILITY table is recreated twice. The table Agile_activity contains new at-
tributes that ensure data storage of causal interactions: ID_MT – identifier of management
transaction, ID_CAPABILITY – identifier of capability (i.e. strategic goal item), BUSI-
NESS_OWNERS_ID – identifier of top level manager. The table Sprint is not modified.

EAS “Project state assessment knowledge base” in Fig. 9a is the implementation of the
component “Causal Agile hierarchy meta-model” in Fig. 8. The causal knowledge storage
structure includes tables MT, A_FLOW_ATTRIBUTES and V_FLOW_ATTRIBUTES
with functional dependencies between them. This data structure ensures the storage of
causal interactions content as defined in the conceptual model of causal knowledge repos-
itory (Fig. 8):

• Table MT ensures storage of MT = (P, F, A, V): identifier ID_MT, identifier of higher
level activity ID_activity(F) (F – management function) and identifier of lower-level
activity ID_activity(P) (P – process);

• Table A_FLOW_ATTRIBUTES ensure storage of MT = (P, F, A, V) flow A (informa-
tion of process P state);

• Table V_FLOW_ATTRIBUTES ensure storage of MT = (P, F, A, V) flow V (deci-
sions/controls of process P state).

It is important to notice that “Project state assement knowledge base” is linked to ca-
pability description in table CAPABILITY. This allowed for tracing of EAS solution ac-
tivities (theme, initiative, epics, user stories) against strategic objectives.

According to the causal modelling method, project state data on interactions between
levels of the Agile hierarchy are normalized by checking their compliance with the causal
knowledge unit definition MT = (P, F, A, V). The storage of the received restructur-



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 141

Table 3
Content of the data base record of the enhanced Jira tool.

Theme Initiative Epic User story
ID F P A V ID F P A V

N N E01 N Y Y Y S01 Y Y Y Y
Technical Tasks Technical architecture review

N N E01 N Y Y Y S02 Y Y Y Y
Technical Tasks Segregate audit log and transaction log

ing result is ensured by the specifications of tables MT, A_FLOW_ATTRIBUTES and
V_FLOW_ATTRIBUTES, it can be seen in Fig. 9a.

Thus, the specifications of the causal Agile management knowledge repository comply
with the definition of the conceptual model of causal knowledge repository.

Fig 9b includes the implementation of the “Strategic capabilities” component of the
“Causal knowledge repository” from Fig. 7.

In summary, the EAS “Project Status Assessment Knowledge Base” and “Enhanced
Project Management Database” specifications (Fig. 9) meet the constraints defined by the
conceptual models (Fig. 7 and Fig. 8).

The Fig. 9 shows how each causal Agile hierarchy interaction (MT(theme, initiative),
MT(initiative, epic), MT(epic, user story)) should be defined and saves the actual state of
current EAS project state assessment against strategic enterprise objectives.

Records of the Agile activities in the project management database are associated with
a causal model of Agile hierarchy and interactions through an additional set of attributes
(Fig. 9b), additional fields are capitalized.

We chose to present the fields with longer names for the sake of clarity. Furthermore,
such usually encountered service information as date created, updated, user, that created
or updated the record are not provided in each of the tables for the sake of simplicity.

Table 3 contains the records for EAS project requirements based on database struc-
tures in Fig. 9. It indicates that there is missing theme and initiative information and epic
information is missing link to theme (F).

The prototype of an intelligent interaction component is presented in Fig. 10. This view
is compiled using the content of the project management database record of the enhanced
Jira tool from Table 3.

The dotted column in Fig. 10 reflects the possible additional fields based on the situ-
ation comparing records in the Agile project management database. Below is an example
of the semantic information that the Jira tool would store (Jira database records content)
and that is used to reflect the gaps of the project state against the modified Agile hierarchy
meta-model:

• Theme represents a long-term objective, i.e. “in 2 years to reduce operational cost by
X amount”;

• One of the linked initiatives – “Stop using system Y, and transfer the features of the
system to new system Z”;



142 K. Noreika, S. Gudas

Fig. 10. Prototype of the enhanced Jira tool report.

• One of the linked epics to the initiative: “in 3 months – transfer system Y function N to
system Z”;

• One of the linked to the epic user stories: “in 2 weeks to transfer system Y function N
component K to system Z”.

5. Conclusions

EAS engineering methodologies lack the formalization to ensure the improvement of EAS
project delivery. Furthermore, Agile project management tools, such as Atlassian Jira, cap-
ture the state of EAS projects by relying solely on expert judgement that is not supported
by any knowledge model, causal knowledge is still not addressed in the MDD and AMDD
approaches.

The novelty of the proposed method is incorporating the business domain causal
knowledge modelling approach into the Agile project management process. The princi-
ples for development components for the intelligent Agile project management system that
supports the application development project state evaluation were presented.

The presented conceptual model of causal EAS development management integrates
causal knowledge into EAS design. Incorporating the causal models into the EAS devel-
opment process and project management system enables the capability for validation of
project content (i.e. specifications of user stories, epics, initiatives) using causal knowl-
edge repository, including the alignment of strategic goals and EAS development solu-
tions.

The basic component required for the intelligent Agile project management tool is
the causal knowledge repository. A causal knowledge repository specification is proposed
(based on the Jira tool). Repository consists of components as follows (required to store
and verify causal knowledge): a traditional Agile hierarchy related to capability speci-
fications, and a causal Agile hierarchy metamodel, including the specification of cross-
level interactions. It also contains an Agile project management database of specific EAS
project status that includes traditional Agile activity attributes and cause-based attributes.



Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 143

This solution was verified by showing that the knowledge repository is built on a man-
agement transaction definition (causal unit of knowledge) that normalizes the internal
structure of Agile activities and interactions.

All this together allows for the creation of an intelligent project management system,
which allows to evaluate the content of EAS development tasks (i.e. user stories, epics,
initiatives, themes) and align them with the requirements of strategic goals. The evaluation
process should include procedures as follows:

a) Tracing of enterprise strategic goals integrity with Agile hierarchy activities (theme,
initiative, epic, user story) using the ID_capability attribute and information from KB
tables AGILE_ACTIVITY and CAPABILITY (Fig 9);

b) Data compliance verification of the interaction content between Agile hierarchy layers
(theme/initiative, initiative/epic, epic/user story) to the causal structure defined as MT
framework, using the information from KB tables MT, A_FLOW_ ATTRIBUTES and
V_FLOW_ATTRIBUTES (Fig 9a).

The originality of this approach is the causal modelling solutions which ensure a more
successful project deliveries, supported with enhanced Agile project management tool Jira
having application development process evaluation capability. Standard Agile project state
information is transformed by mapping it to causal Agile process model. Each interaction
in the Agile hierarchy is mapped to causal knowledge structure defined as management
transaction (MT). This makes it possible to identify the gaps of EAS as-is project data
(stored in traditional Jira tool) against the required causal knowledge structure.

Despite significant advantages, the limitations of applying this method is the require-
ment to have the the organization to be at a particular process capability maturity level
with the business processes to be defined and modelled, i.e. at least at level 3 according
to CMMI (2022).

The presented conceptual models and structural solutions explain and specify the main
components that would allow the creation of an intelligent Agile project management tool
(an additional feature to the Jira tool). The next research steps are to create a prototype
of the enhanced Agile project management system by integrating causal knowledge struc-
tures corresponding to the described structure of the project’s knowledge repository to the
standard Jira database.

References

Ambler, S. (2002). Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process.
1st ed., Wiley, USA.

Ambler, S. (2004). The Object Primer. 3rd ed., Cambridge University Press, USA.
Alfraihi, H., Lano, K. (2017). The integration of agile development and model driven development – a systematic

literature review. In: 5th International Conference on Model-Driven Engineering and Software, pp. 451–458.
https://doi.org/10.5220/0006207004510458.

Barat, S., Kulkarni, V. (2010). Developing configurable extensible code generators for model-driven develop-
ment approach. In: SEKE 2010, USA, pp. 577–582.

British Design Council (2007). 11 Lessons: Managing Design in Eleven Global Brands. https://www.design
council.org.uk/fileadmin/uploads/dc/Documents/ElevenLessons_Design_Council%2520%25282%2529.pdf.
Last accessed 2022/02/20.

https://doi.org/10.5220/0006207004510458
https://www.designcouncil.org.uk/fileadmin/uploads/dc/Documents/ElevenLessons_Design_Council%2520%25282%2529.pdf
https://www.designcouncil.org.uk/fileadmin/uploads/dc/Documents/ElevenLessons_Design_Council%2520%25282%2529.pdf


144 K. Noreika, S. Gudas

British Ministry of Defence (2010). MOD Architecture Framework (MODAF). https://assets.publishing.service.
gov.uk/government/uploads/system/uploads/attachment_data/file/36757/20100602MODAFDownload12004.
pdf. Last accessed 2022/10/15.

Cáceres, P., Díaz, F.J., Marcos, E. (2004). Integrating an agile process in a model driven architecture. In: NFOR-
MATIK 2004 – Informatik verbindet, Band 1, Beiträge der 34. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), Ulm, 20.–24, pp. 265–270.

CMMI Institute (2022). CMMI. https://cmmiinstitute.com/cmm. Last accessed 2022/12/26.
den Haan, J. (2008). MDA and Model Transformation. http://www.theenterprisearchitect.eu/blog/2008/02/18/

mda-and-model-transformation/. Last accessed 2022/03/10.
digital.ai Software, Inc. (2020). 14th Annual State of Agile Report. https://info.digital.ai/rs/981-LQX-968/

images/SOA14.pdf. Last accessed 2023/01/15.
Francis, B.A., Wonham, W.M. (1976). The internal model principle of control theory. Automatica, 12(5),

457–465.
Gotel, O.C.Z., Finkelstein, C.W. (1994). An analysis of the requirements traceability problem. In: Proceedings

of IEEE International Conference on Requirements Engineering. IEEE, USA, pp. 94–101. https://doi.org/10.
1109/ICRE.1994.292398.

Grigera, J., Rivero, J.M., Robles Luna, E., Giacosa, F., Rossi, G. (2012). From requirements to web applications
in an Agile model-driven approach. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (Eds.), ICWE 2012: Web
Engineering, LNCS, Vol. 7387. Springer, Berlin, Heidelberg, Germany, pp. 200–214. https://doi.org/10.1007/
978-3-642-31753-8_15.

Gudas, S. (2012). Foundations of the Information Systems’ Engineering Theory. 1st ed., Publishing House of
Vilnius University, Lithuania.

Gudas, S. (2021). Causal modelling in enterprise architecture frameworks. Informatica, 32(2), 247–281.
Gudas, S., Lopata, A. (2016). Towards internal modelling of the information systems application domain. Infor-

matica, 27(1), 1–29. https://doi.org/10.15388/Informatica.2016.74.
Gudas, S., Valatavičius, A. (2020). Extending model-driven development process with causal modeling ap-

proach. In: Dzemyda, G., Bernatavičienė, J., Kacprzyk, J. (Eds.), Data Science: New Issues, Challenges and
Applications, Studies in Computational Intelligence, Vol. 869. Springer Nature, Switzerland, pp. 279–296.
https://doi.org/10.1007/978-3-030-39250-5_7.

Gudas, S., Noreika, K. (2022). Causal interactions in Agile application development. Mathematics, 10(9), 1497.
https://doi.org/10.3390/math10091497.

Gudas, S., Tekutov, J., Butleris, R., Denisovas, V. (2019). Modelling subject domain causality for learning con-
tent renewal. Informatica, 30(3), 455–480. https://doi.org/10.15388/Informatica.2019.214.

Guta, G., Schreiner, W., Draheim, D. (2009). A lightweight MDSD process applied in small projects. In: 35th Eu-
romicro Conference on Software Engineering and Advanced Applications. IEEE, USA, pp. 255–258. https://
doi.org/10.1109/SEAA.2009.63.

Kirby, J. Jr. (2006). Model-driven Agile development of reactive multi-agent systems. In: COMPSAC’06. IEEE,
USA, pp. 297–302.

Kleppe, A., Warmer, J., Bast, W. (2003). MDA Explained: The Model Driven Architecture: Practice and Promise.
Addison Wesley, USA.

Knapp, J. (2016). Sprint: How to Solve Big Problems and Test New Ideas in Just Five Days. 1st ed., Simon &
Schuster, USA.

KPMG, AIPM, IPMA (2019). The Future of Project Management: Global Outlook 2019. https://www.ipma.
world/assets/PM-Survey-FullReport-2019-FINAL.pdf. Last accessed 2022/03/02.

Kulkarni, V., Reddy, S. (2004). Model-driven development of enterprise applications. In: Nunes, N.J., Selic,
B., da Silva, A.R., Alvarez, A.T. (Eds.), UML Modeling Languages and Applications, UML 2004, Satellite
Activities, LNCS, Vol. 3297. Springer-Verlag, Berlin, Heidelberg, pp. 118–128.

Kulkarni, V., Barat, S., Ramteerthkar, U. (2011). Early experience with Agile methodology in a model-driven
approach. In: Whittle, J., Clark, T., Kühne, T. (Eds.), MODELS 2011: Model Driven Engineering Languages
and Systems, LNCS, Vol. 6981. Springer-Verlag GmbH, Berlin, Heidelberg, New Zealand, pp. 578–590.
https://doi.org/10.1007/978-3-642-24485-8.

Lano, K., Alfraihi, H., Yassipour Tehrani, S., Haughton, H. (2015). Improving the application of agile mod-
elbased development: experiences from case studies. In: The Tenth International Conference on Software
Engineering Advances. IARIA, Spain, pp. 213–219.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/36757/\20100602MOD\AFDownload12004.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/36757/\20100602MOD\AFDownload12004.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/36757/\20100602MOD\AFDownload12004.pdf
https://cmmiinstitute.com/cmm
http://www.theenterprisearchitect.eu/blog/2008/02/18/mda-and-model-transformation/
http://www.theenterprisearchitect.eu/blog/2008/02/18/mda-and-model-transformation/
https://info.digital.ai/rs/981-LQX-968/images/SOA14.pdf
https://info.digital.ai/rs/981-LQX-968/images/SOA14.pdf
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1007/978-3-642-31753-8_15
https://doi.org/10.1007/978-3-642-31753-8_15
https://doi.org/10.15388/Informatica.2016.74
https://doi.org/10.1007/978-3-030-39250-5_7
https://doi.org/10.3390/math10091497
https://doi.org/10.15388/Informatica.2019.214
https://doi.org/10.1109/SEAA.2009.63
https://doi.org/10.1109/SEAA.2009.63
https://www.ipma.world/assets/PM-Survey-FullReport-2019-FINAL.pdf
https://www.ipma.world/assets/PM-Survey-FullReport-2019-FINAL.pdf
https://doi.org/10.1007/978-3-642-24485-8


Causal Knowledge Modelling for Agile Development of Enterprise Application Systems 145

Li, J., Horiguchi, Y., Sawaragi, T. (2022). Counterfactual inference to predict causal knowledge graph for re-
lational transfer learning by assimilating expert knowledge – relational feature transfer learning algorithm.
Advanced Engineering Informatics, 51, 101516. https://doi.org/10.1016/j.aei.2021.101516.

Matinnejad, R. (2011). Agile model driven development: an intelligent compromise. In: SERA. IEEE, USA,
pp. 197–202.

Miller, L. (2005). Case study of customer input for a successful product. In: ADC’05. IEEE, USA, pp. 225–234.
https://doi.org/10.1109/ADC.2005.16.

Nakicenovic, M.B. (2012). An agile driven architecture modernization to a model-driven development solution.
International Journal on Advances in Software, 5(3–4), 308–322.

Noreika, K. (2021). Improving enterprise application software development management with MODAF. In: For-
brig, P., Hinkelmann, K., Kirikova, M., Lantow, B., Møller, C., Morichetta, A., Plebani, P., Re, B., Sandkuhl,
K., Seigerroth, U. (Eds.), Joint Proceedings of the BIR 2021 Workshops and Doctoral Consortium Co-located
with 20th International Conference on Perspectives in Business Informatics Research (BIR 2021), Vienna,
Austria, 2021, pp. 141–152. https://ceur-ws.org/Vol-2991/paper12.pdf.

Noreika, K., Gudas, S. (2021). Modelling the alignment between Agile application development and business
strategies. In: Joint Proceedings of the BIR 2021 Workshops and Doctoral Consortium Co-located with 20th
International Conference on Perspectives in Business Informatics Research (BIR 2021), Vienna, Austria,
September 22–24, 2021, Vienna, pp. 59–73.

The OMG (2022a). MDA – The architecture of choice for a changing world. https://www.omg.org/mda/. Last
accessed 2022/11/06.

The OMG (2022b). Business modeling category – specifications associated. https://www.omg.org/spec/
category/business-modeling/About-business-modeling/. Last accessed 2022/11/06.

Porter, M.E. (1985). Competitive Advantage. 1st ed., The Free Press, New York, USA.
Prior, D. (2022). Agile Planning with Ties with Tom Churchwell. https://www.leadingagile.com/podcast/

agile-planning-ties-tom-churchwell/. Last accessed 2022/08/03.
Rivero, J.M., Luna, E.R., Grigera, J., Rossi, G. (2013). Improving user involvement through a model-driven

requirements approach. In: 2013 3rd International Workshop on Model-Driven Requirements Engineering
(MoDRE), Rio de Janeiro, Brazil, 2013, pp. 20–29. https://doi.org/10.1109/MoDRE.2013.6597260.

Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R., Montero, F., Gaedke, M. (2014). Mockup-driven development:
providing agile support for model-driven web engineering. Information and Software Technology, 56(6),
670–687.

Robles Luna, E., Grigera, J., Rossi, G. (2009). Bridging test and model-driven approaches in web engineering.
In: Gaedke, M., Grossniklaus, M., Díaz, O. (Eds.), ICWE 2009: Web Engineering, LNCS, Vol. 5648. Springer,
Berlin, Heidelberg, Spain, pp. 136–150.

Zhang, Y., Patel, S. (2011). Agile model-driven development in practice. IEEE Software, 28(2), 84–91.

K. Noreika obtained master’s degree in 2015 from Vilnius University. He is a PhD student
at Vilnius University Institute of Data Science and Digital Technologies. His research
interests include Agile software development management, business and IT alignment
methods. K. Noreika has published an article in the cited journal (indexed by the Web of
Science database) and also papers in peer-reviewed conference proceedings (indexed by
Scopus). He is a member of the Lithuanian Computer Society. Karolis has over 14 years
of experience in Agile software development management working as project manager,
business analyst, and Agile consultant in national and international companies.

https://doi.org/10.1016/j.aei.2021.101516
https://doi.org/10.1109/ADC.2005.16
https://ceur-ws.org/Vol-2991/paper12.pdf
https://www.omg.org/mda/
https://www.omg.org/spec/category/business-modeling/About-business-modeling/
https://www.omg.org/spec/category/business-modeling/About-business-modeling/
https://www.leadingagile.com/podcast/agile-planning-ties-tom-churchwell/
https://www.leadingagile.com/podcast/agile-planning-ties-tom-churchwell/
https://doi.org/10.1109/MoDRE.2013.6597260


146 K. Noreika, S. Gudas

S. Gudas is a head of the Cyber-Social Systems Engineering Department, professor at
the Faculty of Mathematics and Informatics of Vilnius University. He received a doc-
toral degree in technical sciences (PhD) in 1982. In 2005 he completed the habilitation
procedure in informatics engineering at Kaunas University of Technology. He was con-
ferred the title of professor at the Kaunas University of Technology (2005), and at Vilnius
University (2005). He is the author of the monograph Foundations of the Information
Systems Engineering Theory, 2 book chapters, 5 textbooks, and more than 180 scientific
papers. The field of research interests focuses on enterprise software engineering, causal
modelling approach, knowledge-based CASE methods. He is a supervisor of eight PhD
theses. Member of Lithuanian Computer Society. Scientific internship: Warsaw Techni-
cal University, Poland, 2018; Riga Technical University, Latvia, 2016; Tartu University,
Estonia, 2015; Brandenburg University of Technology (Germany, Cottbus-Senftenberg),
2013, London City University, 1996; Stockholm University, 1995.


	Introduction
	Related Works
	Transformations in MDA/MDD
	Agile MDA/MDD Methodology
	Causal Modelling Driven MDA/MDD Approach

	Conceptual Model of EAS Development Management
	Model of the Traditional EAS Development
	Modified Agile Project Management
	The Modified Agile Hierarchy
	Verification of the Modified Agile Process

	Specification of the Knowledge Base for Agile Development Management
	Defining Agile Project Management Data Structures

	Conclusions

