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Abstract. T-spherical fuzzy (T-SF) sets furnish a constructive and flexible manner to manifest
higher-order fuzzy information in realistic decision-making contexts. The objective of this research
article is to deliver an original multiple-criteria choice method that utilizes a correlation-focused ap-
proach toward computational intelligence in uncertain decision-making activities with T-spherical
fuzziness. This study introduces the notion of T-SF data-driven correlation measures that are pred-
icated on two types of the square root function and the maximum function. The purpose of these
measures is to exhibit the overall desirability of choice options across all performance criteria using
T-SF comprehensive correlation indices within T-SF decision environments. This study executes an
application for location selection and demonstrates the effectiveness and suitability of the developed
techniques in T-SF uncertain conditions. The comparative analysis and outcomes substantiate the
justifiability and the strengths of the propounded methodology in pragmatic situations under T-SF
uncertainties.
Key words: T-spherical fuzzy (T-SF) set, multiple-criteria choice method, correlation measure,
T-SF comprehensive correlation index, location selection.

1. Introduction

Multiple-criteria choice modelling under uncertainty forms part of the intelligent deci-
sion support system and can be applied to explore an innovative advancement of intelli-
gent decision-making approaches and models (Fernández-Martínez and Sánchez-Lozano,
2021; Jing et al., 2021; Menekse and Camgoz-Akdag, 2022; Riaz et al., 2021). Numer-
ous multiple-criteria assessment models have flourished to evaluate predetermined choice
options ascertained from (conflicting) performance criteria for finding the most suitable
option (Al-Quran, 2021; Erdogan et al., 2021; Kovač et al., 2021; Naeem et al., 2022).
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However, it is often troublesome and difficult to manipulate indistinct determinations and
blurred assessments for quantifying performance ratings of the choice options in decision
analysis processes within involuted and multiplex real-life environments (Al-Quran, 2021;
Alsalem et al., 2021; Liu et al., 2021b; Menekse and Camgoz-Akdag, 2022; Oztaysi et
al., 2022). When there is intricate uncertain information in the assessment and evaluation
processes of choice options, the current decision-making approaches may be challenging
to ascertain the performance ratings of choice options on performance criteria, which can
result in an unreliable and unacceptable evaluation outcome concerning the most desir-
able scheme (Chinram et al., 2020; Cihat Onat, 2022; Jing et al., 2021; Liu et al., 2021a;
Naeem et al., 2022).

To overcome these types of difficulties, fuzzy sets are capable of providing a support-
able representation of imprecise information both beneficially and efficiently (Kovač et
al., 2021; Liu et al., 2021a; Wang, 2021; Wang et al., 2021). In numerous realistic fields,
fuzzy set theory has been generally accepted and recognized to conduct information mod-
elling issues under uncertainty (Liu et al., 2021b; Wang et al., 2021). Nevertheless, or-
dinary fuzzy sets possess merely one membership function, which may be inadequate to
fully expound the extent of uncertainty in the human cognition of things (Olugu et al.,
2021; Wang, 2021). As a result, several high-order fuzzy sets, such as uncertain sets in-
volving intuitionistic, Pythagorean, q-rung orthopair, picture, spherical, and T-spherical
fuzziness, have been successively advanced to appropriately manifest human subjective
uncertainties in practice (Chen, 2022a, 2022b; Liu et al., 2021c). In particular, the idea of
T-spherical fuzzy (T-SF) sets, incipiently presented by Mahmood et al. (2019), can help
bring the theoretical development and revolutionary implications according to its strengths
of broadening the uncertain space via four parameters of impreciseness, thus composing
favourable, neutral (so-called abstinence), unfavourable, and refusal evaluations (Alsalem
et al., 2021; Chen, 2022c; Wang and Zhang, 2022; Yang and Pang, 2022).

1.1. T-SF Theory in Uncertain Decision Contexts

T-SF sets generalize two uncertain sets on the grounds of the picture fuzzy configuration
and the spherical fuzzy (SF) configuration. Picture fuzzy sets and SF sets were advocated
by Cuong (2014) and Kahraman and Kutlu Gündoğdu (2018), respectively, and they are
high-order mathematical constructions that are more general than ordinary fuzzy sets.
Nonetheless, their membership functions are special types of membership functions of
the T-SF structure. An illustration in Fig. 1 manifests some general variants of fuzzy sets
involving four parameters. Herein, these parameters externalize four-dimensional mem-
bership functions consisting of a positive component (μ) for favourable evaluations, neu-
tral component (η) for abstinence, negative component (ν) for unfavourable evaluations,
and refusal component (γ ) for refusal evaluations. The sum of μ, η, ν, and γ is equal to 1,
which behaves as a prerequisite for the picture fuzzy configuration. The sum of μ2, η2,
ν2, and γ 2 is equal to 1, which indicates a prerequisite for the SF configuration. A pos-
itive integer q is placed where q ∈ Z+. The sum of μq , ηq , νq , and γ q is equal to 1,
which demonstrates a prerequisite for the T-SF configuration. When q = 1 and q = 2,
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Fig. 1. General variants of fuzzy sets involving four parameters.

the T-SF configuration transforms into the picture fuzzy configuration and the SF configu-
ration, respectively, which provides substance to the generalization of T-SF theory (Chen,
2022a, 2022b). Moreover, in the event that η = 0, the T-SF configuration transforms into
the intuitionistic, Pythagorean, and q-rung orthopair fuzzy configurations when q = 1, 2,
and q ∈ Z+. By expounding the membership functions in a much wider range, T-SF
sets can give expression to ambiguity and hesitation contained in human opinions in an
efficacious manner (Mahnaz et al., 2022; Nasir et al., 2021; Wang, 2021). Moreover, the
parameters μ, η, ν, and γ are adequate and appropriate for managing human determina-
tions and assessments and elucidating complicated uncertainties within a changeable and
unpredictable decision-making environment.

As of the advancement of T-SF theory in uncertain decision circumstances, a variety
of valuable multiple-criteria assessment approaches and evaluation techniques have been
constructed for facilitating intelligent decision support and aiding. By way of illustration,
Abid et al. (2022) presented improved T-SF similarity measures to suggest an approach
to decision-making and pattern recognition. Akram et al. (2022) analysed and addressed
threats on social media platforms by employing an uncertain set of the complex cubic T-SF
model and put forward a risk-assessing method for cyber-security and social media. By
way of the interval-valued complex T-SF relation, Alothaim et al. (2022) identified Hasse
diagrams in conformity with T-spherical partial orders to assess cybersecurity. Alsalem
et al. (2021) expanded an opinion score-based technique and a fuzzy zero-inconsistency
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approach to T-SF contexts for implementing distribution decisions of the COVID-19 vac-
cine. Chen (2022a) instituted new notions of a superiority identifier and a guide index and
propounded a T-SF regime prioritization procedure. Chen (2022b) advanced T-SF point
operations to derive T-SF informational lower and upper estimations and propounded a
point operator-driven method to treat complex assessment and evaluation tasks. By ad-
vocating a fresh distance measure with the Minkowski type, Chen (2022c) constructed
Gaussian preference functions for conducting an evolved T-SF regime analysis. Nasir et
al. (2021) investigated complex T-SF relations for depicting a global market’s time-related
interdependence in international trades. Ullah et al. (2021) advanced a new Dijkstra algo-
rithm within the environment of T-SF graphs for addressing the shortest path issue. Wang
et al. (2022) launched similarity measures and relations in interval-valued T-SF contexts
and investigated an approach to medical diagnostic issues. To execute image segmentation,
Xian et al. (2021) based on bias correction to establish a spatial T-SF C-means model.

Over and above that, Akram and Martino (2022) delivered T-SF soft rough aver-
age aggregation operations and further put forward a proficient group decision-making
approach. To attain considerable accuracy in expounding fuzziness and indeterminate
data, Al-Quran (2021) brought about weighted (geometric) averaging operators within
T-spherical hesitant fuzzy environments for decision aiding. Chen et al. (2021) unfolded
generalized and group-generalized T-SF geometric aggregation operations (including (or-
dered) weighted and hybrid geometric operations) to support multiple-criteria assess-
ments. Next, in the circumstances of probabilistic T-spherical hesitant ambiguity, Gur-
mani et al. (2022) initiated aggregation operators and advanced an extended approach for
boundary approximation region comparison in treating group decision issues. In interval-
valued T-SF circumstances, Hussain et al. (2022a) utilized Frank aggregation operators
to propose a method of assessing business proposals. Hussain et al. (2022b) exploited
Aczel-Alsina t-norms and t-conorms to evolve Aczel-Alsina weighted average and geo-
metric operation in T-SF settings for resolving decision-making issues. Karaaslan and
Al-Husseinawi (2022) presented arithmetic and geometric averaging operations in hes-
itant T-spherical Dombi fuzzy settings for group decision-making. Khan et al. (2022)
employed power-weighted averaging and geometric operations in complex T-SF settings
to suggest a performance measurement method under uncertainties. Liu et al. (2021c) ex-
plored Maclaurin symmetric (weighted) mean operators for normal T-SF numbers and
utilized such operators for multiple-criteria decision assistance. Mahnaz et al. (2022) put
forward T-SF Frank aggregation operators and utilized them to decide on an unknown
preference structure. Wang (2021) came up with T-SF rough numbers for consideration
to deliver interaction power Heronian mean operations to carry out collective decision
analysis. Wang and Zhang (2022) propounded an interaction power Heronian aggregation
method to handle T-SF decision information for decision aiding. Yang and Pang (2022)
exploited T-SF entropy and symmetric T-SF cross-entropy measures for weight assessing
and advocated T-SF Dombi Bonferroni mean operations for tackling multiple attribute de-
cisions. Yang et al. (2021) launched T-SF cloud weighted Heronian mean operators to fuse
evaluation information for digital transformation solutions. Zedam et al. (2022) advocated
complex T-SF Hamacher weighted averaging and geometric operations and delivered an
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approach to cleaner production evaluation. Zeng et al. (2021) explored linguistic Muir-
head mean operators to form an intricate decision involving complex T-spherical dual
hesitant uncertainties.

Table 1 summarizes a recent review of multiple-criteria assessment and related liter-
ature, including specific fuzzy models in the T-SF and extended T-SF setting, the main
proposed methods, and the core concepts (or techniques) of these studies. The aforemen-
tioned literature manipulates uncertain information in the T-SF configuration from vari-
ous perspectives to support multiple-criteria assessment tasks. These studies also confirm
that handling uncertain information in decision-making environments with the T-SF con-

Table 1
State-of-the-art review of multiple-criteria assessment approaches in T-SF contexts.

Reference Fuzzy model Main proposed method Core concept (or technique)

Abid et al. (2022) T-SF set Approach to decision-making
and pattern recognition

Similarity measure
Improved T-SF similarity measure

Akram and
Martino (2022)

T-SF soft rough
set

Group decision-making
approach

T-SF soft rough average aggregation
operation
Parameterized fuzzy modelling

Akram et al.
(2022)

Complex cubic
T-SF set

Risk-assessing method for
cyber-security and social
media

Cartesian product
Complex cubic T-SF relation
Threat-solving for a social media
platform

Alothaim et al.
(2022)

Interval-valued
complex T-SF set

Method of assessing
cybersecurity

Interval-valued complex T-SF relation
Hasse diagram of interval-valued
complex T-spherical partial orders

Al-Quran (2021) T-spherical
hesitant fuzzy set

Multiple attribute
decision-making method

Operational laws of T-spherical hesitant
fuzzy information
Weighted (geometric) averaging
operation

Alsalem et al.
(2021)

T-SF set Fuzzy decision by opinion
score method

Fuzzy-weighted zero-inconsistency
approach
Distribution decisions of COVID-19
vaccine

Chen (2022a) T-SF set T-SF regime I and II methods Superiority identifier
Guide index

Chen (2022b) T-SF set Point operator-driven approach T-SF point operation for upper and
lower estimations
Continuous ordered weighted average
operation

Chen (2022c) T-SF set T-SF regime methodology Gaussian preference function
Minkowski-type distance measure
Joint generalized index

Chen et al. (2021) T-SF set Generalized and
group-generalized T-SF
aggregation method

(Group-)generalized T-SF geometric
aggregation operation
Weighted, ordered weighted, and hybrid
geometric operations

Gurmani et al.
(2022)

T-spherical
hesitant fuzzy set

Border approximation
area comparison approach

T-spherical hesitant fuzzy structure
with probability
Aggregation method in probabilistic
T-spherical hesitant fuzzy settings

(continued on next page)
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Table 1
(continued)

Reference Fuzzy model Main proposed method Core concept (or technique)

Hussain et al.
(2022a)

Interval-valued
T-SF set

Method of assessing
business proposals

Frank aggregation operation
Interval-valued T-SF Frank weighted
averaging and geometric operations

Hussain et al.
(2022b)

T-SF set T-SF Aczel-Alsina
aggregation method

Aczel-Alsina t-(co)norm
T-SF Aczel-Alsina weighted average
geometric operation

Karaaslan and
Al-Husseinawi
(2022)

Hesitant T-SF set Hesitant T-SF Dombi
operation-based method

Aggregation approach by way of Dombi
operation
Hesitant T-spherical Dombi fuzzy
aggregation operation

Khan et al.
(2022)

Complex T-SF
set

Performance measurement
method

Power aggregation operation
Complex T-SF power-weighted
averaging and geometric operation

Liu et al. (2021c) Normal T-SF
number

Normal T-spherical fuzzy
aggregation method

Maclaurin symmetric (weighted) mean
operation

Mahnaz et al.
(2022)

T-SF set T-SF Frank aggregation
method

Frank t-(co)norm
Frank aggregation operation
T-SF entropy measure

Nasir et al.
(2021)

Complex T-SF
set

Complex T-SF relation
method

Time-related interdependence of global
markets
Interdependence of international trade

Ullah et al.
(2021)

T-SF set Shortest path
problem-solving method

Dijkstra algorithm
Shortest path in T-SF network

Wang (2021) T-SF rough
number

Interactive power
Heronian mean operator
approach

Interaction operational law
Heronian mean operation
Power average operation

Wang and Zhang
(2022)

T-SF set Interaction power
Heronian aggregation
method

T-SF interaction power Heronian mean
operation
Power averaging operation

Wang et al.
(2022)

Interval-valued
T-SF set

Approach to medical
diagnosis

Interval-valued T-SF relation
Similarity measure
Information measure

Xian et al. (2021) T-SF set Spatial T-SF C-means
method

T-spherical fuzzification technology
T-SF C-means model with bias
correction

Yang and Pang
(2022)

T-SF set Multiple attribute
decision-making method

T-SF Dombi Bonferroni mean
operation
T-SF entropy measure
Symmetric T-SF cross-entropy

Yang et al.
(2021)

T-SF set Assessment index system
for digital transformation
solutions

T-SF cloud
T-SF cloud (weighted) Heronian mean
operations

Zedam et al.
(2022)

Complex T-SF
set

Cleaner production
evaluation method

Complex T-SF Hamacher weighted
averaging operation
Complex T-SF Hamacher weighted
geometric operation

Zeng et al.
(2021)

Complex
T-spherical dual
hesitant uncertain
linguistic set

Muirhead mean-based
approach to enterprise
informatization level
evaluation

Linguistic Muirhead mean operation
Uncertain linguistic weighted (dual)
Muirhead mean operations in complex
T-spherical dual hesitant settings



Uncertain Multiple-Criteria Choice Method on Grounds of T-SF Data-Driven Correlation 863

figuration is a correct and effective way to build a multiple-criteria evaluation method
framework.

In particular, based on Table 1, it can be easily observed that many researchers dis-
cussed the modularization of multiple-criteria choice methods in the context of T-SF
sets with aggregation operations or averaging (i.e. mean) operations, such as Akram and
Martino (2022), Al-Quran (2021), Chen et al. (2021), Gurmani et al. (2022), Hussain et
al. (2022a, 2022b), Karaaslan and Al-Husseinawi (2022), Khan et al. (2022), Liu et al.
(2021c), Mahnaz et al. (2022), Wang (2021), Wang and Zhang (2022), Yang and Pang
(2022), Yang et al. (2021), Zedam et al. (2022), and Zeng et al. (2021). That is, many
of the above works of literature focus on models of aggregating or averaging operations,
which belong to a measurement of the central tendency of a finite set of T-SF information.
Nonetheless, they are still unable to reflect the relationship or correlation between T-SF
characteristics performed by two available alternatives from the statistical point of view.
Moreover, such models and methods may ignore the interrelationships between the two
T-SF sets, and cannot precisely measure the degree of relationship or correlation between
the two T-SF sets.

1.2. Research Gap and Motivations

With the establishment of T-SF theory, the correlation coefficients for T-SF information
attempt a solid grounding of multiple-criteria evaluation issues in the fields of decision
analysis (Guleria and Bajaj, 2021; Ullah et al., 2020a). A correlation coefficient is one
of the most commonly-used statistical notions to estimate linear relationships between
quantitative objects (Özlü and Karaaslan, 2022; Riaz et al., 2021), and it is often used in
statistical analysis or machine learning. Correlation coefficients in statistics can be nega-
tive or positive contingent upon the direction of two objects’ relationship and their values
lie between −1 and 1. To expand the applicability of correlation coefficients, an extended
definition can be carried out under SF and T-SF conditions (Guleria and Bajaj, 2021;
Mahmood et al., 2021). However, in intricate uncertain circumstances, extracting a proper
correlation coefficient between two T-SF sets (or SF sets) is nontrivial.

Ullah et al. (2020b) indicated that the correlation coefficients in the intuitionistic fuzzy
framework and the picture fuzzy framework do not apply to some practical issues. Because
of this, they propounded an innovative notion of correlation coefficients in T-SF settings
that range from 0 to 1; moreover, they discussed the fitness of this new measurement in
T-SF contexts. Due to its generality, Ullah et al. (2020b) brought forward a clustering
algorithm and a multiple attribute evaluation algorithm in T-SF uncertain conditions. In
what follows, Guleria and Bajaj (2021) propounded the notion concerning correlation co-
efficients between T-SF sets and explored their useful properties to analyse the practicality
in uncertain real-world conditions. With two applications in pattern recognition and medi-
cally diagnostic cases, Guleria and Bajaj gave substance to the effectuality of their evolved
correlation coefficients. Riaz et al. (2021) exploited the statistical notions of covariances
and variances to evolve a new correlation coefficient for hybrid SF and m-polar fuzzy in-
formation. Mahmood et al. (2021) initiated SF cosine similarity measures and (weighted)
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correlation co-efficient of SF sets for tackling pattern recognition and medical diagnostic
issues. Fan et al. (2022) exploited an approach via correlation coefficients and standard
deviations to generate the attribute weights and then initiated a T-SF complex proportional
assessment method. Liu and Wang (2022) employed an inter-criteria correlation approach
to generate objective weights and then combined the subjective weights using a minimum
total deviation method for supporting decision analysis. In a T-SF framework, Özlü and
Karaaslan (2022) coped with T-spherical type-2 hesitant fuzzy uncertain data to investi-
gate an extended version of correlation coefficients. The aforementioned literature shows
the usefulness and practical value of correlation coefficients in managing T-SF uncertain
assessment issues with multiple-criteria analysis.

Published findings in support of the advantage of correlation coefficients under SF
and T-SF conditions have focused on the usefulness of managing uncertainty contained
in compounded and complicated problems efficaciously. However, there are some motiva-
tional considerations in advocating the widespread development of correlation coefficients
with the help of apposite multiple-criteria analysis in T-SF settings.

(1) Few studies have focused on advancing efficient and easy-to-use T-SF correlation
measures for differentiating the prioritization relations of available choice options,
which is the foremost motivation of this research.

(2) Relatively less exploration of correlation-focused measurements as a concept to di-
rectly exploit T-SF correlation coefficients when dealing with intricately uncertain
information is the second motivation for this research.

(3) In the existing T-SF literature predicated on correlation coefficients, the anchored
comparisons relative to the universal T-SF set and the null T-SF set were not incorpo-
rated into the specification of T-SF correlation-focused measurements, which serves
as the third motivation of this research.

(4) Comparing T-SF characteristics with universal T-SF sets and null T-SF sets based
on existing T-SF correlation measures should be helpful for promoting the construc-
tion of an effective and beneficial multiple-criteria selection model, which is the last
motivation of our research.

1.3. Research Objective and Contributions

The foremost purpose of this research is to construct a practical multiple-criteria choice
method by virtue of a correlation-focused approach for facilitating computational intelli-
gence in an uncertain decision analysis involving T-spherical fuzziness. This paper pro-
vides novel concepts of T-SF data-driven correlation measures for T-SF performance rat-
ings based on statistical notions of weighted correlation coefficients in T-SF settings. An
efficacious algorithmic procedure based on T-SF data-driven correlation measures and
an advanced multiple-criteria choice model is propounded to prioritize available choice
options for ascertaining the overall desirability of the performance criteria. The initiated
approach is to use T-SF weighted informational energies and correlation functions to ex-
actly establish the T-SF weighted correlation coefficients predicated on the “square root
function” type and the “maximum function” type. This approach can model empirical
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data involving imprecision and ambiguity, which facilitates managing T-SF performance
ratings in a befitting and effectual manner. Next, by aiming to receive the overall desirabil-
ity across the criteria, this paper contributes the T-SF comprehensive correlation indices
supported by two types of the square root function and the maximum function to identify
the relative prioritization of choice options and decide on the most appropriate scheme.
Furthermore, a real problem about location selection is demonstrated to illustrate befitting
applications of the propounded methodology for verification. Depending on the investi-
gation outcomes, the evolved methodology proves to be efficacious compared with other
approaches.

This study makes some interesting contributions to intelligent decision-making prac-
tice. The principal contributions of this study are as follows:

(1) Through the development of new notions grounded in T-SF correlation coefficients,
the evolved T-SF data-driven correlation measures mark a new phase in the advance-
ment of current multiple-criteria choice methods.

(2) Based on the square root or maximum functions, a practical measurement of T-SF
weighted correlation coefficients is presented to serve as a basis for multiple-criteria
choice modelling.

(3) Considering anchored comparisons relative to the universal and null T-SF sets, this
study delivers advantageous T-SF comprehensive correlation indices for prioritizing
competing choice options.

(4) This research provides a practical application contribution in delineating a convenient-
to-use procedural algorithm to facilitate intelligent decision support in uncertain cir-
cumstances. By exploiting realistic applications and comparisons, propounded tech-
niques are considerably more robust and flexible as multiple-criteria tools than com-
parative approaches.

1.4. Paper Organization

In the present work, Section 2 depicts several fundamental notions concerned with T-SF
theory. Section 3 advocates some beneficial T-SF data-driven correlation measures and
then propounds an efficacious multiple-criteria choice method for treating intricate de-
cision information involving T-spherical fuzziness. Section 4 exploits the initiated tech-
niques to manipulate a location selection issue for a construction company and then puts
into effect a comparative study with other approaches. In the end, Section 5 finishes this
research work with the main results, limitations, and future research avenues.

2. Preliminary Definitions

This part presents an introductory description of T-SF sets and clarifies the relationships
among picture fuzzy, SF, and T-SF sets. Throughout the article, the symbols μ, η, ν, and γ

will denote four components of positive-, neutral- (i.e. so-called abstinence-membership),
negative-, and refusal-membership, respectively, of a part or aspect in an initial universe
to a fuzzy configuration.
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Definition 1 (Cuong, 2014; Kahraman and Kutlu Gündoğdu, 2018; Mahmood et al.,
2019). The symbol U signifies a universal set that is a finite nonempty set. Place three
mappings μT , ηT , νT : U → [0, 1]. Let T = {〈u, (μT (u), ηT (u), νT (u))〉 |u ∈ U} and q

represent a generalized form of fuzzy sets and a positive integer, respectively; T is named:

1. A picture fuzzy set in U if 0 � μT (u) + ηT (u) + νT (u) � 1 for each u;
2. An SF set in U if 0 � (μT (u))2 + (ηT (u))2 + (νT (u))2 � 1 for each u;
3. A T-SF set in U if 0 � (μT (u))q + (ηT (u))q + (νT (u))q � 1 for each u.

Definition 2 (Garg et al., 2018; Ullah et al., 2018). Place a T-SF set T taking a single
positive-integer parameter q in the universal set U . Let t (u) expound a triplet composed
of μT (u), ηT (u), and νT (u), namely, t (u) = (μT (u), ηT (u), νT (u)). The triplet t (u)

signifies a picture fuzzy number, an SF number, and a T-SF number when q = 1, q = 2,
and q ∈ Z+, respectively, wherein Z+ represents a collection of positive integers.

Definition 3 (Ullah et al., 2018; Mahmood et al., 2019). Consider a T-SF number t (u) =
(μT (u), ηT (u), νT (u)) contained in the T-SF set T . The degrees of refusal-membership
γT (u) having relevance for t (u) are exactly delineated by 1 − μT (u) − ηT (u) − νT (u),√

1 − (μT (u))2 − (ηT (u))2 − (νT (u))2, and q
√

1 − (μT (u))q − (ηT (u))q − (νT (u))q

when q = 1, q = 2, and q ∈ Z+, respectively.

Definition 4 (Modified from Güner and Aygün (2022)). Let T-SF(U ) depict a collec-
tion of all T-SF sets delineated in a universal set U . Place T+ ∈ T-SF(U) and T− ∈
T-SF(U), where T+ = {〈u, (μT+(u), ηT+(u), νT+(u))〉 |u ∈ U} and T− = {〈u, (μT−(u),

ηT−(u), νT−(u))〉 |u ∈ U}.
1. T+ is named a universal T-SF set if T+ = {〈u, (1, 0, 0)〉 |u ∈ U};
2. T− is named a null T-SF set if T− = {〈u, (0, 0, 1)〉|u ∈ U}.

Definition 5 (Garg et al., 2018; Liu et al., 2019; Mahmood et al., 2019). Concerning
two T-SF sets T1 ∈ T-SF(U) and T2 ∈ T-SF(U) in the universal set U , it is recog-
nized that T1 = {〈u, (μT1(u), ηT1(u), νT1(u))〉 |u ∈ U} and T2 = {〈u, (μT2(u), ηT2(u),

νT2(u))〉 |u ∈ U}. Certain fundamental set operations are precisely stated in this manner:

1. T1 ⊆ T2 if μT1(u) � μT2(u), ηT1(u) � ηT2(u), and νT1(u) � νT2(u) for each u;
2. T1 = T2 if and only if T1 ⊆ T2 and T2 ⊆ T1;
3. T1 ∪ T2 = {〈u, (max{μT1(u), μT2(u)}, min{ηT1(u), ηT2(u)}, min{νT1(u), νT2(u)})〉 |

u ∈ U};
4. T1 ∩ T2 = {〈u, (min{μT1(u), μT2(u)}, min{ηT1(u), ηT2(u)}, max{νT1(u), νT2(u)})〉 |

u ∈ U};
5. The complement of T1: (T1)

c = {〈u, (νT1(u), ηT1(u), μT1(u))〉 |u ∈ U}.

Definition 6 (Ju et al., 2021). Give consideration to any three T-SF numbers t1(u) =
(μT1(u), ηT1(u), νT1(u)), t2(u) = (μT2(u), ηT2(u), νT2(u)), and t (u) = (μT (u), ηT (u),

νT (u)) associated with an element u in U . Place a real number α > 0. Several operational
laws for T-SF numbers are portrayed in this fashion:
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1. t1(u) ⊕ t2(u)

= ([
1 − (

1 − (
μT1(u)

)q) · (
1 − (

μT2(u)
)q)]1/q

,[(
1 − (

μT1(u)
)q) · (

1 − (
μT2(u)

)q)
− (

1 − (
μT1(u)

)q − (
ηT1(u)

)q) · (
1 − (

μT2(u)
)q − (

ηT2(u)
)q)]1/q

,[(
1 − (

μT1(u)
)q − (

ηT1(u)
)q) · (

1 − (
μT2(u)

)q − (
ηT2(u)

)q)
− (

1 − (
μT1(u)

)q − (
ηT1(u)

)q − (
νT1(u)

)q) · (
1 − (

μT2(u)
)q

− (
ηT2(u)

)q − (
νT2(u)

)q)]1/q);
2. t1(u) ⊗ t2(u)

= ([(
1 − (

ηT1(u)
)q − (

νT1(u)
)q) · (1 − (

ηT2(u)
)q − (

νT2(u)
)q) − (

1 − (
μT1(u)

)q

− (
ηT1(u)

)q − (
νT1(u)

)q) · (
1 − (

μT2(u)
)q − (

ηT2(u)
)q − (

νT2(u)
)q)]1/q

,[(
1 − (

νT1(u)
)q) · (

1 − (
νT2(u)

)q) − (
1 − (

ηT1(u)
)q − (

νT1(u)
)q)

· (
1 − (

ηT2(u)
)q − (

νT2(u)
)q)]1/q

,
[
1 − (

1 − (
νT1(u)

)q) · (
1 − (

νT2(u)
)q)]1/q);

3. α 
 t (u)

= ([
1 − (

1 − (
μT (u)

)q)α]1/q
,
[(

1 − (
μT (u)

)q)α

− (
1 − (

μT (u)
)q − (

ηT (u)
)q)α]1/q

,
[(

1 − (
μT (u)

)q − (
ηT (u)

)q)α

− (
1 − (

μT (u)
)q − (

ηT (u)
)q − (

νT (u)
)q)α]1/q);

4.
(
t (u)

)α

= ([(
1 − (

ηT (u)
)q − (

νT (u)
)q)α− (

1 − (
μT (u)

)q − (
ηT (u)

)q − (
νT (u)

)q)α]1/q
,[(

1 − (
νT (u)

)q)α − (
1 − (

ηT (u)
)q − (

νT (u)
)q)α]1/q

,[
1 − (

1 − (
νT (u)

)q)α]1/q)
.

3. Developed Methodology

The purpose of this section is to use effectual T-SF data-driven correlation measures and
establish a novel multiple-criteria choice method for manipulating an intricate decision-
making issue involving T-spherical fuzziness.

3.1. Problem Description

This subsection concerns the formulation regarding a selection problem raised for
multiple-criteria assessments and resolutions.

Making allowance for a multiple-criteria choice issue, let A = {a1, a2, . . . , am} and
C = {c1, c2, . . . , cn} set forth two limited sets of choice options and performance criteria,
respectively, in which the cardinal numbers m, n � 2. In connection to each performance
criterion cj ∈ C, place the normalized (standardized) weight wj ∈ [0, 1] with the condi-
tioning of weight normalization, i.e.

∑n
j=1 wj = 1. The set C is compartmentalized into

the collection of positive (performance) criteria CPo and the collection of negative (perfor-
mance) criteria CNe. Herein, CPo ∩CNe = ∅ and CPo ∪CNe = C. Positive criteria (such as
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profit and productivity) refer to the performance attribute cj ∈ CPo with a positive quality
of being desirable from the decision-maker’s viewpoint. More specifically, their higher
levels are more favourable from the decision-maker’s position. Negative criteria (such as
cost and loss) refer to the performance attribute cj ∈ CNe with a negative quality of being
desirable in line with the decision-maker’s attitude, which indicates that their lower levels
are more favourable from the decision-maker’s position.

Multiple-criteria choice models portray decision-makers’ considered evaluations as
T-SF numbers of their assessments of the choice options’ prominent features. On grounds
of previous experience, knowledge, technical expertise, and appraisal perceptions, the per-
formance ratings related to each choice option about a specific criterion are established
after that the decision-maker has established the performance criteria for evaluating the
choice options available. Let a T-SF number tij = (μij , ηij , νij ) involving a positive-
integer exponent q signify a performance rating concerning an alternative ai ∈ A having
relevance for a specified criterion cj ∈ C (= CPo ∪ CNe), where the prerequisite 0 �
(μij )

q + (ηij )
q + (νij )

q � 1 must be fulfilled. In what follows, the degree of refusal-
membership is calculated as γij = q

√
1 − (μij )q − (ηij )q − (νij )q . By collecting the T-SF

performance rating tij of ai across all criteria in C, the T-SF characteristic Ti is formed
using this fashion:

Ti = {〈cj , tij 〉
∣∣ cj ∈ C

} = {〈
cj , (μij , ηij , νij )

〉 ∣∣ cj ∈ C(= CPo ∪ CNe)
}
. (1)

3.2. T-SF Data-Driven Correlation Measures

This subsection undertakes several moves to delineate relevant notions of the evolved cor-
relation measures in the T-SF setting and then investigates their valuable features.

Definition 7. Place the best choice option a+ and the worst choice option a− in a
multiple-criteria choice problem. In view of the collections CPo (involving positive crite-
ria) and CNe (involving negative criteria), the T-SF characteristics T+ and T− possessed
by a+ and a−, respectively, are represented by way of the concepts of universal T-SF sets
and null T-SF sets in this fashion:

1. T+ = {〈cj , t+j 〉
∣∣ cj ∈ C

} = {〈
cj , (μ+j , η+j , ν+j )

〉 ∣∣ cj ∈ C
} = {〈

cj , (1, 0, 0)
〉 ∣∣ cj ∈

CPo,
〈
cj , (0, 0, 1)

〉 ∣∣ cj ∈ CNe
}
;

2. T− = {〈cj , t−j 〉
∣∣ cj ∈ C

} = {〈
cj , (μ−j , η−j , ν−j )

〉 ∣∣ cj ∈ C
} = {〈

cj , (0, 0, 1)
〉 ∣∣ cj ∈

CPo,
〈
cj , (1, 0, 0)

〉 ∣∣ cj ∈ CNe
}
.

Definition 8. Considering the normalized (standardized) weight wj and the T-SF char-
acteristic Ti , let T W

i state the T-SF weighted characteristic that contains the T-SF weighted
performance rating twij = (μw

ij , η
w
ij , ν

w
ij ). Herein, twij = (n · wj) 
 tij , where the number

of criteria n epitomizes a role of a balancing coefficient. T W
i and twij are elucidated along
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these lines:

T W
i = {〈

cj , t
w
ij

〉 ∣∣ cj ∈ C
} = {〈

cj ,
(
μw

ij , η
w
ij , ν

w
ij

)〉 ∣∣ cj ∈ C
}
, (2)

twij = (n · wj) 
 tij = ([
1 − (

1 − (μij )
q
)n·wj

]1/q
,[(

1 − (μij )
q
)n·wj − (

1 − (μij )
q − (ηij )

q
)n·wj

]1/q
,[(

1 − (μij )
q − (ηij )

q
)n·wj − (

1 − (μij )
q − (ηij )

q − (νij )
q
)n·wj

]1/q)
. (3)

Theorem 1. Consider the T-SF characteristic Ti containing the T-SF performance rating
tij . When wj = 1/n for each performance criterion cj , the T-SF weighted performance
rating twij = tij , and the T-SF weighted characteristic T W

i = Ti .

Proof. With the assistance of Definition 7, it is obtained that twij = (n · wj) 
 tij =
[n · (1/n)] 
 tij = tij , which bring about T W

i = Ti straightforwardly. The theorem is
proved.

Theorem 2. In consideration of the best choice option a+ and the worst choice option a−,
their corresponding T-SF weighted characteristics T W+ = T+ and T W− = T− regardless
of the values of the weight wj for all performance criteria in C.

Proof. The T-SF weighted performance rating tw+j connected with the best choice option
a+ on a positive criterion cj ∈ CPo is derived by: tw+j = (n · wj) 
 t+j = ([1 − (1 −
1q)n·wj ]1/q, [(1 − 1q)n·wj − (1 − 1q − 0q)n·wj ]1/q, [(1 − 1q − 0q)n·wj − (1 − 1q −
0q − 0q)n·wj ]1/q) = (1, 0, 0). Next, in what follows, the tw+j of a+ on a negative criterion
cj ∈ CNe is calculated like this: tw+j = ([1 − (1 − 0q)n·wj ]1/q, [(1 − 0q)n·wj − (1 − 0q −
0q)n·wj ]1/q, [(1 − 0q − 0q)n·wj − (1 − 0q − 0q − 1q)n·wj ]1/q) = (0, 0, 1). Therefore,
T W+ = {〈cj , (1, 0, 0)〉 | cj ∈ CPo, 〈cj , (0, 0, 1)〉 | cj ∈ CNe〉} = T+. Analogously, it can
be acquired that T W− = T−. The theorem is proved.

Ullah et al. (2020a) conquered the non-appositeness limitation of correlation measure-
ments in intuitionistic fuzzy settings or picture fuzzy settings to advance new correlation
coefficients within T-SF environments. They put forward the notions of informational en-
ergies and correlation functions to exploit new correlation coefficients for T-SF informa-
tion. By the same token, Guleria and Bajaj (2021) advocated the identical delineation of
statistical correlation measurements in T-SF uncertain conditions. In the light of the cor-
relation measures propounded by Guleria and Bajaj (2021) and Ullah et al. (2020b), this
paper incorporates the T-SF weighted characteristics T W

i , T W+ , and T W− into the elucida-
tion of correlation-focused measurements and evolves useful T-SF data-driven correlation
measures for facilitating the constitution of an efficacious multiple-criteria choice model.

Definition 9. In consideration of the T-SF weighted characteristic T W
i = {〈cj , (μ

w
ij , η

w
ij ,

νw
ij )〉 | cj ∈ C} (with the refusal-membership γ w

ij = q

√
1 − (μw

ij )
q − (ηw

ij )
q − (νw

ij )q ), its



870 J.-C. Wang, T.-Y. Chen

T-SF weighted informational energy is expounded such that:

IE
(
T W

i

) =
n∑

j=1

[((
μw

ij

)q)2 + ((
ηw

ij

)q)2 + ((
νw
ij

)q)2 + ((
γ w
ij

)q)2]
. (4)

Theorem 3. The T-SF weighted informational energies IE(T W
i ), IE(T W+ ), and IE(T W− )

satisfy the following favourable features:

1. 0 � IE(T W
i ) � n;

2. IE(T W+ ) = n;
3. IE(T W− ) = n.

Proof. Supported by the axiomatic condition of T-SF sets, it is recognized that (μw
ij )

q +
(ηw

ij )
q + (νw

ij )q + (γ w
ij )q = 1, which readily gives rise to 0 � ((μw

ij )
q)2 +

((ηw
ij )

q)2 + ((νw
ij )q)2 + ((γ w

ij )q)2 � 1. In consequence, the outcome 0 � IE(T W
i ) =∑n

j=1[((μw
ij )

q)2 + ((ηw
ij )

q)2 + ((νw
ij )q)2 + ((γ w

ij )q)2] � n can be effortlessly con-
firmed. Next, in conformity with Theorem 2, it is acquainted with T W+ = T+ and
T W− = T−, which bring about ((μw+j )

q)2 + ((ηw+j )
q)2 + ((νw+j )

q)2 + ((γ w+j )
q)2 = 1

and ((μw−j )
q)2 + ((ηw−j )

q)2 + ((νw−j )
q)2 + ((γ w−j )

q)2 = 1, respectively. Under the cir-
cumstances, one can corroborate the consequences of IE(T W+ ) = ∑n

j=1 1 = n and
IE(T W− ) = ∑n

j=1 1 = n. The theorem is proved.

Definition 10. Given the T-SF weighted characteristics T W
i , T W+ , and T W− , the respective

T-SF weighted correlation functions of T W
i relative to T W+ and T W− are elucidated by:

CF
(
T W

i , T W+
)

=
n∑

j=1

[(
μw

ij

)q · (
μw+j

)q + (
ηw

ij

)q · (
ηw+j

)q + (
νw
ij

)q · (νw+j

)q + (
γ w
ij

)q · (
γ w+j

)q]

=
∑

cj ∈CPo

(
μw

ij

)q +
∑

cj ∈CNe

(
νw
ij

)q
, (5)

CF
(
T W

i , T W−
)

=
n∑

j=1

[(
μw

ij

)q · (
μw−j

)q + (
ηw

ij

)q · (
ηw−j

)q + (
νw
ij

)q · (νw−j

)q + (
γ w
ij

)q · (
γ w−j

)q]

=
∑

cj ∈CPo

(
νw
ij

)q +
∑

cj ∈CNe

(
μw

ij

)q
. (6)

Theorem 4. The T-SF weighted correlation functions CF(T W
i , T W+ ) and CF(T W

i , T W− )

fulfill the following favourable features:
1. 0 � CF(T W

i , T W+ ) � n and 0 � CF(T W
i , T W− ) � n;
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2. CF(T W
i , T W+ ) = CF(T W+ , T W

i ) and CF(T W
i , T W− ) = CF(T W− , T W

i );
3. CF(T W+ , T W− ) = CF(T W− , T W+ ) = 0;
4. CF(T W

i , T W
i ) = IE(T W

i );
5. CF(T W+ , T W+ ) = n and CF(T W− , T W− ) = n.

Proof. Firstly, let nPo and nNe represent the numbers of criteria in CPo and CNe, re-
spectively, where nPo + nNe = n. It is apparent that 0 �

∑
cj ∈CPo

(μw
ij )

q � nPo,
0 �

∑
cj ∈CNe

(νw
ij )q � nNe, 0 �

∑
cj ∈CPo

(νw
ij )q � nPo, and 0 �

∑
cj ∈CNe

(μw
ij )

q � nNe.
Thus, 0 � CF(T W

i , T W+ ) � nPo + nNe = n, and 0 � CF(T W
i , T W− ) � nPo +

nNe = n. The properties in part 1 are confirmed. The commutative properties in
part 2 are straightforward. Next, it demonstrates the correctness of CF(T W+ , T W− ) =∑

cj ∈CPo
(0)q + ∑

cj ∈CNe
(0)q = 0, which corroborates the property in part 3. In what

follows, it can be effortlessly deduced that CF(T W
i , T W

i ) = IE(T W
i ) for the reason that

CF(T W
i , T W

i ) = ∑n
j=1[(μw

ij )
q ·(μw

ij )
q +(ηw

ij )
q ·(ηw

ij )
q +(νw

ij )q ·(νw
ij )q +(γ w

ij )q ·(γ w
ij )q ] =∑n

j=1[((μw
ij )

q)2 + ((ηw
ij )

q)2 + ((νw
ij )q)2 + ((γ w

ij )q)2] = IE(T W
i ); accordingly, it is man-

ifested that CF(T W+ , T W+ ) = IE(T W+ ) = n and CF(T W− , T W− ) = IE(T W− ) = n, which
demonstrates the truth of the properties in parts 4 and 5. The theorem is proved.

Definition 11. Making allowance for T W
i , T W+ , and T W− , the respective T-SF weighted

correlation coefficients of T W
i relative to T W+ and T W− based on the “square root function”

type are delineated along these lines:

CC√(
T W

i , T W+
) = CF(T W

i , T W+ )√
IE(T W

i ) · IE(T W+ )

=
∑

cj ∈CPo
(μw

ij )
q + ∑

cj ∈CNe
(νw

ij )q√
n · ∑

cj ∈C

[
((μw

ij )
q)2 + ((ηw

ij )
q)2 + ((νw

ij )q)2 + ((γ w
ij )q)2

] ,

(7)

CC√(
T W

i , T W−
) = CF(T W

i , T W− )√
IE(T W

i ) · IE(T W− )

=
∑

cj ∈CPo
(νw

ij )q + ∑
cj ∈CNe

(μw
ij )

q

√
n · ∑

cj ∈C

[
((μw

ij )
q)2 + ((ηw

ij )
q)2 + ((νw

ij )q)2 + ((γ w
ij )q)2

] .

(8)

Theorem 5. Through the utility of the “square root function” type, the T-SF weighted
correlation coefficients CC√(T W

i , T W+ ) and CC√(T W
i , T W− ) fulfill some favourable fea-

tures:

1. 0 � CC√(T W
i , T W+ ) � 1 and 0 � CC√(T W

i , T W− ) � 1;
2. CC√(T W

i , T W+ ) = CC√(T W+ , T W
i ) and CC√(T W

i , T W− ) = CC√(T W− , T W
i );
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3. CC√(T W+ , T W−
) = CC√(T W− , T W+

) = 0;
4. CC√(T W

i , T W+ ) = 1 and CC√(T W
i , T W− ) = 1 if and only if T W

i = T W+ and T W
i =

T W− , respectively;
5. CC√(T W

i , T W+ ) = 0 and CC√(T W
i , T W− ) = 0 if T W

i = T W− and T W
i = T W+ , respec-

tively.

Proof. Following Definition 9, the T-SF weighted informational energies of T W
i and

T W+ are given in this fashion:
∑n

j=1[((μw
ij )

q)2 + ((ηw
ij )

q)2 + ((νw
ij )q)2 + ((γ w

ij )q)2]
and

∑n
j=1[((μw+j )

q)2 + ((ηw+j )
q)2 + ((νw+j )

q)2 + ((γ w+j )
q)2], respectively. The Cauchy–

Schwarz inequality is regarded as one of the most celebrated inequalities in mathematics.
Its connotative meaning refers to (ι1β1 + ι2β2 + · · · + ιnβn)

2 � ((ι1)
2 + (ι2)

2 + · · · +
(ιn)

2) · ((β1)
2 + (β2)

2 + · · · + (βn)
2) for the real number sequences (ι1, ι2, . . . , ιn) and

(β1, β2, . . . , βn). Through the utility of the Cauchy–Schwarz inequality, the subsequent
consequence can be yielded:

(
CF

(
T W

i , T W+
))2

=
( n∑

j=1

[(
μw

ij

)q · (
μw+j

)q + (
ηw

ij

)q · (
ηw+j

)q + (
νw
ij

)q · (
νw+j

)q + (
γ w
ij

)q · (γ w+j

)q])2

�
[((

μw
i1

)q)2 + ((
ηw

i1

)q)2 + ((
νw
i1

)q)2 + ((
γ w
i1

)q)2 + ((
μw

i2

)q)2 + ((
ηw

i2

)q)2

+ ((
νw
i2

)q)2 + ((
γ w
i2

)q)2 + · · · + ((
μw

in

)q)2 + ((
ηw

in

)q)2 + ((
νw
in

)q)2

+ ((
γ w
in

)q)2] · [((
μw+1

)q)2 + ((
ηw+1

)q)2 + ((
νw+1

)q)2 + ((
γ w+1

)q)2

+ ((
μw+2

)q)2 + ((
ηw+2

)q)2 + ((
νw+2

)q)2 + ((
γ w+2

)q)2 + · · · + ((
μw+n

)q)2

+ ((
ηw+n

)q)2 + ((
νw+n

)q)2 + ((
γ w+n

)q)2]

=
n∑

j=1

[((
μw

ij

)q)2 + ((
ηw

ij

)q)2 + ((
νw
ij

)q)2 + ((
γ w
ij

)q)2]

·
n∑

j=1

[((
μw+j

)q)2 + ((
ηw+j

)q)2 + ((
νw+j

)q)2 + ((
γ w+j

)q)2]

= IE
(
T W

i

) · IE
(
T W+

)
.

Using this as a basis, we draw the inference that CF(T W
i , T W+ ) �

√
IE(T W

i ) · IE(T W+ );

thus, CF(T W
i , T W+ )/

√
IE(T W

i ) · IE(T W+ ) � 1. Because CF(T W
i , T W+ ), IE(T W

i ), IE(T W+ )

� 0, it can be generated that 0 � CC√(T W
i , T W+ ) � 1. By the same token, the cor-

rectness of 0 � CC√(T W
i , T W− ) � 1 can be proven; thus, the properties in part 1

are validated. The commutative properties in part 2 are straightforward. The property
in part 3 is trivially known because CF(T W+ , T W− ) = CF(T W− , T W+ ) = 0. Regard-
ing the necessity in part 4, the presupposition CC√(T W

i , T W+ ) = 1 indicates that
(CF(T W

i , T W+ ))2 = IE(T W
i ) · IE(T W+ ) = IE(T W

i ) ·n, which follows that CF(T W
i , T W+ ) =
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CF(T W+ , T W+ ) = IE(T W+ ) = n must be fulfilled. Thus, T W
i = T W+ . Concerning

the sufficiency in part 4, the prerequisite T W
i = T W+ brings about CC√(T W+ , T W+ ) =

CF(T W+ , T W+ )/

√
IE(T W+ ) · IE(T W+ ) = IE(T W+ )/IE(T W+ ) = 1. Accordingly, it is re-

ceived that CC√(T W
i , T W+ ) = 1 if and only if T W

i = T W+ . Analogously, one has
CC√(T W

i , T W− ) = 1 if and only if T W
i = T W− . Therefore, the properties in part 4 are

verified. In part 5, the prerequisite T W
i = T W− gives rise to μw

ij = 0 and νw
ij = 0

for cj ∈ CPo and cj ∈ CNe, respectively. By virtue of Definition 10, one obtains
CF(T W

i , T W+ ) = ∑
cj ∈CPo

(μw
ij )

q +∑
cj ∈CNe

(νw
ij )q = 0, which leads to the conclusion that

CC√(T W
i , T W+ ) = 0/

√
IE(T W

i ) · IE(T W+ ) = 0. In contrast, the prerequisite T W
i = T W+

brings about νw
ij = 0 and μw

ij = 0 for cj ∈ CPo and cj ∈ CNe, respectively. In the light of
Definition 10, one receives CF(T W

i , T W− ) = ∑
cj ∈CPo

(νw
ij )q +∑

cj ∈CNe
(μw

ij )
q = 0, which

lets us deduce CC√(T W
i , T W− ) = 0/

√
IE(T W

i ) · IE(T W− ) = 0. Thus, one can corroborate
that CC√(T W

i , T W+ ) = 0 if T W
i = T W− ; moreover, CC√(T W

i , T W− ) = 0 if T W
i = T W+ .

The theorem is proved.

Definition 12. Making allowance for T W
i , T W+ , and T W− , the respective T-SF weighted

correlation coefficients of T W
i relative to T W+ and T W− based on the “maximum function”

type are delineated along these lines:

CC∧
(
T W

i , T W+
) = CF(T W

i , T W+ )

max{IE(T W
i ), IE(T W+ )}

=
∑

cj ∈CPo
(μw

ij )
q + ∑

cj ∈CNe
(νw

ij )q

max
{∑

cj ∈C[((μw
ij )

q)2 + ((ηw
ij )

q)2 + ((νw
ij )q)2 + ((γ w

ij )q)2], n}

=
∑

cj ∈CPo
(μw

ij )
q + ∑

cj ∈CNe
(νw

ij )q

n
, (9)

CC∧
(
T W

i , T W−
) = CF(T W

i , T W− )

max{IE(T W
i ), IE(T W− )}

=
∑

cj ∈CPo
(νw

ij )q + ∑
cj ∈CNe

(μw
ij )

q

max
{∑

cj ∈C[((μw
ij )

q)2 + ((ηw
ij )

q)2 + ((νw
ij )q)2 + ((γ w

ij )q)2], n}

=
∑

cj ∈CPo
(νw

ij )q + ∑
cj ∈CNe

(μw
ij )

q

n
. (10)

Theorem 6. Through the utility of the “maximum function” type, the T-SF weighted cor-
relation coefficients CC∧(T W

i , T W+ ) and CC∧(T W
i , T W− ) fulfill some favourable features:

1. 0 � CC∧(T W
i , T W+ ) � 1 and 0 � CC∧(T W

i , T W− ) � 1;
2. CC∧(T W

i , T W+ ) = CC∧(T W+ , T W
i ) and CC∧(T W

i , T W− ) = CC∧(T W− , T W
i );

3. CC∧(T W+ , T W−
) = CC∧(T W− , T W+

) = 0;
4. CC∧(T W

i , T W+ ) = 1 and CC∧(T W
i , T W− ) = 1 if and only if T W

i = T W+ and T W
i = T W− ,

respectively;
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5. CC∧(T W
i , T W+ ) = 0 and CC∧(T W

i , T W− ) = 0 if T W
i = T W− and T W

i = T W+ , respec-
tively.

Proof. Firstly, the proofs of parts 2, 3, and 5 are like the proving processes in parts 2, 3,
and 5 of Theorem 5. In part 1, as analogous to the proof in Theorem 5, it is recognized
that (CF(T W

i , T W+ ))2 � IE(T W
i ) · IE(T W+ ), which gives substance to CF(T W

i , T W+ ) �
max{IE(T W

i ), IE(T W+ )}. Accordingly, CF(T W
i , T W+ )/ max{IE(T W

i ), IE(T W+ )} � 1. Be-
cause CF(T W

i , T W+ ), IE(T W
i ), IE(T W+ ) � 0, we can state that 0 � CC∧(T W

i , T W+ )

� 1. Similarly, one has 0 � CC∧(T W
i , T W− ) � 1. The correctness of the prop-

erties in part 1 is confirmed. Concerning the necessity in part 4, the presupposi-
tion CC∧(T W

i , T W+ ) = 1 implies that CF(T W
i , T W+ ) = max{IE(T W

i ), IE(T W+ )} =
max{IE(T W

i ), n} = n; on account of this, T W
i = T W+ . For the sufficiency in part 4, the pre-

requisite T W
i = T W+ gives rise to CC∧(T W+ , T W+ ) = CF(T W+ , T W+ )/ max{IE(T W+ ), IE(T W+ )} =

IE(T W+ )/IE(T W+ ) = 1. Therefore, it is acquired that CC∧(T W
i , T W+ ) = 1 if and only if

T W
i = T W+ . It is known, just the same, that CC∧(T W

i , T W− ) = 1 if and only if T W
i = T W− .

As a result, the properties in part 4 are verified. The theorem is proved.

3.3. Propounded Multiple-Criteria Choice Method in T-SF Settings

This subsection attempts to propound an effective and simple-to-implement approach for
tackling an uncertain multiple-criteria evaluation issue predicated on the evolved T-SF
data-driven correlation measures.

Consider a multiple-criteria choice task embodying the T-SF characteristic Ti and the
normalized (standardized) weight wj of an available choice option ai ∈ A and a perfor-
mance criterion cj ∈ C, respectively. Place an anchoring parameter ξ ∈ [0, 1]. For each
T-SF characteristic, the parameter ξ elucidates the weight of the anchored comparisons
relative to universal T-SF sets, while (1 − ξ) depicts the weight of the anchored compar-
isons relative to null T-SF sets. In what follows, this study contributes two constructive
T-SF comprehensive correlation indices as the measurements of deciding the relative pri-
oritization for available choice options.

Definition 13. Denote CC +√ = minm
i′=1 CC√(T W

i′ , T W+ ), CC +√ = maxm
i′=1 CC√(T W

i′ ,

T W+ ), CC −√ = minm
i′=1 CC√(T W

i′ , T W− ), and CC −√ = maxm
i′=1 CC√(T W

i′ , T W− ) for the
“square root function” type. Denote CC +∧ = minm

i′=1 CC∧(T W
i′ , T W+ ), CC +∧ =

maxm
i′=1 CC∧(T W

i′ , T W+ ), CC −∧ =minm
i′=1 CC∧(T W

i′ , T W− ), and CC −∧ =maxm
i′=1 CC∧(T W

i′ ,

T W− ) for the “maximum function” type. By the agency of CC√ and CC∧ on ai , the T-SF
comprehensive correlation indices CI√(ai) and CI∧(ai), respectively, are delineated along
these lines:

CI√(ai) = ξ ·
CC√(T W

i , T W+ ) − CC +√

CC +√ − CC +√ + (1 − ξ) ·
CC −√ − CC√(T W

i , T W− )

CC −√ − CC −√ , (11)

CI∧(ai) = ξ · CC∧(T W
i , T W+ ) − CC +∧

CC +∧ − CC +∧
+ (1 − ξ) · CC −∧ − CC∧(T W

i , T W− )

CC −∧ − CC −∧
. (12)
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Theorem 7. The T-SF comprehensive correlation indices CI√(ai) and CI∧(ai) fulfill the
following favoutirable features:

1. 0 � CI√(ai) � 1 and 0 � CI∧(ai) � 1;
2. CI√(ai) = 1 and CI∧(ai) = 1 for all ξ ∈ [0, 1] if Ti = T+;
3. CI√(ai) = 0 and CI∧(ai) = 0 for all ξ ∈ [0, 1] if Ti = T−.

Proof. Utilizing the foregoing delineation, it is realized that CC√(T W
i , T W+ ) � CC +√

(= maxm
i′=1 CC√(T W

i′ , T W+ )), which follows that CC√(T W
i , T W+ ) − CC +√ � CC +√ −

CC +√, thereby gaining (CC√(T W
i , T W+ ) − CC +√)/(CC +√ − CC +√) � 1. It is appar-

ent to observe that CC√(T W
i , T W+ ) − CC +√ � 0 and CC +√ − CC +√ � 0 for the

reason that CC√(T W
i , T W+ ) � minm

i′=1 CC√(T W
i′ , T W+ ) and maxm

i′=1 CC√(T W
i′ , T W+ ) �

minm
i′=1 CC√(T W

i′ , T W+ ). Accordingly, one has 0 � (CC√(T W
i , T W+ ) − CC +√)/(CC +√ −

CC +√) � 1. In a similar fashion, 0 � (CC −√ − CC√(T W
i , T W− ))/(CC −√ − CC −√) � 1.

Taking 0 � ξ � 1 into consideration, it is deduced that 0 � CI√(ai) � 1. By the same
token, one has 0 � CI∧(ai) � 1, which demonstrates the truth of the properties in part 1.
Next, it is realized that T W+ = T+ and T W− = T− based on Theorem 2. The prerequi-
site Ti = T+(= T W+ ) brings about CC√(T W

i , T W+ ) = 1 and CC +√ = 1, which indicates
that (1 − CC +√)/(1 − CC +√) = 1. Moreover, the condition Ti = T+(= T W+ ) leads to
CC√(T W

i , T W− ) = 0 and CC −√ = 0, which indicates that (CC −√ − 0)/(CC −√ − 0) = 1.
From this basis, it is obtained that CI√(ai) = ξ · 1 + (1 − ξ) · 1 = 1 for all ξ ∈ [0, 1]. The
correctness of CI∧(ai) = 1 is analogously corroborated, which produces proof of part 2.
The properties in part 3 are verified similarly. The theorem is proved.

Definition 14. Given two choice options ai and ai′ involving T-SF characteristics Ti

and Ti′ , respectively, the prioritization procedure of ai and ai′ can be elucidated using
the subsequent relations “�√” (indicating “better than”), “∼√” (indicating “indefinite or
indifferent”), and “≺√” (indicating “worse than”) (or “�∧”, “∼∧”, and “≺∧”), like this:

1. Based on the “square root function” type:
a) If CI√(ai) > CI√(ai′), then it is convinced that ai �√ ai′ ;
b) If CI√(ai) = CI√(ai′), then ai ∼√ ai′ ;
c) If CI√(ai) < CI√(ai′), then it is convinced that ai ≺√ ai′ .

2. Based on the “maximum function” type:
a) If CI∧(ai) > CI∧(ai′), then it is convinced that ai �∧ ai′ ;
b) If CI∧(ai) = CI∧(ai′), then ai ∼∧ ai′ ;
c) If CI∧(ai) < CI∧(ai′), then it is convinced that ai ≺∧ ai′ .

The framework of the propounded multiple-criteria choice method on grounds of T-SF
data-driven correlation measures is depicted in Fig. 2. As exhibited in this framework, the
evolved methodology comprises four phases, i.e. the organization of a multiple-criteria
choice issue in Phase I, the computation of weighted performance information with T-SF
sets in Phase II, the generation of T-SF data-driven correlation measures in Phase III, and
decision making for treating multiple-criteria choice analysis in Phase IV.
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Fig. 2. The framework of the propounded methodology.
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To implement the propounded methodology, this study provides a new algorithm to
perform the procedural steps pragmatically in order to facilitate the decision-maker’s
multiple-criteria analysis. The following algorithm is expressed using a sequence of sim-
ple operations (consisting of Steps 1 and 2 in Phase I, Steps 3–5 in Phase II, Steps 6–8 in
Phase III, and Steps 9 and 10 in Phase IV) for conducting the initiated multiple-criteria
choice method with T-SF data-driven correlation measures:

Step 1. Place a limited set of choice options A = {a1, a2, . . . , am} and a limited set of
performance criteria C = {c1, c2, . . . , cn}. Separate C into two parts: one is the collection
of positive criteria CPo; the other is the collection of negative criteria CNe.

Step 2. Generate the normalized (standardized) weight wj with the conditioning of weight
normalization for each performance criterion cj .

Step 3. Specify a suitable positive-integer exponent q and form a T-SF performance rating
tij signified as the T-SF number (μij , ηij , νij ) with the refusal-membership γij .

Step 4. Assemble the T-SF characteristic Ti in Eq. (1) by gathering all T-SF performance
rating tij regarding a choice option ai across all criteria in C.

Step 5. Employ Eq. (3) to derive the T-SF weighted performance rating twij (with refusal-
membership γ w

ij ) for the sake of framing the T-SF weighted characteristic T W
i in Eq. (2).

Step 6. Utilize the universal and null T-SF sets to signify the T-SF characteristics T+ and
T− for the best choice option a+ and the worst choice option a−, respectively. Moreover,
the T-SF weighted characteristics T W+ = T+ and T W− = T−.

Step 7. Derive the T-SF weighted informational energy IE(T W
i ) using Eq. (4) and the

T-SF weighted correlation functions CF(T W
i , T W+ ) and CF(T W

i , T W− ) using Eqs. (5) and
(6), respectively.

Step 8. Proceed to either Step 8-1 or Step 8-2.

Step 8-1. Use the “square root function” type to produce the T-SF weighted correlation
coefficients CC√(T W

i , T W+ ) and CC√(T W
i , T W− ) using Eqs. (7) and (8), respectively.

Step 8-2. Exploit the “maximum function” type to produce the T-SF weighted correlation
coefficients CC∧(T W

i , T W+ ) and CC∧(T W
i , T W− ) using Eqs. (9) and (10), respectively.

Step 9. Assign an anchoring parameter ξ to determine the T-SF comprehensive correlation
index CI√(ai) (or CI∧(ai)) using Eq. (11) (or Eq. (12)).

Step 10. Rank the m choice options in A supported by CI√(ai) (or CI∧(ai)) in descending
order to identify the prioritization relations “�√”, “∼√”, and “≺√” (or “�∧”, “∼∧”, and
“≺∧”). Make a final decision for completing the multiple-criteria choice task.

4. Practical Application and Comparative Research

This section intends to exemplify the functionality and suitability of the propounded
methodology for applications in a location selection issue for a construction company in
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Fig. 3. Profile of the location selection issue of a construction company for building new apartments.

complex uncertain circumstances. Moreover, this section puts into effect two comparative
studies to scrutinize the helpfulness and merits of the current technique.

4.1. Realistic Application and Discussions

The multiple-criteria choice case investigated by Chen et al. (2021) focused on the issue
of a construction company finding an appropriate location to put up a new apartment. In
order to find the most suitable location, the construction company evaluates four location
options (a1 − a4) for constructing new apartments predicated on the four performance
criteria. The performance criteria consist of land cost (c1), surrounding environment (c2),
technological capability (c3), and lease value (c4). Fig. 3 provides a profile of the location
selection issue under study.

In Step 1, the two limited sets of choice options and performance criteria were des-
ignated as A = {a1, a2, a3, a4} and C = {c1, c2, c3, c4}, respectively. Herein, the
set C was separated into two parts: one is the collection of positive criteria CPo =
{c2, c3}; the other is the collection of negative criteria CNe = {c1, c4}. In Step 2,
in conformity with the expert’s professional opinions, the normalized (standardized)
weights were given by (w1, w2, w3, w4) = (0.2, 0.1, 0.3, 0.4). In Step 3, the ex-
pert evaluated the location options one by one based on the four performance cri-
teria, and the relevant evaluation data were expressed in terms of T-SF information,
as revealed in Table 2. The data fields contain the T-SF performance rating tij =
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Table 2
Data of the T-SF performance rating tij (with the refusal-membership γij ) in the location selection problem.

cj t1j = (μ1j , η1j , ν1j ) γ1j t2j = (μ2j , η2j , ν2j ) γ2j t3j = (μ3j , η3j , ν3j ) γ3j t4j = (μ4j , η4j , ν4j ) γ4j

c1 (0.43, 0.20, 0.61) 0.88 (0.14, 0.32, 0.74) 0.82 (0.75, 0.12, 0.41) 0.80 (0.35, 0.44, 0.83) 0.67
c2 (0.54, 0.35, 0.63) 0.82 (0.26, 0.17, 0.26) 0.99 (0.59, 0.29, 0.13) 0.92 (0.91, 0.12, 0.49) 0.50
c3 (0.81, 0.62, 0.11) 0.61 (0.77, 0.23, 0.55) 0.71 (0.56, 0.22, 0.36) 0.92 (0.63, 0.11, 0.27) 0.90
c4 (0.18, 0.33, 0.66) 0.88 (0.61, 0.34, 0.57) 0.82 (0.11, 0.14, 0.45) 0.97 (0.31, 0.36, 0.84) 0.69

Table 3
Outcomes relevant to the T-SF weighted performance rating tw

ij
and the refusal-membership γ w

ij
(q = 3).

ai cj tw
ij

= (μw
ij

, ηw
ij

, νw
ij

) γ w
ij

(μw
ij

)q (ηw
ij

)q (νw
ij

)q (γ w
ij

)q Squared sum∗

a1 c1 (0.4003, 0.1867, 0.5750) 0.9042 0.0641 0.0065 0.1901 0.7393 0.5868
c2 (0.4046, 0.2683, 0.5031) 0.9233 0.0662 0.0193 0.1274 0.7871 0.6405
c3 (0.8422, 0.6136, 0.1060) 0.5544 0.5974 0.2310 0.0012 0.1704 0.4393
c4 (0.2104, 0.3841, 0.7406) 0.8082 0.0093 0.0567 0.4062 0.5278 0.4469

a2 c1 (0.1300, 0.2974, 0.7002) 0.8564 0.0022 0.0263 0.3433 0.6282 0.5132
c2 (0.1919, 0.1258, 0.1928) 0.9946 0.0071 0.0020 0.0072 0.9838 0.9679
c3 (0.8036, 0.2345, 0.5538) 0.6682 0.5189 0.0129 0.1699 0.2983 0.3873
c4 (0.6963, 0.3758, 0.6098) 0.7259 0.3376 0.0531 0.2267 0.3826 0.3146

a3 c1 (0.7080, 0.1156, 0.3965) 0.8345 0.3549 0.0015 0.0623 0.5812 0.4677
c2 (0.4446, 0.2244, 0.1009) 0.9654 0.0879 0.0113 0.0010 0.8998 0.8175
c3 (0.5914, 0.2307, 0.3766) 0.8994 0.2068 0.0123 0.0534 0.7275 0.5750
c4 (0.1286, 0.1637, 0.5210) 0.9480 0.0021 0.0044 0.1414 0.8521 0.7461

a4 c1 (0.3254, 0.4109, 0.8012) 0.7255 0.0344 0.0694 0.5143 0.3818 0.4163
c2 (0.7542, 0.1171, 0.5083) 0.7595 0.4289 0.0016 0.1313 0.4381 0.3932
c3 (0.6634, 0.1147, 0.2812) 0.8812 0.2920 0.0015 0.0222 0.6843 0.5540
c4 (0.3615, 0.4165, 0.8922) 0.5544 0.0472 0.0722 0.7101 0.1704 0.5408

Squared sum∗: ((μw
ij

)q )2 + ((ηw
ij

)q )2 + ((νw
ij

)q )2 + ((γ w
ij

)q )2 (q = 3).

(μij , ηij , νij ) and its associated refusal-membership γij , where the positive-integer ex-
ponent q = 3 and γij = 3

√
1 − (μij )3 − (ηij )3 − (νij )3. Taking t13 = (0.81, 0.62,

0.11) as an illustration, γ13 = 3
√

1 − 0.813 − 0.623 − 0.113 = 0.61. In Step 4, the T-SF
characteristics were generated by Ti = {〈cj , tij 〉 | cj ∈ C} = {〈cj , (μij , ηij , νij )〉 | cj ∈
{c1, c2, c3, c4}} for each location option ai . For example, T1 = {〈c1, (0.43, 0.20, 0.61)〉,
〈c2, (0.54, 0.35, 0.63)〉, 〈c3, (0.81, 0.62, 0.11)〉, 〈c4, (0.18, 0.33, 0.66)〉}.

In Step 5, the T-SF weighted performance rating twij was computed using Eq. (3).
To give an instance, tw13 = (n · w3) 
 t13 = (4 × 0.3) 
 t13 = ([1 − (1 −
0.813)1.2]1/3, [(1 − 0.813)1.2 − (1 − 0.813 − 0.623)1.2]1/3, [(1 − 0.813 − 0.623)1.2 −
(1 − 0.813 − 0.623 − 0.113)1.2]1/3) = (0.8422, 0.6136, 0.1060), where the refusal-
membership γ w

13 = 3
√

1 − 0.84223 − 0.61363 − 0.10603 = 0.5544. The computed out-
comes of twij and γ w

ij are revealed in the third and fourth columns of Table 3. Moreover,
the T-SF weighted characteristics were determined by the use of T W

i = {〈cj , t
w
ij 〉 | cj ∈

C} = {〈cj , (μ
w
ij , η

w
ij , ν

w
ij )〉 | cj ∈ {c1, c2, c3, c4}} for each ai . As an illustration, T W

1 =
{〈c1, (0.4003, 0.1867, 0.5750)〉, 〈c2, (0.4046, 0.2683, 0.5031)〉, 〈c3, (0.8422, 0.6136,

0.1060)〉, 〈c4, (0.2104, 0.3841, 0.7406)〉}.
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Table 4
Outcomes relevant to the T-SF data-driven correlation measures.

ai IE(T W
i ) CF(T W

i , T W+ ) CF(T W
i , T W− ) CC√(T W

i , T W+ ) CC√(T W
i , T W− ) CC∧(T W

i , T W+ ) CC∧(T W
i , T W− )

a1 2.1135 1.2599 0.2020 0.4333 0.0695 0.3150 0.0505
a2 2.1830 1.0960 0.5169 0.3709 0.1749 0.2740 0.1292
a3 2.6062 0.4984 0.4115 0.1544 0.1274 0.1246 0.1029
a4 1.9043 1.9454 0.2352 0.7049 0.0852 0.4864 0.0588

In Step 6, based on the universal and null T-SF sets, the T-SF characteristic T+ =
{〈c1, (0, 0, 1)〉, 〈c2, (1, 0, 0)〉, 〈c3, (1, 0, 0)〉, 〈c4, (0, 0, 1)〉} because of CPo = {c2, c3}
and CNe = {c1, c4}. Moreover, T− = {〈c1, (1, 0, 0)〉, 〈c2, (0, 0, 1)〉, 〈c3, (0, 0, 1)〉, 〈c4,

(1, 0, 0)〉}. According to Theorem 2, it was acquainted with T W+ = T+ and T W− = T−.
In Step 7, the T-SF weighted informational energies were yielded using Eq. (4). Specif-
ically, IE(T W

1 ) = ∑4
j=1[((μw

1j )
q)2 + ((ηw

1j )
q)2 + ((νw

1j )
q)2 + ((γ w

1j )
q)2]. The respec-

tive computation results of (μw
ij )

q , (ηw
ij )

q , (νw
ij )q , and (γ w

ij )q are shown in the fifth to
eighth columns of Table 3. Moreover, their corresponding squared sum, i.e. ((μw

ij )
q)2 +

((ηw
ij )

q)2 + ((νw
ij )q)2 + ((γ w

ij )q)2, can be directly derived, and the results are demon-
strated in the last column of Table 3. In conformity with these outcomes, it was derived
that IE(T W

1 ) = 0.5868 + 0.6405 + 0.4393 + 0.4469 = 2.1135. In the same fashion,
IE(T W

2 ) = 2.1830, IE(T W
3 ) = 2.6062, and IE(T W

4 ) = 1.9043, as shown in the sec-
ond column of Table 4. Next, the T-SF weighted correlation functions CF(T W

i , T W+ )

and CF(T W
i , T W− ) were acquired using Eqs. (5) and (6), respectively. To give an ex-

ample, CF(T W
1 , T W+ ) = ∑

cj ∈CPo
(μw

1j )
q + ∑

cj ∈CNe
(νw

1j )
q = ((μw

12)
q + (μw

13)
q) +

((νw
11)

q + (νw
14)

q) = (0.0662 + 0.5974)+ (0.1901 + 0.4062) = 1.2599. The outcomes of
CF(T W

i , T W+ ) and CF(T W
i , T W− ) are displayed in the third and fourth columns of Table 4.

In Step 8, if the “square root function” type was employed, this study would comply
with Step 8-1 to determine the T-SF weighted correlation coefficients CC√(T W

i , T W+ ) and
CC√(T W

i , T W− ) using Eqs. (7) and (8), respectively. It was recognized that IE(T W+ ) =
IE(T W− ) = n = 4 following Theorem 3. To give an instance, CC√(T W

1 , T W+ ) =
CF(T W

1 , T W+ )/

√
IE(T W

1 ) · IE(T W+ ) = 1.2599/
√

2.1135 × 4 = 0.4333, and CC√(T W
1 ,

T W− ) = CF(T W
1 , T W− )/

√
IE(T W

1 ) · IE(T W− ) = 0.2020/
√

2.1135 × 4 = 0.0695. The
obtained outcomes of CC√(T W

i , T W+ ) and CC√(T W
i , T W− ) are indicated in the fifth

and sixth columns, respectively, of Table 4. On the flip side, if the “maximum func-
tion” type was utilized, this study would comply with Step 8-2 to generate the T-SF
weighted correlation coefficients CC∧(T W

i , T W+ ) and CC∧(T W
i , T W− ). The yielded out-

comes are manifested in the last two columns of Table 4. For example, CC∧(T W
i , T W+ ) =

CF(T W
1 , T W+ )/ max{IE(T W

1 ), IE(T W+ )} = 1.2599/ max{2.1135, 4} = 0.3150, and
CC∧(T W

i , T W− ) = CF(T W
1 , T W− )/ max{IE(T W

1 ), IE(T W− )} = 0.2020/ max{2.1135, 4} =
0.0505.

In Step 9, in the light of Definition 13, the following minimal and maximal corre-
lation coefficients were produced as: CC +√ = min4

i′=1 CC√(T W
i′ , T W+ ) = min{0.4333,

0.3709, 0.1544, 0.7049} = 0.1544, CC +√ = max4
i′=1 CC√(T W

i′ , T W+ ) = 0.7049,
CC −√ = min4

i′=1 CC√(T W
i′ , T W− ) = min{0.0695, 0.1749, 0.1274, 0.0852} = 0.0695, and
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CC −√ = max4
i′=1 CC√(T W

i′ , T W− ) = 0.1749 for the “square root function” type. In a sim-
ilar fashion, it was yielded that CC +∧ = min{0.3150, 0.2740, 0.1246, 0.4864} = 0.1246,
CC +∧ = 0.4864, CC −∧ = 0.0505, and CC −∧ = 0.1292. Letting the anchoring pa-
rameter ξ = 0.5, the T-SF comprehensive correlation indices were calculated using
Eq. (11) for the “square root function” type. That is, CI√(a1) = 0.6× (CC√(T W

1 , T W+ )−
CC +√)/(CC +√ − CC +√) + 0.4 × (CC −√ − CC√(T W

1 , T W− ))/ (CC −√ − CC −√) = 0.6 ×
(0.4333 − 0.1544)/(0.7049 − 0.1544) + 0.4 × (0.1749 − 0.0695)/(0.1749 − 0.0695) =
0.7040, CI√(a2) = 0.2360, CI√(a3) = 0.1801, and CI√(a4) = 0.9402. Next, for the
“maximum function” type, the T-SF comprehensive correlation index CI∧(ai) was gener-
ated using Eq. (12). Specifically, CI∧(a1) = 0.6×(0.3150−0.1246)/(0.4864−0.1246)+
0.4 × (0.1292 − 0.0505)/(0.1292 − 0.0505) = 0.7157, CI∧(a2) = 0.2478, CI∧(a3) =
0.1339, andCI∧(a4) = 0.9578.

Finally, in Step 10, the four location options were ranked in descending order of the
CI√(ai) values for the “square root function” type, which rendered the prioritization rank-
ing a4 �√ a1 �√ a2 �√ a3. Moreover, the prioritization ranking a4 �∧ a1 �∧ a2 �∧ a3

was yielded in descending order of CI∧(ai) for the “maximum function” type. Regardless
of the usage of the square root function and the maximum function, the solution outcomes
generated by the current correlation-focused approach are concordant with the final rank-
ing rendered by the technique using T-SF group-generalized hybrid geometric (GGHG)
operators in Chen et al. (2021).

The conclusions of the application of the propounded methodology to the pragmatic
problem for location selection are consistent with the consequences of the existing lit-
erature. The new approach centered on T-SF correlation-focused measurements in this
study is not only rigorous in concept but also simple and easy to implement. Findings in
practical applications are also consistent with existing literature and expectations.

4.2. Comparative Analysis with Other Relevant Approaches

This subsection intends to conduct a comparative analysis to analyse the solution outcomes
with those yielded by other T-SF multiple-criteria assessment approaches. As described in
the state-of-the-art literature review in Table 1, many studies have explored the modularity
of evaluation and decision-making methods involving T-SF information by T-SF averag-
ing aggregation operations. Given the large body of related work that has concentrated
on models of aggregated or averaged operations, this comparative analysis will provide a
comprehensive discussion of the applied results rendered by some newly-developed ag-
gregating or averaging operations regarding the location selection issue of the construction
company to build new apartments. Such comparisons and analyses focus on the process of
investigating the solution outcomes with each other and distinguishing their similarities
and differences.

The T-SF averaging aggregation operations used for this comparative research cover
the T-SF weighted averaging (WA) and T-SF weighted geometric (WG) operators ad-
vanced by Ullah et al. (2020a), the T-SF Frank weighted averaging (FWA) and T-SF
Frank weighted geometric (FWG) operators initiated by Mahnaz et al. (2022), and the
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T-SF Aczel-Alsina weighted averaging (AAWA) and T-SF Aczel-Alsina weighted geo-
metric (AAWG) operators advocated by Hussain et al. (2022b). From the arithmetic mean
perspective, the technique using T-SF WA operators is a generally recognized T-SF aggre-
gation algorithm. Moreover, the techniques using T-SF FWA or T-SF AAWA operators are
rising T-SF aggregation algorithms with great potential. From the geometric mean view-
point, the technique established on the T-SF WG operator provides a well-known T-SF
aggregation algorithm. Furthermore, the techniques using T-SF FWG or T-SF AAWG op-
erators are recently up-and-coming T-SF aggregation algorithms. Next, the mathematical
expressions of the aforementioned arithmetic mean operators (i.e. T-SF WA, T-SF FWA,
and T-SF AAWA) and the geometric mean operators (i.e. T-SF WG, T-SF FWG, and T-SF
AAWG) will be described later.

To perform averaging aggregation operations under T-SF uncertainty, the direction of
the negative criteria in the collection CNe should be reversed to be consistent with the di-
rection of the positive criteria in the collection CPo. Let t ′ij = (μ′

ij , η
′
ij , ν

′
ij ) signify the

normalized T-SF performance rating associated with tij . Using the means of the com-
plement set operation, the T-SF characteristic Ti can be transformed into the normalized
T-SF characteristic T ′

i using the following formula:

T ′
i = {〈

cj , t
′
ij

〉 ∣∣ cj ∈ C
}

= {〈
cj , (μij , ηij , νij )

〉 ∣∣ cj ∈ CPo,
〈
cj , (νij , ηij , μij )

〉 ∣∣ cj ∈ CNe
}
. (13)

This comparative study endeavours to aggregate the normalized T-SF performance
rating t ′ij across all cj ∈ C concerning each ai into a T-SF comprehensive evaluation
value by employing the aggregation operators propounded by Ullah et al. (2020a), Mahnaz
et al. (2022), and Hussain et al. (2022b). Let φ > 1 and 
 � 1 denote the parameters
contained in Mahnaz et al.’s and Hussain et al.’s formulations, respectively. The T-SF
comprehensive evaluation value of t ′i1, t ′i2, . . . , t ′in using the T-SF WA, T-SF FWA, and
T-SF AAWA operators are determined sequentially along these lines:

WA
(
t ′i1, t ′i2, . . . , t ′in

) =
(

q

√√√√1 −
n∏

j=1

(
1 − (

μ′
ij

)q)wj ,

n∏
j=1

(
η′

ij

)wj ,

n∏
j=1

(
ν′
ij

)wj

)
, (14)

FWA
(
t ′i1, t ′i2, . . . , t ′in

)

=
(

q

√√√√1 − logφ

(
1 +

n∏
j=1

(
φ

1−(μ′
ij )q − 1

)wj

)
,

q

√√√√logφ

(
1 +

n∏
j=1

(
φ

(η′
ij )q − 1

)wj

)
,

q

√√√√logφ

(
1 +

n∏
j=1

(
φ

(ν′
ij )q − 1

)wj

))
, (15)
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AAWA
(
t ′i1, t ′i2, . . . , t ′in

)

=
(

q

√√√√1 − exp

(
−

{ n∑
j=1

wj

[− ln
(
1 − (

μ′
ij

)q)
]}1/
)
,

q

√√√√exp

(
−

{ n∑
j=1

wj

[− ln
((

η′
ij

)q)
]}1/
)
,

q

√√√√exp

(
−

{ n∑
j=1

wj

[− ln
((

ν′
ij

)q)
]}1/
))
. (16)

From the geometric mean perspective, the T-SF comprehensive evaluation value of
t ′i1, t ′i2, . . . , t ′in using the T-SF WG, T-SF FWG, and T-SF AAWG operators are calculated
sequentially in the following manner, where φ > 1 and 
 � 1:

WG
(
t ′i1, t ′i2, . . . , t ′in

) =
( n∏

j=1

(
μ′

ij

)wj ,

n∏
j=1

(
η′

ij

)wj , q

√√√√1 −
n∏

j=1

(
1 − (

ν′
ij

)q)wj

)
, (17)

FWG
(
t ′i1, t ′i2, . . . , t ′in

)

=
(

q

√√√√logφ

(
1 +

n∏
j=1

(
φ

(μ′
ij )q − 1

)wj

)
, q

√√√√1 − logφ

(
1 +

n∏
j=1

(
φ

1−(η′
ij )q − 1

)wj

)
,

q

√√√√1 − logφ

(
1 +

n∏
j=1

(
φ

1−(ν′
ij )q − 1

)wj

))
, (18)

AAWG
(
t ′i1, t ′i2, . . . , t ′in

)

=
(

q

√√√√exp

(
−

{ n∑
j=1

wj

[− ln
((

μ′
ij

)q)
]}1/
)
,

q

√√√√1 − exp

(
−

{ n∑
j=1

wj

[− ln
(
1 − (

η′
ij

)q)
]}1/
)
,

q

√√√√1 − exp

(
−

{ n∑
j=1

wj

[− ln
(
1 − (

ν′
ij

)q)
]}1/
))
. (19)

This study exploited a well-grounded score function advanced by Zeng et al. (2019)
to help compare the obtained T-SF comprehensive evaluation values. Let t ′i = (μ′

i , η
′
i , ν

′
i )

signify the T-SF comprehensive evaluation value produced by the T-SF WA, FWA,
AAWA, WG, FWG, or AAWG operators, where its degree of refusal-membership γ ′

i =
q

√
1 − (μ′

i )
q − (η′

i )
q − (ν′

i )
q . Following Zeng et al.’s formulation, the aggregated score
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Table 5
Outcomes of the T-SF comprehensive evaluation value t ′

i
yielded by the comparative approaches.

Method t ′1 = (μ′
1, η

′
1, ν

′
1) t ′2 = (μ′

2, η
′
2, ν

′
2) t ′3 = (μ′

3, η
′
3, ν

′
3) t ′4 = (μ′

4, η
′
4, ν

′
4)

The aggregation technique using Ullah et al.’s (2020a) operators
T-SF WA (0.7051, 0.3629, 0.2095) (0.6765, 0.2787, 0.4045) (0.4999, 0.1672, 0.2343) (0.8093, 0.2353, 0.3190)
T-SF WG (0.6771, 0.3629, 0.3607) (0.6076, 0.2787, 0.5287) (0.4846, 0.1672, 0.4894) (0.7749, 0.2353, 0.3379)
The aggregation technique using Mahnaz et al.’s (2022) operators
T-SF FWA (0.7030, 0.3647, 0.2103) (0.6740, 0.2789, 0.4081) (0.4993, 0.1673, 0.2367) (0.8071, 0.2359, 0.3192)
T-SF FWG (0.6790, 0.4574, 0.3583) (0.6124, 0.2981, 0.5272) (0.4851, 0.1921, 0.4825) (0.7780, 0.3321, 0.3375)
The aggregation technique using Hussain et al.’s (2022b) operators
T-SF AAWA (0.7443, 0.3161, 0.1735) (0.7185, 0.2668, 0.2913) (0.5247, 0.1596, 0.1716) (0.8375, 0.1869, 0.3117)
T-SF AAWG (0.6510, 0.5505, 0.5025) (0.5024, 0.3168, 0.5703) (0.4733, 0.2307, 0.6497) (0.7254, 0.3811, 0.3896)

Fig. 4. Juxtaposition of three components of positive-, neutral-, and negative-membership in t ′
i
.

value of t ′i is elucidated like this:

AS
(
t ′i
) = (

μ′
i

)q − (
η′

i

)q − (
ν′
i

)q + (
γ ′
i

)q
(

exp((μ′
i )

q − (η′
i )

q − (ν′
i )

q)

exp((μ′
i )

q − (η′
i )

q − (ν′
i )

q) + 1
− 1

2

)
.

(20)

In the light of the location selection issue of a construction company for building new
apartments, this research exploited Eqs. (14)–(19) to produce the T-SF comprehensive
evaluation value t ′i , and the determination outcomes are displayed in Table 5. Herein, re-
ferring to the specifications by Mahnaz et al. (2022) and Hussain et al. (2022b), the two
parameters φ and 
 were designated as φ = 2 in Eqs. (15) and (18) and 
 = 5 in Eqs.
(16) and (19). To get a general idea of the obtained T-SF comprehensive evaluation val-
ues, the juxtaposition results of the three components of positive-, neutral-, and negative-
membership (i.e. μ′

i , η′
i , and ν′

i , respectively) contained in t ′i are sketched in Fig. 4.
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Table 6
The aggregated score value and the T-SF comprehensive correlation index with their rank orders.

Source of methods Comparative approach a1 a2 a3 a4

Ullah et al. (2020b) T-SF WA operator 0.7252 (2) 0.6520 (4) 0.6991 (3) 0.8091 (1)
T-SF WG operator 0.6397 (2) 0.4664 (4) 0.5001 (3) 0.7768 (1)

Mahnaz et al. (2022) T-SF FWA operator 0.7224 (2) 0.6472 (4) 0.6982 (3) 0.8074 (1)
T-SF FWG operator 0.5550 (2) 0.4624 (4) 0.5048 (3) 0.7355 (1)

Hussain et al. (2022b) T-SF AAWA operator 0.7855 (2) 0.7575 (3) 0.7245 (4) 0.8423 (1)
T-SF AAWG operator 0.2675 (3) 0.3334 (2) 0.1994 (4) 0.6316 (1)

Chen et al. (2021) T-SF GGHG operator 0.4620 (2) 0.3257 (3) 0.1951 (4) 0.6322 (1)
Current paper Square root function type 0.7040 (2) 0.2360 (3) 0.1801 (4) 0.9402 (1)

Maximum function type 0.7157 (2) 0.2478 (3) 0.1339 (4) 0.9578 (1)

Next, this study used Eq. (20) to generate the aggregated score value AS(t ′i ) and then
identify the corresponding prioritization ranking order, as revealed in Table 6. Over and
above that, to conduct a baseline analysis, the technique using the T-SF GGHG oper-
ator evolved by Chen et al. (2021) will be exploited to be a beginning point used for
comparisons. The aggregated score values generated by the T-SF GGHG operator are
exhibited in Table 6. As described in the previous subsection, when employing the pro-
pounded methodology in this study, the T-SF comprehensive correlation indices (CI√(ai)

and CI∧(ai) based on the square root and maximum functions, respectively) are also dis-
played in Table 6. Moreover, the numbers in parentheses are the orders of precedence for
each choice option. The techniques using the T-SF WA, WG, FWA, and FWG operators
generated the identical prioritization ranking a4 � a1 � a3 � a2. The techniques using
the T-SF AAWA and GGHG operators and the current multiple-criteria choice method
using the square root and maximum functions generated the same prioritization ranking
a4 � a1 � a2 � a3. The use of the technique using the T-SF AAWG operator yielded
a particularly different ordering result a4 � a2 � a1 � a3. Of all the comparative ap-
proaches, only the solution results yielded by the T-SF AAWA operator and the current
methodology ranked the same as the benchmark method using the T-SF GGHG operator.
The Spearman correlation between the benchmark ranking (i.e. a4 � a1 � a2 � a3) and
the solution outcome based on the T-SF WA, WG, FWA, and FWG operators is equal to
0.8. The Spearman correlation between the benchmark ranking and the solution outcome
based on the T-SF AAWG operator is also equal to 0.8. It is noted that the Spearman corre-
lation between the two prioritization rankings a4 � a1 � a3 � a2 and a4 � a2 � a1 � a3

reduces to 0.4.
The aggregated score values and T-SF comprehensive correlation indices yielded

by the T-SF averaging aggregation operations and the evolved multiple-criteria choice
method, respectively, are contrasted in Fig. 5. In particular, Fig. 5(a) reveals the compar-
isons among the four choice options under distinct comparative approaches. Furthermore,
consider that the choice option a4 performed the best among all comparative approaches,
while the choice option a3 performed the worst among most comparative approaches (i.e.
the T-SF AAWA, AAWG, GGHG operators, and the current method based on the square
root and maximum functions). The relative performances associated with the best and
comparatively worst choice options (i.e. a4 and a3, respectively) are contrasted in Fig. 5(b)
to highlight their juxtaposition.
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Fig. 5. Comparison results of the aggregated score values/T-SF comprehensive correlation indices.

Going a step further, this study attempts to examine the solution outcomes produced by
the comparative approaches with a benchmark ranking by Chen et al. (2021). The priori-
tization ranking (i.e. a4 � a1 � a3 � a2) obtained by the techniques using the T-SF WA,
WG, FWA, and FWG operators differs from the benchmark ranking (i.e. a4 � a1 � a2 �
a3) based on the T-SF GGHG operator in the outranking relationship between a2 and a3.
The difference between the prioritization ranking (i.e. a4 � a2 � a1 � a3) rendered by
the technique using the T-SF AAWG operator and the benchmark ranking based on the
T-SF GGHG operator lies in the outranking relationship between a1 and a2. Different from
the techniques using the aggregation operators initiated by Ullah et al. (2020a), Mahnaz
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et al. (2022), and Hussain et al. (2022b), the prioritization rankings yielded by the two
approaches based on square root and maximum functions in this study are consistent with
the benchmark ranking determined from the T-SF GGHG operator. Therefore, the com-
parative investigation of the application outcomes supports the superiority of the proposed
multiple-criteria choice method grounded in T-SF data-driven correlation measures.

4.3. More Comparative Discussion Based on Parametric Analysis

This subsection has the objective of conducting a comprehensive comparative analysis
from a problem-oriented point of view. In the first comparative study, different settings of
the anchoring parameter are explored and the yielded outcomes of T-SF comprehensive
correlation indices under each scenario are discussed holistically. In the second compara-
tive study, the best and worst choice options that are constituted by the universal and null
T-SF sets are replaced by the positive and negative ideal schemes, respectively, to be a
benchmark for exploring the effects on the T-SF correlation-focused measurements.

The first comparative study gives thought to distinct assigned values of the anchoring
parameter ξ and investigates the yielded consequences of T-SF comprehensive correlation
indices under various parameter settings. By conducting such a comparative study, the
effect of the distinct controlling or deciding of the parameter ξ on the T-SF comprehensive
correlation indices CI√(ai) (based on the square root function) and CI∧(ai) (based on
the maximum function) can be obtained; moreover, the stability and controllability of the
prioritization ranking results can be investigated. In the comparative analysis, the values of
the anchoring parameter ξ were set to 0.0, 0.1, . . . , 1.0. The juxtaposition and comparisons
of CI√(ai) and CI∧(ai) for distinct values of ξ are portrayed in Fig. 6(a) and Fig. 6(b),
respectively.

As depicted in Fig. 6(a), the three prioritization rankings a1 �√ a4 �√ a3 �√ a2,
a4 �√ a1 �√ a3 �√ a2, and a4 �√ a1 �√ a2 �√ a3 were generated when
ξ = 0.0, 0.1, 0.2, ξ = 0.3, 0.4, 0.5, and ξ = 0.6, 0.7, . . . , 1.0, respectively. As re-
vealed in Fig. 6(b), the rankings a1 �∧ a4 �∧ a3 �∧ a2, a4 �∧ a1 �∧ a3 �∧ a2,
and a4 �∧ a1 �∧ a2 �∧ a3 were produced when ξ = 0.0, 0.1, ξ = 0.2, 0.3, 0.4, and
ξ = 0.5, 0.6, . . . , 1.0, respectively. In this respect, the prioritization ranking outcomes
using the square root function were not much different from those using the maximum
function. The main discrimination was that the ranking outcomes in the case of ξ = 0.2
and ξ = 0.5 are inconsistent. On the other hand, it is worth mentioning that the obtained
CI√(ai) and CI∧(ai) values gave rise to identical rankings (i.e. the prioritization rankings
a4 �√ a1 �√ a2 �√ a3 and a4 �∧ a1 �∧ a2 �∧ a3 when ξ = 0.6, 0.7, . . . , 1.0 and
ξ = 0.5, 0.6, . . . , 1.0, respectively) in comparison to the ranking outcome rendered by
Chen et al. (2021). Thus, the efficacy and reasonableness of the proposed methodology
can be corroborated because of consistent ranking results in most cases. Furthermore,
somewhat different rankings a4 �√ a1 �√ a3 �√ a2 (based on the square root func-
tion) and a4 �∧ a1 �∧ a3 �∧ a2 (based on the maximum function) were acquired when
ξ = 0.3, 0.4, 0.5 and ξ = 0.2, 0.3, 0.4, respectively. Nonetheless, different outcomes
were yielded in face of the small values of ξ , namely a1 �√ a4 �√ a3 �√ a2 and
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Fig. 6. Contrasts of the T-SF comprehensive correlation indices in distinct settings of the anchoring parameter.

a1 �∧ a4 �∧ a3 �∧ a2 when ξ = 0.0, 0.1, 0.2 and ξ = 0.0, 0.1, respectively. Over-
all, stable and justified consequences can be generated under most settings of ξ . When
ξ = 0.0, 0.1, 0.2 based on the “square root function” type or ξ = 0.0, 0.1 based on the
“maximum function” type, distinct prioritization ranking outcomes can be rendered to
reflect the change of the ξ values, which gives substance to the pliability of the current
methods by adjusting the anchoring parameter ξ . The comparison consequence demon-
strates that by controlling the parameter values, stable and flexible prioritization rankings
can be produced by using the propounded methodology.

In the second comparative study, the best choice option a+ and the worst choice op-
tion a− (composed of the universal T-SF set and the null T-SF set) are replaced by the
positive and negative ideal schemes, respectively, as an alternate benchmark for calculat-
ing the T-SF correlation-focused measurements. To accommodate the change of the ref-
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erence points, this study would like to yield the corresponding T-SF correlation-focused
measurements, so that the subsequent practical data processing and multiple-criteria eval-
uation procedures can operate smoothly. Through the juxtaposition and comparison of the
solution outcomes, the influence of distinct points of reference on the yielded results can
be clarified. Moreover, through the side-by-side comparison, the advantages of taking a+
and a− as points of reference can be demonstrated and justified.

The positive and negative ideal schemes would be exploited to replace the best and
worst choice options, respectively, to explore the influences of different points of refer-
ence on the T-SF correlation-focused measurements and resolution consequences. More
specifically, instead of the universal and null T-SF sets, the T-SF characteristics of the
ideal schemes would be established using the union and intersection operations. Let a∗
indicate the positive ideal scheme, where the T-SF characteristic T∗ = {〈cj , t∗j 〉 | cj ∈
C} = {〈cj , (μ∗j , η∗j , ν∗j )〉 | cj ∈ C}. Let a# signify the negative ideal scheme, where the
T-SF characteristic T# = {〈cj , t#j 〉 | cj ∈ C} = {〈cj , (μ#j , η#j , ν#j )〉 | cj ∈ C}. Utilizing
the set operations ∪ and ∩, T∗ and T# are delineated in this fashion:

1. T∗ =
{〈

cj ,
(

maxm
i=1 μij , minm

i=1 ηij , minm
i=1 νij

)〉 ∣∣∣ cj ∈ CPo,〈
cj ,

(
minm

i=1 μij , minm
i=1 ηij , maxm

i=1 νij

)〉 ∣∣∣ cj ∈ CNe
}
;

2. T# =
{〈

cj ,
(

minm
i=1 μij , minm

i=1 ηij , maxm
i=1 νij

)〉 ∣∣∣ cj ∈ CPo,〈
cj ,

(
maxm

i=1 μij , minm
i=1 ηij , minm

i=1 νij

)〉 ∣∣∣ cj ∈ CNe
}
.

Recall that CPo = {c2, c3} and CNe = {c1, c4} in the location selection problem. Using
the aforesaid manner, the T-SF characteristics of a∗ and a# were identified as follows: T∗ =
{〈c1, (0.14, 0.12, 0.83)〉, 〈c2, (0.91, 0.12, 0.13)〉, 〈c3, (0.81, 0.11, 0.11)〉, 〈c4, (0.11, 0.14,

0.84)〉} and T# = {〈c1, (0.75, 0.12, 0.41)〉, 〈c2, (0.26, 0.12, 0.63)〉, 〈c3, (0.56, 0.11, 0.55)〉,
〈c4, (0.61, 0.14, 0.45)〉}. The corresponding T-SF weighted characteristics were given
by: T W∗ = {〈c1, (0.1300, 0.1156, 0.8012)〉, 〈c2, (0.7542, 0.1171, 0.1009)〉, 〈c3, (0.8422,

0.1147, 0.1060)〉, 〈c4, (0.1286, 0.1637, 0.8922)〉} and T W
# = {〈c1, (0.7080, 0.1156,

0.3965)〉, 〈c2, (0.1919, 0.1171, 0.5083)〉, 〈c3, (0.5914, 0.1147, 0.5538)〉, 〈c4, (0.6963,

0.1637, 0.5210)〉}. The T-SF weighted informational energies were derived as: IE(T W∗ ) =
2.1053 and IE(T W

# ) = 2.0837. The comparisons of the T-SF weighted correlation
functions CF(T W

i , T W+ ), CF(T W
i , T W∗ ), CF(T W

i , T W− ), and CF(T W
i , T W

# ) are mani-
fested in Fig. 7. Furthermore, the T-SF weighted correlation coefficients CC√(T W

i , T W+ ),
CC√(T W

i , T W∗ ), CC√(T W
i , T W− ), and CC√(T W

i , T W
# ) are contrasted in Fig. 8(a), while

the comparisons of CC∧(T W
i , T W+ ), CC∧(T W

i , T W∗ ), CC∧(T W
i , T W− ), and CC∧(T W

i , T W
# )

are exhibited in Fig. 8(b).
First, consider the contrast outcomes of the T-SF weighted correlation functions con-

cerning the best choice option a+ and the positive ideal scheme a∗, as revealed in Fig. 5.
The differences among the CF(T W

i , T W+ ) values of the four choice options (a1 − a4) were
significantly higher than the differences among the CF(T W

i , T W∗ ) values. In particular,
the gap between the maximum value (i.e. CF(T W

4 , T W+ )) and the minimum value (i.e.
CF(T W

3 , T W+ )) was quite pronounced. However, the gap between the maximum value
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Fig. 7. Contrast outcomes of the T-SF weighted correlation functions concerning distinct points of reference.

(i.e. CF(T W
4 , T W∗ )) and the minimum value (i.e. CF(T W

3 , T W∗ )) did not show a partic-
ularly significant difference. Next, concerning the T-SF weighted correlation functions
toward the worst choice option a− and the negative ideal scheme a#, the maximum value
of CF(T W

i , T W− ) and the maximum value of CF(T W
i , T W

# ) correspond to different options;
the same is true for the minimum value of CF(T W

i , T W− ) (or CF(T W
i , T W

# )). To be precise,
the options a2 and a1 enjoy the largest and smallest values, respectively, of CF(T W

i , T W− );
a3 and a4 enjoy the largest and smallest values, respectively, of CF(T W

i , T W
# ).

Next, consider the comparisons of the T-SF weighted correlation coefficients with rel-
evance to two types of points of reference (i.e. one type for the best and worst choice
options and the other type for the positive and negative ideal schemes). Let us inves-
tigate the contrast outcomes in Fig. 8(a) using the “square root function” type. The
CC√(T W

i , T W∗ ) values of the four choice options were significantly higher than the
CC√(T W

i , T W+ ) values; this phenomenon was also found in the comparisons of the val-
ues of CC√(T W

i , T W
# ) and CC√(T W

i , T W− ). The higher the value of CC√(T W
i , T W+ ) (or

CC√(T W
i , T W∗ )), the higher the correlation between the corresponding option ai and a+

(or a∗). Accordingly, the decision-maker expects to choose the option that is highly cor-
related with the best choice option (or the positive ideal scheme). The lower the value
of CC√(T W

i , T W− ) (or CC√(T W
i , T W

# )), the lower the correlation between ai and a− (or
a#). In this regard, the decision-maker expects to choose the option that lowly correlates
with the worst choice option (or the negative ideal scheme). In Fig. 8(a), the numeri-
cal orders of the T-SF weighted correlation coefficients for mutual relationships with a+
and a∗ were CC√(T W

4 , T W+ ) > CC√(T W
1 , T W+ ) > CC√(T W

2 , T W+ ) > CC√(T W
3 , T W+ )

and CC√(T W
4 , T W∗ ) > CC√(T W

1 , T W∗ ) > CC√(T W
2 , T W∗ ) > CC√(T W

3 , T W∗ ), re-
spectively. Different from the identical ranking orders above, the numerical orders of
the T-SF weighted correlation coefficients for mutual relationships with a− and a#
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Fig. 8. Contrast outcomes of the T-SF weighted correlation coefficients concerning distinct points of reference.
(a) Outcomes using the “square root function” type. (b) Outcomes using the “maximum function” type.

were CC√(T W
1 , T W− ) < CC√(T W

4 , T W− ) < CC√(T W
3 , T W− ) < CC√(T W

2 , T W− ) and
CC√(T W

4 , T W
# ) < CC√(T W

1 , T W
# ) < CC√(T W

2 , T W
# ) < CC√(T W

3 , T W
# ), respectively.

In Fig. 8(b), the findings concerning the contrast outcomes using the “maximum function”
type were about the same as those using the “square root function” type except for the re-
sults of CC∧(T W

i , T W
# ). Specifically, the numerical orders of CC∧(T W

i , T W
# ) were given

by CC∧(T W
4 , T W

# ) < CC∧(T W
1 , T W

# ) < CC∧(T W
3 , T W

# ) < CC∧(T W
2 , T W

# ). In the mat-
ter of the numerical orders of the T-SF weighted correlation coefficients among the four
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options, the two ranking outcomes employing CC√(T W
i , T W+ ) and CC√(T W

i , T W∗ ) were
consistent; however, the two ranking outcomes via CC√(T W

i , T W− ) and CC√(T W
i , T W

# )

were somewhat different. To unify the inconsistent numerical orders, this study continued
to calculate the T-SF comprehensive correlation indices for the final decision.

To facilitate discussing the effects of the anchoring parameter ξ regarding the so-
lution consequences, this study set eleven different values for the parameter to calcu-
late the T-SF comprehensive correlation indices and identify the ultimate ranking out-
come under various scenarios. This study designated the anchoring parameter ξ rang-
ing from 0 to 1, wherein ξ = 0.0, 0.1, . . . , 1.0. Let CC ∗√ = min4

i′=1 CC√(T W
i′ , T W∗ ),

CC ∗√ = max4
i′=1 CC√(T W

i′ , T W∗ ), CC #√ = min4
i′=1 CC√(T W

i′ , T W
# ), and CC #√ =

max4
i′=1CC√(T W

i′ , T W
# ) for the “square root function” type. Let CC ∗∧ =min4

i′=1 CC∧(T W
i′ ,

T W∗ ), CC ∗∧ = max4
i′=1 CC∧(T W

i′ , T W∗ ), CC #∧ = min4
i′=1 CC∧(T W

i′ , T W
# ), and CC #∧ =

max4
i′=1 CC∧(T W

i′ , T W
# ) for the “maximum function” type. On the grounds of the ideal

schemes a∗ and a#, the T-SF comprehensive correlation indices CI′√(ai) and CI′∧(ai) are
elucidated in this fashion:

CI′√(ai) = ξ ·
CC√(T W

i , T W∗ ) − CC ∗√

CC ∗√ − CC ∗√ + (1 − ξ) ·
CC #√ − CC√(T W

i , T W
# )

CC #√ − CC #√ , (21)

CI′∧(ai) = ξ · CC∧(T W
i , T W∗ ) − CC ∗∧

CC ∗∧ − CC ∗∧
+ (1 − ξ) · CC #∧ − CC∧(T W

i , T W
# )

CC #∧ − CC #∧
. (22)

Regarding the “square root function” type, the juxtaposition of the T-SF comprehen-
sive correlation indices CI√(ai) and CI′√(ai) for various values of ξ are displayed in Fig. 9.
Specifically, Fig. 9(a) reveals the contrast outcomes concerning the points of reference a+
and a−, while Fig. 9(b) demonstrates the comparisons in connection with the points of
reference a∗ and a#. For the “maximum function” type, the juxtaposition of the T-SF com-
prehensive correlation indices CI√(ai) and CI′√(ai) for various values of ξ are sketched
in Fig. 10. Herein, Fig. 10(a) shows the comparison consequence on the grounds of a+
and a−, while Fig. 10(b) exemplifies the contrasts based on a∗ and a#.

On the grounds of the reference points of the ideal schemes a∗ and a#, the con-
trast outcomes of the T-SF comprehensive correlation indices among the four options
presented moderately unreasonable patterns; moreover, these results may be difficult to
be accepted by the decision-maker. To be specific, the unusual consequences were pro-
duced using the “square root function” type, i.e. CI′√(a3) = 0 and CI′√(a4) = 1 for
all ξ = 0.0, 0.1, . . . , 1.0, as displayed in Fig. 9(b). Additionally, it was received that
CI′∧(a4) = 1 predicated on the “maximum function” type for all ξ = 0.0, 0.1, . . . , 1.0, as
displayed in Fig. 10(b). Regardless of how the value of the anchoring parameter ξ changed,
the indices CI′√(a3), CI′√(a4), and CI′∧(a4) were fixed at 0, 1, and 1, respectively. These
findings revealed that the multiple-criteria analysis approach that exploited the positive
and negative ideal schemes as a benchmark for reference was not sensitive enough to
reflect changes in various ξ values. On the contrary, the propounded methodology pred-
icated on the best and worst choice options (i.e. a+ and a−) that were established on the
universal and null T-SF sets generated reasonable and desirable consequences.
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Fig. 9. Contrast outcomes of CI√(ai ) and CI′√(ai ) for various values of ξ .

5. Conclusions and Future Research Avenues

The framework based on T-spherical fuzziness provides an important tool for overcoming
complex uncertainties in multiple-criteria choice issues by manipulating the four mem-
bership degrees involving positive, neutral, negative, and refusal components. One of the
recent developments of multiple-criteria analysis techniques under T-SF conditions, the
notion of correlation coefficients, has an increased uncertainty modelling capacity for
decision-making. This paper creates some valuable concepts of T-SF data-driven correla-
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Fig. 10. Contrast outcomes of CI∧(ai ) and CI′∧(ai ) for various values of ξ .

tion measures predicated on correlation coefficients in T-SF settings. Furthermore, this pa-
per formulates a beneficial multiple-criteria choice method through a correlation-focused
approach, which assists with computational intelligence in uncertain decision analysis.
Following the anchored comparisons relative to the universal T-SF set and the null T-SF
set, this paper constructs the T-SF weighted correlation coefficients using the types of
square root and maximum functions. This paper also institutes the T-SF comprehensive
correlation indices to determine the relative prioritization of all competing options and
decide on the most appropriate scheme.
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The evolved methodology is applied to a location selection issue to support a construc-
tion company in constructing new apartments. In addition to an applicable illustration, two
types of comparative analyses (by changing anchoring parameters and reference T-SF sets)
are performed to examine the robustness and merits of the developed techniques. It was
found that the obtained T-SF comprehensive correlation indices render relatively stable
but adjustable ranking results in different scenarios of anchoring parameters. Moreover,
comparative analyses demonstrate that the T-SF comprehensive correlation indices pred-
icated on the universal and null T-SF sets are more reasonable and justifiable than the
yielded outcomes on the other reference T-SF sets.

Although the advantages of the multiple-criteria choice methodology are demonstrated
through practical applications and comparative studies, the current methods still struggle
with research limitations and disadvantages. The core concept of schematizing the evolved
methodology is the notion of the T-SF data-driven correlation measures, which are derived
from the T-SF correlation coefficients. The T-SF correlation coefficients can be utilized
in statistical analysis or machine learning, and they mainly measure the degree of linear
correlation between two T-SF sets. In other words, the T-SF correlation coefficients can
explore whether there is a linear relationship between two T-SF sets (or multiple T-SF
sets). However, if the relationship between two T-SF sets is nonlinear, the T-SF correlation
coefficients may not precisely represent the relationship between them. This limitation
may reduce the accuracy or sensitivity of the T-SF data-driven correlation measures in
distinguishing between superior and inferior T-SF (weighted) characteristics.

Future research avenues can be improved and extended in two aspects. First, the pro-
posed methodology and techniques can be exploited for other relevant high-order fuzzy
configurations, such as uncertain sets of interval-valued spherical fuzziness, (complex)
T-spherical fuzziness, (complex) q-rung orthopair fuzziness, T-spherical hesitant fuzzi-
ness, and neutrosophic fuzziness. Second, colloquially referred to as a normalized mea-
surement of the covariance using correlation coefficients in applied statistics, the initiated
T-SF data-driven correlation measures can also be employed for a variety of tasks in data
analysis, decision aiding, engineering, intelligence sciences, and other areas.
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