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Abstract. Commonly modern symmetric encryption schemes (e.g. AES) use rather simple actions
repeated many times by defining several rounds to calculate the ciphertext. An idea we previously
offered was to trade these multiple repeats for one non-linear operation. Recently we proposed a
perfectly secure symmetric encryption scheme based on the matrix power function (MPF). However,
the platform group we used was commuting. In this paper, we use a non-commuting group whose
cardinality is a power of 2 as a platform for MPF. Due to the convenient cardinality value, our scheme
is more suitable for practical implementation. Moreover, due to the non-commuting nature of the
platform group, some “natural” constraints on the power matrices arise. We think that this fact
complicates the cryptanalysis of our proposal. We demonstrate that the newly defined symmetric
cipher possesses are perfectly secure as they were previously done for the commuting platform
group. Furthermore, we show that the same secret key can be used multiple times to encrypt several
plaintexts without loss of security. Relying on the proven properties we construct the cipher block
chaining mode of the initial cipher and show that it can withstand an adaptive chosen plaintext attack.
Key words: symmetric cryptography, perfect secrecy, non-commuting cryptography, matrix
power function.

1. Introduction

1.1. Motivation

Symmetric cryptography came a long way from ancient times. One of the fundamental
works in this area was presented in Shannon (1949). There the author introduced a concept
nowadays known as the Shannon cipher given by a triplet (Gen(), Enc(), Dec()), where
Gen() is a key generation function, Enc() and Dec() are encryption and decryption func-
tions, respectively, as defined in Katz and Lindell (2007). Assuming μ is the plaintext to
be encrypted, the major requirement of a symmetric encryption scheme is the following:

Dec(k, Enc(k, μ)) = μ, (1)
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i.e. decryption function correctly restores the message μ using the same key k. Any prop-
erly working symmetric cipher must satisfy this requirement. Proving the correctness of
any symmetric cipher relies on verifying identity (1).

In the realm of modern symmetric ciphers, the most secure ones possess an essential
property of perfect secrecy – a concept initially defined by Shannon himself. One of the
most intuitive definitions can be found in various textbooks like Katz and Lindell (2007)
or Boneh and Shoup (2020) and states that a symmetric cipher is perfectly secure if the
ciphertext c is statistically independent of the encrypted plaintext μ, i.e.

Pr(c = c0 | μ = μ0) = Pr(c = c0), (2)

where Pr() denotes the probability of a random event and c0 and μ0 are fixed ciphertext
and plaintext respectively. We use this definition in Section 4 to show that our cipher
satisfies condition (2).

The perfect secrecy property of the one-time pad (OTP) technique was proven by Shan-
non. To our knowledge, up to our previous works, OTP together with its various modifi-
cations remained the only technique with this property. This comes from the fact that per-
fectly secure ciphers require keys of the same size as the plaintext to be encrypted. Hence,
despite achieving this highly desirable property, OTP is mainly viewed as a theoretical
concept and is rarely used in practice. Moreover, the OTP falls flat due to its inability to
reuse the secret key and becomes an easy prey for active attackers. Interestingly enough,
the latter flaw is also the main issue for constructing various encryption modes based on
this technique.

Therefore, widely popular symmetric ciphers (e.g. AES) are usually constructed by
repeating several rather simple operations multiple times. The more rounds are used, the
higher security is achieved. These ciphers can also be adapted for practical implementation
via various encryption modes.

Our goal is to show that the perfectly secure cipher can be adaptable for practical
implementation. In other words, by using a highly non-linear matrix mapping as opposed
to multiple rounds of encryption we can achieve a high-security level while also avoiding
the main issue of the OTP.

1.2. Related Work

Recently our research group published a paper (Sakalauskas et al., 2020b), where we
introduced a symmetric encryption scheme based on a special case of the so-called MPF
mapping. In Sakalauskas and Luksys (2012), authors formally defined MPF as a mapping
Matn(R)×Matn(S)×Matn(R) �→ Matn(S), where Matn(·) denotes a set of square n×n

matrices with entries taken from the specified algebraic structure: a platform semigroup
S or a finite ring of integers R with cardinality determined by the properties of S. Let us
assume, that matrices X, Y ∈ Matn(R) and W, E ∈ Matn(S). Then we denote

XWY = E, (3)
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where each entry of the result matrix E is computed as follows:

eij =
n∏

k=1

n∏
l=1

w
xikylj

kl . (4)

In the paper (Sakalauskas et al., 2020b) we focused on a Sylow group G3 found in a multi-
plicative groupZ7. Let us recall that the semigroup S contains a Sylow group of cardinality
pk if k is the largest power of p dividing the multiplicative order of S, i.e. a number de-
noted as ord(S) such that for every element s ∈ S we have s1+ord(S) = s (Sylow, 1872).
We proved in Sakalauskas et al. (2020b) that the proposed scheme is perfectly secure.

Our recent research continues the study of MPF applications for symmetric cipher
construction but uses a non-commuting platform group. Previously, we published several
papers where we proposed new protocols based on MPF defined over non-commuting
platform groups (Sakalauskas et al., 2020a; Mihalkovich et al., 2020). In those papers, we
proved that the proposed asymmetric cryptographic primitives rely on NP-complete prob-
lems (Sakalauskas and Mihalkovich, 2018; Mihalkovich et al., 2020). We used singular
matrices to our advantage and showed that non-commuting platform groups and singular
matrices contribute to the overall security of the proposed protocols.

In our previous paper (Mihalkovich et al., 2022), we considered the performance of
the cipher block chaining (CBC) mode based on MPF mapping. Moreover, we evaluated
the computational costs of AES and TDES protocols operating in the CBC mode based
on the notion of clock cycles. To achieve a balance between the memory requirements,
performance, and statistical properties of our scheme, discussed previously in Levinskas
and Mihalkovich (2021), we fixed the main parameters of our cipher at m = 4, p = 4079
and q = 2039. Our results have shown that MPF-based CBC mode outperforms AES-128
by 1.5 times and TDES by roughly 47 times.

Notably, our cipher has another interesting property that was not considered previously
in Mihalkovich et al. (2022). Since our cipher is based on matrix operations we can achieve
a significant boost of performance speed by implementing parallelization of calculations
up to m2 processors during an encryption process of each block. We think that this fact
benefits our proposal since other algorithms considered in our previous paper do not have
this property.

In this paper, we introduce the CBC mode for our MPF-based cipher and prove its
security. We leave the performance evaluation and comparison to other ciphers for our
future work. Based on the findings presented in Mihalkovich et al. (2022), we expect to
achieve similar results for the to-be-presented CBC mode built on the non-commuting
group.

1.3. Our Contributions

Obviously, singular matrices cannot be used as symmetric keys since the initial message
must be restored by applying the same key which is impossible if the inverse matrix does
not exist. Hence, to implement the non-commuting platform groups in symmetric encryp-
tion we have to define different templates in such a way that power matrices in (3) would be
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invertible. Furthermore, as opposed to asymmetric encryption presented in Mihalkovich
et al. (2020), we also have to make the base matrix W as flexible as possible. In other
words, we cannot simply fix a template for the base matrix W since we want to be able to
work with any kind of message without having to adapt them to fit a certain requirement.
Therefore, we limit ourselves to defining a template for the power matrix Y, thus keeping
the restrictions to a minimum.

As mentioned above, we also consider our cipher from the point of view of practical
implementation. One obvious drawback of any perfectly secure block cipher is the fact that
the encryption key has to be at least as long as the encrypted plaintext. To overcome this
obstacle we define the cipher block chaining mode on the basis of our proposal. To prove
its resistance against adaptive chosen plaintext attack we define a security game and show
that the probability of a win is negligible.

In this paper, we consider a general form of one of the previously explored non-
commuting groups, namely the group M16 (Mihalkovich, 2018; Mihalkovich et al., 2020).
We define this general form in the next section and present some important facts useful
for our goals. These involve the explicit formulas of basic operations and the properties
of MPF. In Section 3, we present our main idea – a Shannon cipher based on MPF de-
fined over a non-commuting group. Later in Section 4 we prove the perfect secrecy of
our proposal. Moreover, in Section 6 we define the CBC mode of our cipher and consider
the security of this scheme in Section 7. As usual, in Section 8 we present our conclu-
sions.

2. Mathematical Background

Let us define two generators a and b which do not commute, i.e. ab �= ba. Furthermore,
we define the following relations:

R1 : a2t−1 = e;
R2 : b2 = e; (5)

R3 : bab−1 = a2t−2+1,

where e is the identity element. Using these relations we can form words of the types aαbβ

or bβaα , where α ∈ {0, 1, . . . , 2t−1 − 1} and β ∈ {0, 1}. Moreover, the set of these words
defines the following group:

M2t = 〈a, b | R1, R2, R3〉 . (6)

Remark 1. We use the notation M2t to better distinguish this group from the plaintext
matrix M and the plaintext space M. Furthermore, we denote the plaintext bit string by μ

and entries of the matrix M by mij .

Evidently, the identity element can be written as e = a0b0 = b0a0. Furthermore,
based on the defined relations R1 and R2, we can see that all the powers of the generators
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can be reduced modulo 2t−1 for generator a and modulo 2 for generator b. Using relations
R1, R2, R3, it is possible to derive that each element of the group M2t can be represented
in the form bβaα . Onwards we call this representation a normal form of the element and
use it throughout this paper. Obviously, if β = 0, we have:

aαb0 = b0aα.

The general representation if β = 1 is as follows:

aαb =
{

baα, if α is even;
baα+2t−2

, if α = 0 is odd.
(7)

The proof of this fact in the special case of M16 was presented in Mihalkovich (2018).
Since the idea of the proof remains the same, we omit it to shorten the paper. For this
reason, the cardinality of the group M2t is 2t , i.e. the parameter t defines the size of the
considered group.

Here we defined the group M2t in its most general form. However, special cases of
such groups were previously explored by researchers in group theory. For example, M16 is
mentioned in Grundman and Smith (1996), where the authors were discussing the groups
of cardinality 16, which are not isomorphic to any other group. A total of seven such
groups of size 16 were found. In 2010, authors presented a continuation of their research
in Grundman and Smith (2010b). There they considered non-abelian groups of size 32
and one of the mentioned groups was M32. Similar non-abelian groups were also explored
in Michailov (2007) and Grundman and Smith (2010a).

Expanding the idea to greater sizes grants us opportunities to construct symmetric
encryption using M2t as a platform group more flexibly. Conveniently, we can now manip-
ulate two parameters, i.e. square matrix size M and platform group size determined by t .
Special cases discussed above are obtained when t = 4 or t = 5. As mentioned previously,
none of these groups are isomorphic to any other groups of the appropriate cardinality.

Let us now present formulas for the basic operations in M2t . All of the formulas given
below are verified using relations R1, R2, R3:

• Multiplication of two elements w1, w2 ∈ M2t

w1 · w2 =

⎧⎪⎨
⎪⎩

bβ1+β2aα1+α2, if α1 is even;
bβ1aα1+α2, if α1 is odd and β2 = 0;
bβ1+1aα1+α2+2t−2

, if α1 is odd and β2 = 1;
(8)

• Raising of an element w ∈ M2t to a power n ∈ Z2t−1 :

wn =

⎧⎪⎨
⎪⎩

aαn, if β = 0;
bnaαn, if β = 1 and α is even;
bna

αn+2t−2
[

n
2

]
, if β = 1 and α is odd,

(9)

where notation [n
2 ] stands for the integer part of n

2 .
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• Calculating the inverse of the element w ∈ M2t :

w−1 =

⎧⎪⎨
⎪⎩

a−α, if β = 0;
ba−α, if β = 1 and α is even;
ba2t−2−α, if β = 1 and α is odd.

(10)

Explicit proofs of these formulas for a special case of M16 can be found in Mihalkovich
(2018). Since the idea of these proofs stays the same, we omit them.

We also introduce an extra notation:

W = bBaA. (11)

This means that each entry wij of the matrix W is represented in the normal form

wij = bβij aαij , (12)

where βij and αij are entries of matrices B and A, respectively.
Interestingly enough, by using the group M2t as a platform for MPF we also inflict

some “natural” restrictions on the set of symmetric keys. This means that any tuple of
matrices, which is outside of the specified domain, cannot be used, since the decryption
of the ciphertext results in a scrambled mess. Specifically, if M2t is used as a platform
group, then in general we have:

(WY)Y−1 �= W;
Y−1

(YW) �= W; (13)

(YW)Y �= Y(WY).

Despite these additional complexities, it is possible to construct a working symmetric
encryption protocol. However, we think that these extra complexities may be beneficial
for the overall security of our proposal. Similar to the previously published key exchange
in Mihalkovich et al. (2020), we define a template for power matrix Y, which can be used
to achieve correct decryption. Then, due to inequalities (13), anything which disobeys the
chosen template makes the decryption incorrect.

Keeping in mind the essence of symmetric encryption, we have chosen to pick power
matrices from a subset of permutation matrices modulo 2, i.e. every square power matrix
of size n contains exactly n odd entries whereas the rest of the entries are even. In this
special case inequalities, (13) turn to equalities regardless of the choice of W. In the next
section, we propose Shannon symmetric encryption protocol with this restriction on the
power matrices.

Considering security of our protocol we often refer to the following two mappings
φ : M2t �→ Z2 and ψ : M2t �→ Z2t−1 defined below:
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φ(bβaα) = β; (14)

ψ(bβaα) = α. (15)

Moreover, we define the matrix analogs of these mappings by applying them to each
entry of the matrix W of the form (11) entry-wise, i.e. we have:

�(W) = B; (16)
�(W) = A. (17)

These mappings will prove helpful to us when showing the validity of the proposed
protocol and establishing perfect secrecy property since they allow us to work with the
powers of the specific generator.

3. The Proposed Shannon Symmetric Encryption Protocol

Before executing the proposed scheme the size of the group M2t , defined by t , the size
of square matrices n and the shifting parameter κ , defined below in (18), are published
online.

3.1. Key Generation Procedure

The key generation procedure consists of the following steps:

1. Generate a binary matrix �;
2. Generate matrix X with random uniformly selected entries from Z2t−1 ;
3. Generate a temporary matrix Y′ with random uniformly selected entries from Z2t−2 ;
4. Choose a permutation matrix P uniformly from the set of permutation matrices Pn ⊂

Matn(Z2) of size n!;
5. Define Y = 2Y′ + P. Calculate Y−1 using the Gauss-Jordan algorithm.

The result of this procedure is a symmetric key (X, Y,�). Note that each time the
matrix is generated at Steps 1–3 of the presented process no additional restrictions are
applied. Also, since P = Y mod 2 is a permutation matrix, the last step of the presented
algorithm is always successful, i.e. Y is invertible. Hence, all the steps of this procedure
are executed exactly once since none of them can fail. We also see that due to the definition
of matrix Y both even and odd entries of Y are distributed uniformly in the subsets of even
and odd elements of Z2t−1 respectively.

3.2. Encryption Function

Let us assume that a message needs to be encrypted using the generated symmetric key
�K = (X, Y,�). The encryption procedure is as follows:
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1. The message is converted to a string of bits of size t · n2. If the message is shorter,
then extra symbols are added at the end to achieve the appropriate length. Otherwise,
the message is too long.

2. The obtained string of bits is transformed to the matrix format by splitting it into n2

separate parts of length t each. The outcome of this step is a matrix which we denote
by M.

3. The obtained matrix is split into separate matrices Ma and Mb, where the first bit of
each entry of M gets transported to matrix Mb, whereas the rest of bits are written to
matrix Ma , hence obtaining powers of generators b and a respectively.

4. The encryption algorithm is as follows:

C1 = bMb+� � aMa+X;
C2 = YCY

1 ; (18)
C = Shiftκ

(
�(C2) ‖ �(C2)

) + (� ‖ X),

where ‖ denotes the concatenation of two matrices, Shiftκ is the entry-wise shifting
by κ bits (e.g. to the right) operator and the addition is performed appropriate modulo,
i.e. matrices Mb and � are summed modulo 2, Ma and X – modulo 2t−1, and at the
last step addition is performed modulo 2t . In all cases, we omit moduli of addition as
the appropriate values are usually clear from the context.

5. The matrix C is converted into a string of bits by concatenating its entries in the fol-
lowing way:

c = c11 ‖ c12 ‖ . . . ‖ c1n ‖ c21 ‖ c22 ‖ . . . ‖ c2n ‖ cnn,

where the first bit of each entry cij is reserved for the power of generator b and the rest
of the bits denote the power of generator a. The string of bits c is the ciphertext of the
initial message.

Due to the discussed steps, the encryption function is given by:

Enc( �K, M) = Shiftκ
(
�

(Y(C1)
Y)) ‖ �

(Y(
(C1)

Y)) + (� ‖ X), (19)

where M = Mb ‖ Ma is the original message represented in matrix form and C1 is
defined as in (18).

3.3. Decryption Function

Upon receiving the ciphertext c the following procedure is performed to decrypt the en-
crypted message using symmetric key �K = (X, Y,�).

1. The ciphertext c is transformed into matrix form C by splitting it into n2 parts of
length t .
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2. The decryption algorithm is as follows:

D1 = Shiftt−κ(C − � ‖ X),

D2 = bD1baD1a ,

D3 = Y−1
DY−1

2 , (20)
Da = �(D3) − X,

Db = �(D3) − �,

where D1b is a binary matrix obtained by splitting the first bits of D1 and D1a consists of
the leftover bits. Subtraction is to be treated as an inverse of addition in the encryption
algorithm (18).

3. Matrices Da and Db are concatenated together entry-wise, thus producing matrix D =
Db ‖ Da .

4. The obtained matrix D undergoes the procedure of transformation to a string of bits by
concatenating entries of the matrix in a specific way determined by one of the permu-
tation vectors.

5. Junk symbols are removed, if any. The output of this step is the initial message.

Hence, we can define the decryption function as follows:

Dec( �K, C) = (
�

(Y−1
(D2)

Y−1) − �
) ‖ (

�
(Y−1

(D2)
Y−1) − X

)
, (21)

where C is the received ciphertext represented in matrix form and D2 is defined as in (20).

3.4. Proof of Correctness

Looking at the presented encryption and decryption algorithms we see that D2 = C2 due
to definitions of these matrices.

Let us consider an intermediate result H = YC1. Note that entries of matrix T are
given by

hij =
n∏

k=1

c
yik

1kj . (22)

An important restriction, which helps us to prove the validity of our protocol is the struc-
ture of the key matrix Y. Obviously, due to Y being a permutation matrix modulo 2, it is
invertible over Z2t−1 , since its determinant is always odd and hence relatively prime with
2t−1 for any value of t . Furthermore, since exactly one entry is odd in each row and each
column of Y, exactly one of the multipliers in the product (22) can contain generator b and
hence this generator can never be cancelled unless raised to an even power. For the same
reason, matrix Y−1, which has the same structure as Y, successfully restores the initial
matrix C1 when applied to H, i.e. we have C1 = HY−1 .
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We now consider the matrix C2 = HY = YCY
1 . As claimed in the latter paragraph, the

generator b can never be cancelled unless raised to an even power. Hence, as previously,
the matrix Y−1 successfully restores matrix H, i.e. H = CY−1

2 .
Combining these two observations we gain the following result:

D2 = Y−1
DY−1

1 = Y−1
CY−1

2 = Y−1(YCY
1

)Y−1 = C1.

Moreover, applying the mappings � and � and subtracting appropriate matrices yields
the matrix form M of the initial message, i.e. D = M.

The matrix D is now transformed to obtain a string of bits d by concatenating its entries
as follows:

d = d11 ‖ d12 ‖ . . . ‖ d1n ‖ d21 ‖ d22 ‖ . . . ‖ d2n ‖ dnn.

Relying on the discussed observations, we conclude that d is the bit string representing
the initial message with junk symbols at the end. These can now be dropped to leave us
with the initial message.

4. Proof of Perfect Secrecy

In this section, we consider the security of the proposed symmetric encryption. Our main
goal is to show that our scheme possesses the property of perfect secrecy (2). To achieve
this, we start by formulating and proving an important result involving the distribution of
the MPF value entries.

Lemma 1. Let us assume that the entries of the matrix W are random variables dis-
tributed uniformly in M2t and Y is a permutation matrix modulo 2 with entries uniformly
distributed in the subsets of even and odd elements of Z2t−1 , respectively. Under these
conditions the entries of the MPF exponent value E = YWY are uniformly distributed
in M2t .

Proof. Let us apply previously defined mappings �(·) and �(·) to the matrix W of the
form (11). Recall that due to the statement of the lemma, entries of �(W) = A and
�(W) = A are uniformly distributed in Z2 and Z2t−1 , respectively.

Since Y is a permutation matrix modulo 2, it mixes up the entries of A without chang-
ing them. For this reason, the entries of �(E) are uniformly distributed in Z2. Hence
powers of generator b in matrix E are uniformly distributed in Z2.

We now consider the distribution of the powers of generator a in matrix E. Keeping
in mind the properties of permutation matrices, without loss of generality we onwards
consider a special case of identity permutation, i.e. we assume that odd entries of the
matrix Y are located on its main diagonal. We make a remark regarding the general case
of the permutation matrix later in this proof.
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Let us focus on the intermediate result V = YW and apply mapping �(·) to this
matrix. We can express every entry ψ(vij ) as follows:

ψ(vij ) =
n∑

k=1

λkjyik + γij , (23)

where γij ∈ {0, 2t−2} can be one of two possible values depending on the number of times
extra summand 2t−2 was added. We split the sum (23) into two parts based on the parity
of entries of the matrix Y. Then, for even values of Y we have:

sij =
n∑

k=1,k �=i

λkj yik + γij . (24)

Due to the special structure of matrix Y, we have a single summand of the sum (23)
containing an odd entry yii . Hence, we denote

uij = λij yii . (25)

Note that if Y is a permutation matrix other than identity modulo 2, then the column
index changes in the extracted summand. The omitted index in sum (24) changes as well.
These are the only two differences in the general case.

Due to construction, all possible values of the sum (24) lie in the subset of even ele-
ments of Z2t−1 and hence we claim that:

2t−2−1∑
r=0

Pr(sij = 2r) = 1, (26)

which is true, since these probabilities form a total probability. The exact values of these
probabilities are irrelevant.

Considering the only odd summand, we can calculate the following probability:

Pr(uij = u0) = Pr(λij yii = u0) = Pr
(
λij = u0y

−1
ii

) = 1

2t−1
, (27)

where u0 ∈ Z2t−1 is fixed. This comes from the fact that gcd(yii , 2t−1) = 1 and hence
y−1
ii exists. Moreover, λij is uniformly distributed due to the statement of the lemma.

Meshing facts (26) and (27) together we obtain the following result:

Pr(ψ(vij ) = z0) = Pr(sij + uij = z0)

= Pr(uij = z0 − 2r) Pr(sij = 2r) = 1

2t−1

2t−2−1∑
r=0

Pr(sij = 2r) = 1

2t−1
. (28)

This result means that powers of generator a in an intermediate matrix V are distributed
uniformly in Z2t−1 . Note also that since the term γij does not play a major part in this
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calculation, distributions of power of both generators are independent of each other, i.e.
powers of generator b do not in any way affect the distribution of powers of generator a.

Similar calculations of probabilities can be performed for the powers of generator a in
the matrix VY = YWY = E. Relying on the uniform distribution of entries of the matrix
V and properties of the matrix Y we conclude that powers of generator a in matrix E are
distributed uniformly.

Lastly, since the powers of both generators in matrix E are distributed uniformly and
are independent of each other, the lemma is valid.

Corollary 1. The probability Pr(E = E0), where E0 is a fixed matrix defined over M2t ,
equals:

Pr(E = E0) = 1

2n2t
. (29)

The proved lemma shows that we have obtained evidence of perfect secrecy property
for our protocol. We establish this fact by proving the following theorem:

Theorem 1. Let �K = (X, Y,�) be a random key uniformly chosen from the set of keys
K and let M be a random matrix chosen from the set of messages M in an arbitrary
way. Assume also that probability distributions of �K and M are independent and fully
determine the distribution of the matrix C in the set of cipher value matrices C together
with the encryption algorithm Enc(·). Under these assumptions, the proposed Shannon
cipher in (18) based on MPF is perfectly secure.

Proof. Let us consider encryption algorithm (18). Firstly, we turn our attention to matrix
C1 and focus on the powers of generator a. Denoting Ma + X = U we rewrite each entry
of matrix U in the following form:

uij = xij + maij , i, j ∈ {1, . . . , m}. (30)

Due to the statement of the theorem, entries xij are chosen at random and are uniformly
distributed in Z2t−1 , whereas entries maij are random arbitrary distributed values in Z2t−1 .
For any fixed matrix U0 with entries u0ij ∈ Z2t−1 , we have

Pr(uij = u0ij ) = Pr(xij = u0ij − maij ) =
= 1

2t−1

∑
m0ij ∈Z2t−1

Pr(maij = m0ij ) = 1

2t−1
, (31)

where m0ij are fixed elements of Z2t−1 .
We now calculate the conditional probabilities of the entries of matrix U:

Pr(uij = u0ij | maij = m0ij ) = Pr(xij = u0ij − m0ij ) = 1

2t−1 , (32)

since the entries xij and maij are independent, and the difference u0ij − m0ij ∈ Z2t−1 .
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Another important property of matrix U is the independence of its entries. Since all
xij , i, j = 1, . . . , m, are independent, for all u0ij ∈ Z2t−1 we have:

Pr

( n⋂
i,j=1

{uij = u0ij }
)

= Pr

( n⋂
i,j=1

{xij + maij = u0ij }
)

=
∑

m∈Z2t−1

Pr

( n⋂
i,j=1

{xij = u0ij − m0ij },
n⋂

i,j=1

{maij = m0ij }
)

= 1

2n2(t−1)

∑
m0ij ∈Z2t−1

Pr

( n⋂
i,j=1

{maij = m0ij }
)

= 1

2n2(t−1)
. (33)

In the last step we used the fact that the sum
∑

m0ij ∈Z2t−1
Pr(

⋂n
i,j=1{maij = m0ij }) is the

total probability and hence is equal to 1.
Relying on the obtained equalities (31), (32) and (33) we claim that:

Pr(U = U0) = Pr(U = U0 | Ma = Ma0) = 1

2n2(t−1)
, (34)

where Ma0 is a fixed matrix defined over Z2t−1 .
Similarly, matrix � is chosen uniformly from Z2. For this reason, analogous observa-

tion holds for the matrix sum Mb + �, with probability 2−n2 . However, both sums in the
expression of C1 are independent of each other and hence we have:

Pr(C1 = C10) = Pr(C1 = C10 | M = M0) = 1

2n2 · 1

2n2(t−1)
= 1

2tn2 , (35)

where C10 is a fixed matrix defined over M2t and M0 is a fixed matrix defined over Z2t .
Hence we have shown that the entries of matrix C1 are uniformly distributed in M2t .

Let us denote the set of all possible values of the key matrix Y by KY. Note that each
matrix from this set reduced modulo 2 is a permutation matrix and hence the cardinality
of this set is |KY| = n! · 2n2(t−2).

We now consider the second step of the encryption algorithm (18), i.e. matrix C2. Due
to Lemma 1, entries of MPF value are uniformly distributed in M2t . All that is left is to
explore the conditional probabilities of its entries which are expressed as follows:

Pr(C2 = C20 | M = M0) = Pr(C2 = C20, M = M0)

Pr(M = M0)
. (36)

Explicit calculations of probability Pr(C2 = C20, M = M0) are presented below in matrix
form for simplicity:
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Pr(C2 = C20, M = M0) = Pr
(Y(C1)

Y = C20, M = M0
)

=
( ∑

Y0∈KY

Pr
(
C1 = Y−1

0 (C20)
Y−1

0
) · Pr(Y = Y0)

)
Pr(M = M0)

= 1

2tn2 ·
( ∑

Y0∈KY

Pr(Y = Y0)

)
· Pr(M = M0) = 1

2tn2 · Pr(M = M0), (37)

where Y0 ∈ KY is a fixed matrix. Here we used the fact that the entries of C1 are identi-
cally uniformly distributed and are independent of the matrix M. Also, keeping with our
notation, the sum

∑
Y0∈KY

Pr(Y = Y0) represents a total probability and hence is equal
to 1. Note that we use the notation Pr(M = M0) to indicate the probability of a certain
fixed message, which is then split into two parts Ma and Mb.

We limit ourselves to the matrix form of these calculations since the expression of
probability for a single entry of C2 is much more complicated due to restriction on ma-
trix Y.

Since expression (37) is a numerator of conditional probability (36), we obtain the
following result:

Pr(C2 = C20 | M = M0) =
1

2tn2 · Pr(M = M0)

Pr(M = M0)
= 1

2tn2 . (38)

Comparing this result to the expression (29), we can see that the distributions match
and hence draw a conclusion that entries of the matrix C2 are independent of plaintext
matrix M.

The proof for the last step of the encryption algorithm is analogous to the proof for the
first step since the matrix � ‖ X consists of uniformly distributed in Z2t entries whereas
the shifting function does not have an impact on the distribution of the entries of the other
matrix summand.

Due to the proven result, we can see that no information about the plaintext is leaked
by the encryption algorithm. This is the essential property any good symmetric cipher
should possess.

5. Comparison With One-Time Pad

A classic example of a perfectly secure cipher is the one-time pad scheme proposed by
G. Vernam in the early XX century. It uses a key k the size of the message mu and a
simple XOR operation ⊕ to obtain a ciphertext c = μ ⊕ k. Decryption works similarly,
i.e. μ = c ⊕ k.

However, despite being an ideal cipher, its practical implementation is highly limited.
Firstly, the size of the secret key is a big problem, e.g. encrypting a 1GB file requires a
key of the same size. Obviously, no user wants to waste his memory space storing such
a key. So far in this sense, our cipher seems even worse since the size of the key is about
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twice the size of the message. Moreover, regardless of any actions we make, the size of
the secret key has to be at least the size of the message for our cipher to remain perfectly
secure. This fact is called the Shannon theorem.

The logical question now is if we can gain any benefits by using such a key to encrypt
a message. To answer this question we consider another flaw in the one-time pad scheme.
It is widely known that reusing the same key k to encrypt messages μ1, μ2 results in
a catastrophe, i.e. any adversary possessing c1 = μ1 ⊕ k and c2 = μ2 ⊕ k is able to
restore μ2 given that the plaintext μ1 is known to him since he can perform the following
calculation:

c2 ⊕ c1 ⊕ μ1 = (μ2 ⊕ k) ⊕ (μ1 ⊕ k) ⊕ μ1 = μ2. (39)

This fact can be viewed as gaining an advantage of 1 in winning the following Attack
Game aimed at the recovery of data encrypted by a fixed key k:

Attack Game 1. For a given symmetric cipher ε = (Enc(k, μ), Dec(k, c)) defined over
(K,M,C) define the following attack game:

1. The challenger picks at random a secret key k ∈ K;
2. The adversary sends a sequence of queries μ1, μ2, . . . , μQ of equal size to the chal-

lenger;
3. The challenger calculates the ciphertexts c1, c2, . . . , cQ, where ci = Enc(k, μi), and

sends them to the adversary;
4. The adversary outputs a pair (μ, c), where μ ∈ M \ {μ1, μ2, . . . , μQ} and c ∈ C \

{c1, c2, . . . , cQ}. He wins if c = Enc(k, μ).

We let the adversary be adaptive, i.e. he can choose his queries based on the ciphertexts
obtained from the challenger.

Obviously, for the case of a one-time pad scheme, an adversary requires a single query,
i.e. Q = 1. In fact, the secret key k is trivially recoverable in this case.

Let us denote the event of winning the Attack Game 1 by W .

Definition 1. The advantage of the adversary A in winning the Attack Game 1 is given
by

KRadv[A, ε] =
∣∣∣∣Pr(W) − 1

|K|
∣∣∣∣, (40)

where |K| denotes the cardinality of the keyspace.

Note that due to expression (39) the adversary may not necessarily obtain the secret
key k to win the game as long as he can output a working pair (μ, c). Hence, he has two
alternatives to winning: determining the secret key or using the obtained replies to gain
a way to output a working pair. The advantage KRadv[A, ε] shows how much better than
randomly guessing the key can the adversary A do.
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Definition 2. The symmetric cipher is secure under key reuse if for any poly-bounded
number of queries Q the advantage KRadv[A, ε] is negligible.

As we have seen one-time pad is not secure under key reuse. We prove the following
proposition:

Theorem 2. The Shannon block cipher defined by the encryption algorithm (18) and
decryption algorithm (20) is secure under key reuse.

Proof. Let us consider both alternatives for winning the Attack Game 1.
Firstly, we consider determining the key strategy. Assume that the adversary A re-

ceived ciphertext matrices C(1), C(2), . . . , C(Q) matching the known message matrices
M1, M2, . . . , MQ. Here we use the upper indexes for C’s to distinguish challenger re-
sponses from intermediate results of the encryption algorithm (18). Hence, an adversary
can analyse the following system of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C(1) = Shiftκ
(
2t−1�

(
C(1)

2

) + �
(
C(1)

2

)) + (
2t−1� + X

)
,

C(2) = Shiftκ
(
2t−1�

(
C(2)

2

) + �
(
C(2)

2

)) + (
2t−1� + X

)
,

. . .

C(Q) = Shiftκ
(
2t−1�

(
C(Q)

2

) + �
(
C(Q)

2

)) + (
2t−1� + X

)
,

(41)

where matrices X, Y, � are unknown, C(1)
2 , C(2)

2 , . . . , C(Q)
2 are intermediate matrices at

the second step of the encryption function (19), and C(1), C(2), . . . , C(Q) are its output
values, i.e. responses the adversary A sees. However, simplifying this system is not an
easy task, since at the very least we have to take the non-commuting nature of M2t into
account. In other words, reducing all the equations modulo 2t−1 which would remove
the non-commuting aspect of M2t is not helpful since in expression (19) the matrix �

immediately vanishes along with leading bits of the first term. Furthermore, the shifting
operator is not action preserving thus any calculations analogous to (39) are inefficient.
For example, computing C(1) − C(2) we get:

C(1) − C(2) = Shiftκ
(
2t−1�1 + �1

) − Shiftκ
(
2t−1�2 + �2

)
,

where notations �1, �2, �1, �2 are used to shorten the appropriate expressions in (41).
We have

Shiftt−κ

(
C(1) − C(2)

) �= 2t−1�1 + �1 − 2t−1�2 − �2

and thus we cannot make a new equation based on the obtained responses.
Hence, even knowing the parameter k the adversary A cannot use this information

to formulate an advantageous system of equations to extract the secret key. As such we
conclude that the key determination strategy is not applicable.
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Hence we consider the other option, i.e. using the responses to find a way of out-
putting a working pair. In this scenario, we assume that an adversary obtained n2 matrices
C(1), C(2), . . . , C(n2). Moreover, we can also assume that the correspondent message ma-
trices M1, M2, . . . , Mn2 are linearly independent and hence form a basis of the linear
space M = Mat(Z2t ). Then he can express each subsequent query Mj , j > n2 as a linear
combination of M1, M2, . . . , Mn2 . Also, since C = M on the same basis can also be used
to express the ciphertext matrices C(1), C(2), . . . , C(n2), as well as the corresponding re-
sponse C(j) as a linear combination of M1, M2, . . . , Mn2 . Hence, the adversary can get
the following results:

Mj =
n2∑
i=1

αij Mi;

C(j) =
n2∑
i=1

βij Mi .

(42)

However, the coefficients αij and βij change independently of each other due to the perfect
secrecy property of our cipher, thus establishing a non-linear link between these coeffi-
cients. In other words, the obtained coefficients βij seem completely random to A.

For this reason a relation between coefficients αij and βij can be viewed as a random
permutation mapping P(α) = β, where α, β ∈ Z

n2

2t−1 . Define an adversary B who plays
the role of challenger to A and plays the Attack Game 4.1 (see Boneh and Shoup, 2020)
with his challenger. Recall that Attack Game 4.1 is aimed at distinguishing an encryption
function from a random permutation. To be self-contained, let us revise this game:

Attack Game 2. For the block cipher ε = {Enc( �K, M), Dec( �K, C)} we define two ex-
periments. Then for a value β ∈ {0, 1} we have an Experiment β:

1. The challenger selects a function Eβ as follows:

Eβ =
{

Enc( �K, M), if β = 0;
Rand(M), otherwise.

2. The adversary B submits a sequence of queries, i.e. plaintexts in their matrix form Mi ,
where i = 1, 2, . . . ,Q;

3. For the i-th query the challenger computes C(i) = Eβ(Mi ) and sends all the Ci’s to
an adversary;

4. B outputs β̂ ∈ {0, 1}.
Denote by Wβ the random event that in Experiment β B outputs 1. Then B’s advantage is
defined as

BCadv[A, ε] = ∣∣Pr(W1) − Pr(W0)
∣∣.
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Whenever B receives a query Mj from A, he sends it to his challenger and afterward
forwards the obtained response Cj back to A. Steps 1 and 3 of the Attack Game 1 are
performed by B’s challenger. Due to the perfect secrecy of our cipher, B’s advantage in
winning the Attack Game 2 on his own is negligible, i.e. he cannot tell apart the encryption
function from a random permutation. On the other hand, if A can output a working pair
(M, C) with a non-negligible probability p, then B can send M as his (Q + 1)-st query
to his own challenger and achieve an advantage of p − ε in Attack Game 2 if C = CQ+1.
However, to achieve an advantage p, the adversary A has to distinguish a specific mapping
P(α) = β among other possible permutations with that particular probability. This would
imply that not all choices are equally possible and hence it contradicts the perfect secrecy
of our cipher.

As such, we see that the only chance the adversary A has is to randomly guess a pair
(M, C) and hope for it to work. However, due to the design of Attack Game 1, there are
|M| − Q leftover working pairs out of (|M| − Q)2 possible pairs. Furthermore, due to
restrictions applied to the key matrices (X, Y,�), the size of the keyspace is

|K| = 2n2(t−1) · 2n2(t−2)n! · 2n2 = 2n2(2t−2)n!,

where each multiplier describes the total choices of X, Y, and �, respectively.
Then we can evaluate A’s advantage in Attack Game 1 as follows

KRadv[A, ε] =
∣∣∣∣ |M| − Q

(|M| − Q)2
− 1

2n2(2t−2)n!
∣∣∣∣

=
∣∣∣∣ 1

2n2t − Q
− 1

2n2(2t−2)n!
∣∣∣∣ = n!2n2(t−2) − 1 + Q · 2−n2t

(2n2t − Q)n!2n2(t−2)
. (43)

Throwing away a negligible term Q · 2−n2t and approximating the ratio n!2n2(t−2)−1
n!2n2(t−2)

≈ 1

we obtain the following result:

KRadv[A, ε] <
1

2n2t − Q
,

which is the probability of randomly guessing a working pair (M, C). The obtained ad-
vantage is negligible which ends the proof.

This result is a significant advantage of our cipher over the one-time pad technique.
Specifically, as opposed to a one-time pad we do not need to use a different key when-
ever we use our scheme to encrypt a message. Furthermore, this beneficial property of
our cipher greatly outshines the drawback of using a longer key, since it unlocks the im-
plementation of different types of modes, e.g. CBC. This ability follows from the fact that
we have to use the same key to encrypt a large number of blocks. As the one-time pad is
insecure under key reuse, no encryption mode can ever be constructed on its basis.
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6. CBC Mode of the Proposed Block Cipher

The general idea of the CBC mode is to unite encrypted chunks of the message into a
chain. To withstand the chosen plaintext attack, our cipher has to be probabilistic. The
commonly used solution is to use a randomly generated initialization vector IV. In our
case, we interpret it as a matrix C(0) ∈ Mat(Z2t ). We use this matrix together with the
secret key �K to create a chain in the following way:

C(i) = Enc
( �K, Mi + C(i−1)

)
, (44)

where Enc( �K, M) is the encryption function defined by (19). The result of this procedure
is the ciphertext

c = c
(0)
11 ‖ c

(0)
12 ‖ . . . ‖ c(0)

nn ‖ c
(1)
11 ‖ c

(1)
12 ‖ . . . ‖ c(1)

nn ‖ . . . ‖ c(l)
nn,

where l denotes the number of blocks. The decryption of a ciphertext is performed as
follows:

Mi = Dec
( �K, C(i)

) − C(i−1), (45)

where Dec( �K, C) is a decryption function defined by (21). The proof of the correctness
of CBC mode follows from the result proven in Section 3.4.

We see that the ciphertext is longer than the plaintext which is a common practice
when implementing a CBC mode. As the number of blocks gets larger, the CBC mode of
our cipher becomes more efficient as compared to the one-time pad technique. Further-
more, the proof of a perfect secrecy property still holds for a single block Mi . However,
we emphasize that when referring to the perfect secrecy property we only consider the
initial block cipher. Obviously, as the number of blocks increases, the size of the message
surpasses the size of the key and hence the CBC mode is not perfectly secure, which is
consistent with the Shannon theorem.

7. Resistance Against Chosen Plaintext Attack

In this section, we consider the security of our scheme. More precisely, we turn our atten-
tion to the chosen plaintext attack which is aimed at the newly defined CBC mode. Any
efficient adversary capable of successfully executing this attack can distinguish a plaintext
corresponding to the received ciphertext based on the obtained responses to his queries.
Moreover, the adversary is adaptable, which means that he can base his queries on the re-
ceived information. The formal description of this attack is presented here as the following
game:

Attack Game 3. For a given symmetric cipher ε = (Enc(k, μ), Dec(k, c)) defined over
(K,M,C) define the CBC mode ε′ = (Enc′( �K, μ), Dec′( �K, c)) using encryption and
decryption functions (44) and (45) respectively. Consider the following attack game:
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1. The challenger selects a random key �K;
2. The adversary A submits a sequence of queries i.e. plaintext pairs (μi0, μi1) of equal

lengths, where i = 1, 2, . . . , Q;
3. For the i-th query the challenger computes ci = Enc′( �K, μiβ), where β ∈ {0, 1} is the

Experiment indicator, and sends all the Ci’s to an adversary;
4. A outputs β̂ ∈ {0, 1}.
Denote by Wβ the random event that in Experiment β A outputs 1. Then A’s advantage
is defined as

CPAadv
[
A, ε′] = ∣∣Pr(W1) − Pr(W0)

∣∣.
Note that the challenger of the Attack Game 3 always encrypts either the first or second

messages of each query. The essence of the presented Attack Game is that an adversary can
win it with a non-negligible probability if he can somehow relate the received ciphertext
ci to the correct message in the pair (μi0, μi1).

Let us make two important observations. Firstly, the message space of the CBC mode
is super-poly. In fact, its size is |M| = 2n2t . Secondly, the number of blocks l is poly-
bounded and determined by the length of the plaintext as follows:

l =
⌈ |μ|

n2t

⌉
.

For these reasons we rely on a strategy presented in (Boneh and Shoup, 2020) to prove
the following claim:

Theorem 3. Consider probabilistic cipher ε′ = {Enc′( �K, μ), Dec′( �K, c)}. For all effi-
cient adversaries A their advantage in Attack Game 3 is expressed as follows:

CPAadv
[
A, ε′] = Q2l2

(l + 1)2n2t−1
+ 2BCadv[B, ε], (46)

where Q is the number of queries in Attack Game 3, l is the total number of blocks needed
to encrypt a plaintext μib and BCadv[B, ε] is the advantage of the adversaryB in winning
the Attack Game 2.

Before presenting the proof for this theorem, we emphasize that the main adversary in
the Attack Game 3 is A. However, he also communicates with adversary B, who attacks
the block cipher ε as in Attack Game 2 and forwards A’s queries to his challenger.

Proof. Note that before encrypting the first block of the plaintext μiβ a challenger ran-
domly selects an initialization vector C(0) and hence the intermediate block C(i)

1 consists
of random uniformly distributed entries. Hence, by the construction of our scheme the ad-
vantage CPAadv∗[A, ε′] of adversary A to win a bit-guessing version (i.e. an adversary
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wins the game if β̂ = β) of the Attack Game 3 is given by:

CPAadv∗[A, ε′] =
∣∣∣∣Pr(W0) − 1

2

∣∣∣∣,
i.e. he can do no better than randomly guessing the Experiment indicator β.

To improve his chances A collaborates with another adversary B whose purpose is to
analyse the original block cipher by playing the Attack Game 2. Adversary B wins if he
can distinguish between the encrypted block and a random permutation. This is where
the perfect secrecy property of our cipher plays a significant role. Due to this property,
the entries of the ciphertext matrix C(j) are statistically independent of the entries of the
original message block Mj . Hence, this behaviour is indistinguishable from a random
permutation and thus the adversary B cannot gain any significant advantage.

Moreover, since the initialization matrix C(0) is selected randomly from a significantly
large space of possible values (in fact, the size of this space is super-poly), the responses
to multiple queries of the same plaintext are almost always distinct. This claim is based
on two facts: choosing the same initialization matrix is practically an impossible random
event and the encryption function is a one-to-one mapping. As such, BCadv[B, ε] can be
estimated in the following way:

BCadv[B, ε] � 1

|K| = 1

2n2(2t−2)n! .

Obviously, this advantage is negligible for all blocks, including the first one. Moreover, it
is negligible even compared to the first term of CPAadv[A, ε′] as can be seen from (46).

The strategy now is to introduce Games 2 and 3 as in the proof of Theorem 5.4 of
(Boneh and Shoup, 2020) and evaluate the appropriate results. These games explore the
changes influenced by switching from a permutation to a one-to-one mapping and then
to many-to-one mapping. These changes are unnoticeable to the adversary under the as-
sumptions that ε is a secure block cipher and the message space is super-poly. Both these
assumptions are satisfied for our scheme. We limit ourselves to the essence of these games
and leave their detailed description outside of this paper since they are technical and uni-
versal for all encryption algorithms. The changes are minor and involve the algebraic struc-
tures and actions used in the initial block cipher. In our case – matrix space Matn(Z2t )

and entry-wise addition modulo 2t .

Note that we used the same Attack Game 2 in this proof as in Section 5. This comes
from the fact that a good block cipher should be indistinguishable from a random per-
mutation and unpredictable. As it was shown, Attack Game 2 plays an important role in
establishing both of these properties.

Let us end this section by presenting an example of computing the CPAadv[A, ε′].
Inspired by the fact that AES encrypts a 128-bit block, we pick the non-commuting group
M256 and consider 4 × 4 matrices, i.e. public parameters t = 8, n = 4 and the size of the
block is n2t = 42 · 8 = 128 bits. Furthermore, we limit the message size by 232 blocks
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and hence can encrypt 239 bits (64 GB) of information. Then we get the following result:

CPAadv
[
A, ε′] � Q2 · 264

(232 + 1)2127
+ 1

2223 · 24
� Q2 · 2−159.

Then by sending Q = 240 queries, the adversary gains an advantage CPAadv[A, ε′] �
2−79. Relying on the obtained advantage, a tolerable value may be fixed, thus determining
how often must the session key be replaced.

8. Discussion and Conclusions

In this paper, we proposed a new Shannon cipher based on a special case of MPF. Instead
of several rounds, our symmetric encryption scheme uses only one round. However, the
operations we use are more complex. Moreover, we use a non-commuting platform group
in our construction which contributes to the overall security of our cipher.

In our scheme we can manipulate two parameters: the size of square matrices n and
the size of the platform group determined by t . This feature makes our scheme flexible
and easy to adapt to messages of any length. However, more investigations are needed to
make reasonable recommendations for the values of parameters n and t depending on the
message length. This is one of the possibilities for future work in this research.

We have proven that our cipher has the property of perfect secrecy and hence the en-
cryption algorithm itself does not leak any information about the plaintext. This is one of
the essential properties of a good symmetric encryption scheme.

The perfect secrecy of our block cipher also favourably distinguishes it from a widely
used AES scheme, whose perfect secrecy property for a single block to our knowledge
has not been established. We also think that a significant boost in the performance of our
cipher is because matrix operations can be parallelized and hence the encryption of a
single block can be executed on multiple processors. Relying on our findings presented in
Mihalkovich et al. (2022), we expect that the non-commuting platform group used in our
paper also contributes to the performance of our scheme. Since all powers of the elements
of M2t are reduced modulo 2t , the reduction process is much simpler than reducing modulo
a prime. For this reason, we think that our proposal can produce better results than those
presented in Mihalkovich et al. (2022). However, verifying this claim requires additional
research thus far.

Relying on the fact that our cipher is secure under key reuse, we defined a CBC mode
for our cipher. As the message becomes longer, its length surpasses the size of the secret
key, and hence due to the Shannon theorem, the perfect secrecy property is lost. However,
since perfect secrecy also implies semantic security of a block cipher, we claim that the
CBC mode can be considered safe in this weaker sense, i.e. an efficient adversary cannot
gain a significant advantage in linking a ciphertext c to the correct plaintext.

Moreover, in Section 7 we have shown that the probabilistic cipher ε′ can resist an
adaptive chosen plaintext attack, i.e. the previously obtained responses to the sent queries
in no way help the efficient adversary to gain a significant advantage in Attack Game 3.
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