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Abstract. Knowledge graphs are commonly represented by ontology-based databases. Tracking the
provenance of ontological changes and ensuring ontology consistency is important. In this work, we
propose a transaction manager for ontology-based database manipulation that combines blockchain
and Semantic Web technologies. The latter is used for the efficient querying and modification of
data, whereas the blockchain is used for the secure storage and tracking of changes. The blockchain
enables a decentralized setup and data restoration. We evaluate our solution by measuring cost and
time. Our solution introduces some overhead for updates whereas querying works at the same speed
as the underlying ontology database.
Key words: Semantic Web, blockchain, ontologies, databases, IPFS, Ethereum.

1. Introduction

The World Wide Web is one of the most commonly used platforms for computer appli-
cations today. While it contains a large amount of knowledge on a wide variety of topics,
most of that knowledge is captured in unstructured text documents. These documents are
designed to be understood by humans and are difficult to use for computer systems. The
inventor of the World Wide Web, Tim Berners-Lee, famously claimed that the informa-
tion presented on the Web should be accessible as raw data presented in a well-defined
structured format. The data would thus be more useful for other applications. He described
the concept of the Semantic Web, where in addition to human-readable formats, the infor-
mation would also be available in a structured form designed to be used by computers. In
order to help reach this goal, the World Wide Web Consortium (W3C) defined a set of tech-
nologies that are recommended when developing the Semantic Web. For modelling human
knowledge in a way that is useful for computers, ontology representations are commonly
used. In computer science, ontologies are collections of entities, their properties, and con-
nections between them. Building and updating ontologies present many challenges. One
of the main challenges is storing an ontology in such a way that anyone could use it and
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contribute new knowledge. This could be achieved by setting up centralized servers. That,
however, would require someone constantly maintaining and paying for the infrastructure.
Once the maintenance stopped, the ontology would also stop being available and would
be lost.

In recent years, we have seen a rise in the popularity of blockchain technologies. Public
blockchains like Bitcoin (Nakamoto, 2009) work using a peer-to-peer network and a set
of advanced cryptographic algorithms to store a list of transactions between its users. This
way they can provide transparency, decentralization, and tamper-resistance, which are all
features that would also be useful for managing public ontologies. There are different
varieties of blockchain networks. On public blockchains, anyone can read and use the
stored data. There are also private blockchains that limit who can see and change their
data. Since a private blockchain allows us to ensure that only trusted users get access,
there is less need for strict security protocols. Some blockchains use some concepts from
public and some from private blockchains. Those chains are called hybrid blockchains.
The idea of using blockchains for storing data was further expanded in 2015 when the
Ethereum network (Buterin, 2014) enabled many other applications to take advantage of
the technology using smart contracts. Smart contracts are programs that we can publish
on the Ethereum blockchain that ensure the execution of agreements described in them.
In our project, we use smart contracts to store the data about each change on the Ethereum
blockchain.

Blockchains ensure decentralization, security, and transparency. While blockchains
provide secure and decentralized storage, they are not designed to store large amounts of
data. This limitation comes from the fact that every client has to download all of the data
that is stored on the blockchain. In order to store larger amounts of data in a decentralized
way, we propose the use of the IPFS network (Benet, 2014). IPFS (interplanetary file sys-
tem) is a P2P system that distributes storage among multiple computers in a network. The
network is designed for storing larger files. We can access the files stored in the network
using their content identifiers. Each identifier is comprised of multiple parts: the encoding
prefix, version, content type code, and the hash of the document. The identifiers are short
enough to be stored on the blockchain using a smart contract. This way we can combine
the two technologies to store larger files while keeping the security and transparency that
the blockchain provides.

In our work, we combine the blockchain with the technologies of the Semantic Web to
produce a system for managing ontologies. Our system uses the Ethereum smart contracts
and the IPFS network to store an ontology in a completely decentralized way. This allows
us to distribute a public ontology to its users without needing centralized servers. We
can also enable users to submit their own changes to the ontology. All the changes to
the ontology are tracked, so anyone can revert the ontology back to a previous state and
continue developing it as their own branch. The implementation and evaluation of the
proposed system is publicly available in the source code repository (Gašperlin, 2021).
The main contributions of our work are as follows:

a) Implementation of the proposed solution into an ontology-based database transaction
manager would provide strong security via decentralization and authorized change log-
ging.
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b) Based on existing proposed systems, the proposed system allows for complete data
loss protection and complete history of changes that enable restoration to any point in
history.

The rest of the paper is organized as follows: in Section 2 we present previous work re-
lated to the Semantic Web, blockchain technologies, and combining the two. In Section 3,
we present our transaction manager for ontology databases that uses Ethereum and IPFS
to track changes made to an ontology. In Section 4, we present data flow and describe
common usage patterns. After that, in Section 5, we run a series of tests to determine the
performance and cost of using our transaction manager. Finally, in Section 6, we comment
on the results and propose some directions for future work.

2. Background and Related Work

In this section, we introduce previous work that has explored the use of ontologies and
other Semantic Web technologies. We also present work related to blockchain technolo-
gies and a combination of the two.

2.1. Semantic Web

The idea of a Semantic Web was proposed by Tim Berners-Lee at the very first World
Wide Web Conference in 1994 (Shadbolt et al., 2006). Many years later, however, it has
still not been fully realized. The technology stack for implementation of the Semantic Web
was later standardized by the W3C organization. The semantic Web is designed to be an
extension of the World Wide Web, where the meaning of information is well defined. The
main focus is put on the data instead of the documents. On the Semantic Web, data is
presented by entities and the relations between them.

The basis for a Semantic Web are unique identifiers of resources that can be used
to reference and differentiate between the resources. For that purpose, we use uniform
resource identifiers (URI). The most common type of a URI is the URL that defines the
protocol and the location on the computer network required for accessing a resource.

In addition to resource identifiers, another technology defined by the W3C is the data
model for representing information. W3C standardized the use of the Resource Descrip-
tion Framework (RDF) model, described by Decker et al. (2000), for data representation
on the Semantic Web. The RDF model uses simple statements to describe resources and
connections between them. When working with ontologies, it is useful to have some uni-
fied sets of relations that can be used to describe entities. For this purpose, the RDFS and
the OWL languages were created to expand the RDF and provide better descriptiveness
(McBride, 2004; Horrocks et al., 2003; McGuinness and Van Harmelen, 2004).

The Semantic technology stack also defines the SPARQL language described by Pérez
et al. (2006). SPARQL is a language for querying an ontology. It supports a set of state-
ments for retrieving data from an ontology. It also supports commands for inserting and
deleting relations captured in an ontology. The specification also defines some other stan-
dards that are not relevant to our proposed system.
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In this work, we focus mostly on the part of the Semantic Web related to building on-
tologies. The ontologies are considered to be the backbone of the Semantic Web (Taye,
2010). In the field of computer science, ontology is a model of entities and the relations
between them (Stevens et al., 2000; Noy and McGuinness, 2001). Ontologies have be-
come one of the most common representations for storing general human knowledge in
computer systems (Noy and McGuinness, 2001). Over the last years, many different on-
tologies have been built with the aim of capturing as much Semantic knowledge as pos-
sible (Lehmann et al., 2015; Bollacker et al., 2008; Speer and Havasi, 2012; Shortliffe,
1976; Donnelly, 2006). One of the best-known ontologies is DBpedia (Lehmann et al.,
2015), which contains general knowledge gathered from infoboxes on Wikipedia. We de-
cided to demonstrate our system on the DBpedia ontology. Ontologies can also contain
more specific domain knowledge. For instance, the SNOMED CT (Donnelly, 2006) on-
tology and the MYCIN (Shortliffe, 1976) ontology contain medical information designed
to help doctors with their work.

2.2. Blockchain Technologies

The rise of blockchain technology started with the cryptocurrency Bitcoin in 2009
(Nakamoto, 2009) when a peer-to-peer electronic cash system was presented to allow on-
line payments to be sent to people without the need for centralized intermediaries. This has
also solved the double-spending problem. However, the idea of a chain of blocks secured
by cryptography was introduced by Stuart Haber for timestamping digital documents in
1991 (Haber and Stornetta, 1991).

Blockchain technology has been evolving through generations. First-generation (Bit-
coin, Litecoin, Dogecoin) was focused on creating a digital currency. The second-
generation (Ethereum Classic) extended the concept to the use of smart contracts. They
enable more advanced use cases besides the transfer of currency to support the digital
economy. Smart contracts follow the terms of the agreement. An example of such plat-
form is Ethereum but in the early stages, such smart contracts were error-prone and con-
tained security vulnerabilities. Ethereum co-founder Gavin Wood even coined the term
web3 as a decentralized online ecosystem based on blockchain. It could be the future of
the world wide web (Edelman, 2021). The third generation (Cardano, Polkadot) created
blockchain applications. With them, we can create a digital society where people could
participate in broader economic activity in the areas such as health, art, education, and
culture (Efanov and Roschin, 2018). Based on accessibility we can differentiate between
consortium, private and public blockchains. In public blockchains, anyone can join the
network and participate in it. In private blockchains, only a selected few participants can
be part of the network. Consortium blockchains have properties of both public and pri-
vate networks. For consortium blockchains, permissions can be set as needed. They can
be used to connect people from multiple organizations.

With smart contracts on Ethereum other cryptocurrencies or tokens can be created.
Fungible tokens like Ether can be exchanged and traded as they are identical. On the other
hand, we have non-fungible tokens. Each such token is unique and is not identical to other
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tokens. They can be used to represent rights, identities, and other real-world items such as
art. In our application, we only use the ether tokens, which are fungible to pay for smart
contract operations. The use of custom tokens is interesting for future expansion, as they
could be used for the purpose of managing user permissions or as a payment for certain
operations on the ontology.

2.3. Semantic Web and Blockchain Integrations

The combination of Semantic Web and blockchain technologies has seen some atten-
tion in the literature recently. One project combining the two technologies was presented
by Hector and Boris (2020). They created an interface in the form of an ontology called
BLONDiE, that uses a Semantic representation to convey the current information about
a blockchain. Multiple projects also explored ways of using blockchains to make the Se-
mantic Web better. One such work is presented by Ugarte (2017), who presents an idea
about a futuristic Internet based on blockchains. English et al. (2016) present the potential
benefits of combining Semantic technologies with a blockchain. The work of English et
al. is later expanded by Cano-Benito et al. (2019). Both papers focus on using blockchain
technologies in the Semantic Web definitions themselves. By doing this the Semantic Web
can be improved. They also present some scenarios in which the blockchain could be im-
proved by using Semantic Web technologies. On the other hand, our aim is not to replace
parts of the Semantic Web with blockchain, but rather to use the blockchain to enable the
construction of a communal ontology without relying on a centralized governing entity.

Naim and Klas (2019) present a Semantic blockchain framework, that allows storing
data on a blockchain in the form of an ontology. This helps with the efficient retrieval of
data from the blockchain. Their approach requires everyone connected to the blockchain
network to store the entire ontology. This raises scalability concerns for use cases that
require storing large ontologies.

Another solution using blockchain technologies is presented by Markovic et al. (2019).
They implement a system for tracking food transport and determining if each part was
compliant with the appropriate legislation. Data is stored in the Hyperledger Fabric
blockchain that allows buyers to check if the transport process was appropriate.

Our application focuses on using a blockchain for tracking changes in an ontology.
Tracking ontology changes is not a new concept. We present the existing tools that are
related to our use case in Table 1. Some tools for tracking changes for the purposes of undo
and redo functionalities are already present in the Protégé editor for ontologies (Liang et
al., 2005). These tools are very limited since all changes are lost after a program restart.
An improvement for change tracking in Protégé was proposed by Khattak et al. (2009).
They created a plugin for the Protege editor that tracks every change that the user makes
and allows a rollback to any previous version. Their solution keeps the changes stored in
one place, which enables the tracking of each change from the beginning of an ontology.
In their solution, all changes are only stored on a single computer and are available to
only one user. We aim to use distributed storage technologies to store the changes in a
decentralized and distributed way that protects us from data loss and enables collaboration
between multiple users.
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Table 1
Comparison of projects that are the most similar to ours. All of the systems using a blockchain platform use

Ethereum in combination with IPFS.
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Protégé history Tracking ontology changes for
undo and redo operations

✗ ✗ ✓ ✓ ✗ ✗ ✗

Nizamuddin et al. (2019) Tracking changes to documents ✓ ✓ ✗ ✓ ✓ ✓ ✗

Khattak et al. (2009) Tracking changes to the ontology ✗ ✗ ✓ ✓ ✓ ✗ ✓

Jianjun et al. (2020) Sharing documents only with
trusted users

✓ ✓ ✗ ✗ ✓ ✓ ✗

Steichen et al. (2018) Add access control using
blockchain to the IPFS network

✓ ✓ ✗ ✗ ✓ ✓ ✗

Our system Track changes to the ontology on
a blockchain

✓ ✓ ✗ ✓ ✓ ✓ ✓

We propose a solution for ontology management, that uses the Ethereum blockchain
combined with IPFS to track changes. This concept is somewhat similar to the work done
by Nizamuddin et al. (2019). They used Ethereum and IPFS to keep track of changes
when editing documents. Their application works in a similar way to version control soft-
ware. They also implemented the limitation that a change is only applied if it is approved
by at least two-thirds of the approvers. The main difference between our system and the
one proposed by Nizamuddin et al. is that their system is designed to work with general
documents without understanding their structure, while ours is designed as a transaction
manager for an ontology database. Our system uses the Apache Jena framework to parse
and execute the queries written by a user. Thus it can perform a variety of checks for the
correctness of a change, like checking its syntax, checking the ontology consistency after
the execution of a query etc. Jianjun et al. (2020) also combined IPFS with Ethereum to
create a system for sharing documents that can only be viewed by authorized users. This is
achieved by using an Ethereum smart contract for checking the identities of the users. An
approach similar to Jianjun et al. was also proposed by Steichen et al. (2018). They use
Ethereum and IPFS for access control. This way they solve the problem of only allowing
some users to access documents stored on the IPFS network.

A large majority of the existing solutions for integrating semantic web with blockchain
technologies use the Ethereum blockchain. The main reason for that is that they rely on
the use of Ethereum smart contracts. The Ethereum smart contracts can also be used on
any other network compatible with the Ethereum virtual machines. Because of that, there
are several alternatives to using Ethereum. We found that the most perspective alternatives
are the BNB chain (Binance team, 2022) and the Fantom platform (Choi et al., 2018). An
advantage of using Ethereum is that it has the most users making it very secure, while the
alternatives offer cheaper prices for executing smart contract functions.
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Fig. 1. Architecture of the proposed system. The user updates the database using a SPARQL query. (1) The user
sends a query to the SPARQL endpoint. (2) Our transaction manager uses Apache Jena to execute the update on
the local ontology database. (3) Transaction manager uses the java-ipfs-http-client to upload the query to IPFS.
(4) Transaction manager uses the Web3j library to store the IPFS identifier to the Ethereum smart contract.

3. Semantic Data Empowered by Blockchain

We present an architecture for a system combining Semantic Web and the blockchain
technologies (Fig. 1). The system tracks changes to the ontology on a blockchain. The
implementation of the system is available in a public source code repository (Gašperlin,
2021). By tracking ontology changes on a distributed blockchain, our solution ensures
safe storage of the ontology and also automates checking for its consistency. Among the
main advantages of using a blockchain-based ontology management system are: (a) the
ability for anyone to get the latest version of the ontology and contribute to it, (b) no need
for dedicated ontology storage, (c) the ability to rollback to any stage of the build and (d)
immutability of change history.

Our proposed system allows the user to interface with the ontology using the SPARQL
language (Pérez et al., 2006). This allows the user to query and edit its content as well as
create and delete records. Whenever a user executes a query that changes the ontology,
the change is also automatically stored on the blockchain. This allows us to reconstruct
the entire ontology from the blockchain in the event of a complete data loss. The use of a
public blockchain also means that anyone wanting to contribute or use our ontology can
reconstruct the ontology from the blockchain. After that, they can use the same system
to apply their own changes and share them on the blockchain. The use of cryptographic
methods also means that the identity of the author of each change can be tracked securely.
By checking the consistency of the ontology before applying a change to the blockchain
we can also ensure that no contradictions are introduced into the ontology.

The architecture is shown in more detail in Fig. 1. The user interfaces with the
application logic using the SPARQL language. The current ontology is stored locally
in the Apache Jena Triple Database (TDB). The application uses the Apache Jena li-
brary (Siemer, 2019) to access the Apache Jena TDB. The Apache Jena library was se-
lected for the implementation as it supports RDF databases, SPARQL querying, and rea-
soning for checking the ontology consistency. It lacks support for the OWL 2 language,
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but if that is a problem, we recommend switching to the owlapi library. Each change is
also recorded on the blockchain. Since storing large documents on a blockchain itself
is not efficient and would be very expensive, we store the data about the change on the
IPFS network. The application then stores the content identifier of the file stored on the
IPFS network to the Ethereum blockchain. The application uses the java-ipfs-http-client
library (Preston et al., 2020) for communication with the IPFS network and the Web3j li-
brary1 to communicate with the Ethereum network and for the creation of smart contracts.
All libraries are managed using Maven. This selection of tools is just an example of tools
to validate our theoretical proposal of creating an ontology-based transaction manager,
empowered by blockchain. The architecture of the system is presented in Fig. 1.

When using our ontology management system the user should not bypass our system
by editing the local ontology directly. This could result in a difference between the state of
the ontology recorded on the blockchain and the local ontology. In this case, a consistent
state could be achieved once again by restoring the local ontology from the blockchain.

Before we can run the program we have to define a set of parameters that the program
requires. Parameters can be set in the configuration file of the program. We have to set the
following parameters:

a) Path to the file containing SPARQL commands to execute;
b) IPFS node for connecting to the IPFS network;
c) Ethereum node for connecting to the Ethereum network;
d) A user account with funding for the smart contract (Private key or a wallet address

with a password).

We publish changes by first uploading them to the IPFS network. As a result, we get
an identifier that we can later use to retrieve the changes file. The identifier gets stored on
the Ethereum blockchain using a smart contract that gets created at the first launch of our
program. When one user creates a change, others can use the smart contract and the IPFS
network to get information about the change and update their local ontologies. The smart
contract is written in the Solidity language and translated to a Java class. It is not storing
the entire queries that might be large in size, but only the content identifiers that can be
used to retrieve the full queries from the IPFS network.

The smart contract contains 6 methods that get called by the transaction manager (see
Algorithm 1). The initial ontology refers to a set (or multiple sets) of triplets that get
inserted when the ontology is initialized. The migration refers to a SPARQL query that
has been executed on the ontology to change its data.

3.1. Selection of an Appropriate Blockchain Platform

We decided to use the Ethereum blockchain for storing the content identifiers of each
change to the ontology. The reason for using the Ethereum network is that the Ethereum
smart contracts are also supported by various different blockchain systems. We demon-
strate our system on the Ethereum network which is the most well-known and offers high

1Web3j Github: https://github.com/Web3j/Web3j

https://github.com/Web3j/Web3j
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Algorithm 1 Ethereum smart contract
1: procedure Add initial ontology (IPFS identifier)
2: initialOntologies.push(IPFS identifier)
3: procedure Get the number of initial ontologies return initialOntologies.length
4: procedure Get initial ontology (index)
5: if index < initialOntologies.length then return initialOntologies[index]
6: else

return ""
7: procedure Add migration (IPFS identifier)
8: migrations.push(IPFS identifier)
9: procedure Get the number of initial ontologies return migrations.length

10: procedure Get migration (index)
11: if index < migrations.length then return migrations[index]
12: else

return ""

security due to a large number of miners. One of the drawbacks of using Ethereum for
production systems is the high cost of smart contract transactions. To avoid that, the user
could easily reconfigure our system to work with a different blockchain that also supports
Ethereum smart contracts.

3.2. Consistency Checking

The idea behind consistency checking is that we can apply some rules to the relations in
an ontology. For instance, if we have a relation stating that a person was born on a certain
day, we can decide not to allow another relation stating that the same person was born
on another date. In order to prevent such cases, we need a method for checking consis-
tency based on some reasoning rules. Apache Jena supports multiple inference engines
(reasoners) for deriving assertions from base RDF graph and for checking its consistency
(Apache Jena, 2021). The mechanisms differ in their capabilities and complexities:

Transitive reasoner is a simple reasoner that provides support for checking the transitive
and reflexive properties of the subPropertyOf and subClassOf relations.

RDFS reasoner provides an implementation for the RDFS entailments. The user can
configure which entailments to use.

OWL, OWL mini, and OWL Micro reasoners implement a part of the OWL/Lite lan-
guage.

Generic rule reasoner provides support for user-defined rules. For example, the rule
could automatically assign rdf:type BigCity to the cities that have a population greater
than 1 million.

We only publish the changes to the blockchain if the resulting ontology is consistent.
One limitation of our approach for consistency checking is that the checks are done locally
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before a change is applied. This means that a malicious user could bypass the checks and
apply a contradictory change directly to the blockchain. This can be mitigated by checking
consistency when fetching the changes and reverting transactions that cause invalid states.
In order to completely resolve this issue in the future, we propose the use of a voting-
like mechanism where a change has to be confirmed by some number of users in order to
become a part of the ontology. This mechanism can be implemented similarly to the voting
mechanism proposed by Nizamuddin et al. (2019). In this case, we would have a group
of trusted users, who have the ability to approve transactions. Once a transaction has been
approved by two-thirds of the trusted users, it would become part of the ontology. In our
case, the process of approving a transaction would be done automatically by the reviewers’
transaction managers. In order for someone to become a trusted user, they would also
need the approval of a large enough percentage of existing trusted users. This way the
changes that cause an inconsistent state would not get included in the shared ontology.
This mechanism is not a part of our current implementation but could be implemented in
the future.

4. Common Usage Patterns

In this section, we present some of the common usage patterns that are supported by our
application. Each pattern describes steps that are taken in the application when completing
a task. We determine that the most important scenarios for our system are (a) the initializa-
tion of an ontology, (b) running a query, (c) recovering an ontology from the blockchain
and (d) collaborative development of an ontology.

4.1. General System Data Flow

When the transaction manager gets executed, the system first checks if the local ontol-
ogy is present. If there is no local ontology, it either reconstructs the ontology from the
blockchain (see Section 4.4) if it is available or initializes a new ontology (see Section 4.2).
Once the local ontology is present, the system checks for new changes that might have been
submitted to the blockchain by other users and applies them to the local ontology (see Sec-
tion 4.5). After that the queries provided by the user get executed on the local ontology
and written to the blockchain (see Section 4.3).

We present the interactions between each part of the system that take place when a user
submits a query to an already initialized ontology (Fig. 2). When a query is sent to our
transaction manager, it first checks for new changes using the Ethereum smart contract.
If any new changes have been committed since the last synchronization, it loads their
identifiers. The identifiers allow the transaction manager to locate the details about each
change on the IPFS network. The transaction manager then uses the identifiers to retrieve
the SPARQL queries that have been executed during each of the changes and runs them
on the local ontology database. After that, the state of the local ontology is synchronized
with the shared state.
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Fig. 2. A typical data flow between components of our system when a user runs a query using our transaction
manager. In the presented scenario, the system is already initialized and the user is running one or more SPARQL
queries. The first part of the process is responsible for retrieving new changes submitted by other users of the
ontology. The second part is responsible for applying and publishing the changes done by this user.

Once the local ontology is in a synchronized state, the user’s query gets executed and
the transaction manager checks the ontology for consistency with all of the reasoning
rules. If the ontology is consistent, the query gets written to the IPFS network. After that,
the transaction manager writes the IPFS content identifier of the query to the Ethereum
blockchain using the smart contract. By storing the queries on the IPFS network and only
storing their content identifiers on the blockchain we avoid the problems and cost of storing
large amounts of data on the blockchain. This is important since some queries for adding
ontology records can be very large.

4.2. Initializing the Ontology

The first use case that we describe is responsible for the initial loading of an existing
ontology into our system. In this case, we start with a pre-existing ontology stored locally
as a set of files containing the ontology triplets. The local ontology of the system is not yet
set up and the ontology is not yet stored on the distributed storage. During the process, the
ontology gets loaded into our local database and stored on the IPFS and blockchain. This
process is important since it allows us to use our system on an already existing ontology.
Our system also supports initialization from an empty ontology or an ontology stored on
the IPFS and blockchain. The latter is presented in more detail in Section 4.4. The process
of initialization using a local ontology has the following steps (presented in Fig. 3):

a) The ontology data is first loaded into the local Apache Jena database.
b) We use the Apache Jena reasoner to check the loaded ontology for consistency.
c) If the ontology is consistent, it is uploaded to the IPFS network and its content identi-

fiers are saved to the Ethereum smart contract.

After the initialization, we can track the changes of the ontology. We can also make
some guarantees about the integrity of the tracked data. Ontology data at the content
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Fig. 3. Initializing the ontology management system from an existing ontology stored locally. In this use case
the parts of the process shown in gray are not relevant as the ontology is not yet initialized and there are no user
queries to execute.

Fig. 4. The process of executing a query using our system. The parts of the process shown in gray are not relevant
for this use case as the ontology was already initialized and there are no changes submitted by other users.

identifier has not been altered. This could not be guaranteed if we were using location
addresses. Journal of ontology changes is kept, which proves the time and author of any
change. The authors of each change to the ontology are identified under the Ethereum
pseudo-anonymous address.

4.3. Running a Query

The second scenario is querying the data in the ontology (presented in Fig. 4). Queries
are created in SPARQL language which allows both reading and updating the ontology.
If the query only performs a read operation, the system only returns the local data. This
way there is no need for the usage of the Ethereum or the IPFS which might slow down
the performance. In the event that the query changes, creates, or deletes entries in the
ontology, all of the changes are also checked for consistency and written to the Ethereum
blockchain. Writing to the blockchain is done in two parts. First, the query is stored on the
IPFS and the system generates an IPFS content identifier. Next, the identifier is stored in
the smart contract on the Ethereum network. Running a query follows these steps:

1. Execute the query on the local ontology;
2. If the query changes the data, check for consistency, otherwise finish;
3. If the data is consistent, commit the change, otherwise, throw an exception;
4. Store the change data to the IPFS;
5. Save the IPFS identifier to the Ethereum blockchain.

After the ontology data is updated, other users can download the changes from the
blockchain and apply them to their local ontologies. This way each change can be shared
between everyone that is working on the ontology. The collaboration scenario is explained
in more detail in Section 4.5.
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Fig. 5. The process of restoring the ontology from the blockchain. The steps presented in gray are not relevant
for this use case as the local ontology was not yet initialized and there are no queries submitted by the user.

4.4. Recovering from the Blockchain

The use of the blockchain enables full recovery of the ontology. This means that if any of
the data in the local ontology is lost, it can be restored from the blockchain. The same pro-
cess can be used when a new user wants to get the shared ontology. The recovery process
is presented in Fig. 5. The recovery process works in a similar way to the initialization
of the ontology except that the ontology is loaded from the Ethereum network instead of
the local file system. Loading the ontology is done in two parts. First, all of the identifiers
for the initial data and every recorded change are loaded from the smart contract on the
Ethereum network. Next, the actual initialization data and queries are downloaded from
the IPFS network using the retrieved identifiers. The steps for the ontology recovery are
the following:

1. Migration identifiers are retrieved from the blockchain using the smart contract;
2. Information about changes is loaded from the IPFS using the identifiers;
3. Initial data is loaded to the local ontology;
4. All of the changes are applied to the local ontology.

A similar process can be also used for updating an existing local ontology to the latest
version. Our implementation stores the queries that have been already executed, so it can
automatically skip the changes from the Ethereum that have been applied already.

4.5. Collaborative Ontology Building

As mentioned in the previous scenario, we can use the data stored on the blockchain in
order to enable collaboration between multiple people when working with the ontology.
Once the ontology exists on the blockchain, new contributors can use the recovery process
described in Section 4.4, to recreate the entire ontology locally. After that, they can apply
their own changes to the ontology. The changes get automatically stored on the blockchain,
so the other users can download them and apply them to their local ontologies. The process
is shown in Fig. 6. The collaboration between person A and person B would follow these
steps:

1. A initializes the ontology and applies some changes;
2. B uses the recovery procedure to get the latest version of the ontology;
3. B applies changes to the ontology;
4. A downloads the changes from the blockchain and applies them to the local ontology.

The option for the collaborative building of the ontology enables the creation of a
completely open ontology, where anyone could contribute their knowledge. Since this
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Fig. 6. Collaborative building and editing of the ontology using the Ethereum blockchain for synchronization.

ontology can be stored on a decentralized blockchain, there is no need for centralized
servers and their maintenance.

5. Evaluation

An important aspect of the proposed solution is its performance and operational cost.
This is especially important, since using smart contracts tends to be slow and can also
get expensive quickly. Each operation on an Ethereum smart contract requires a certain
amount of gas to perform. Gas is a currency that we use in order to pay for the processing
and storage required to execute an operation. We performed a series of tests to estimate
the performance and the cost of using our solution. Each test was performed ten times in
order to compute the mean values and standard deviations.

5.1. Evaluation Setup

All tests were executed on a Mac computer with 16 GB of memory and an Intel 8-core
processor. During our tests, the heap size of our program was set to 2 GB. We tested the
performance of the most common use cases by running a scenario 10 times. The scenario
consisted of three parts, performed by two different users and contained the initialization
of the ontology, its restoration from the blockchain, execution of all query types, and
collaboration between the user. This way we covered all of the presented use cases. We
measured the time that each operation took to execute as well as the amount of gas that
has been required for the Ethereum operations. We computed the price of the required
gas in Euro based on the price at the evaluation time (22.12.2021). In Tables 2, 3, 4, 5,
and 6 we present the average values as well as standard deviations for times and prices of
each operation. For testing, we used a public Ethereum test network called Rinkeby2. We
believe that our results are comparable to using the main Ethereum network; however, by
using Rinkeby we do not have to pay for the smart contract transactions. We also used the

2Rinkeby Website: https://www.rinkeby.io/

https://www.rinkeby.io/
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public IPFS network with one node running on the local computer. After each run of the
evaluation, we have used the IPFS garbage collector to clear the cache of the local IPFS
node. By doing so, we have ensured that the cached data from the previous runs had no
effect on the next ones.

In our tests, we evaluated the effect of consistency checking separately from the main
tests. That is because we want our main tests to reflect the effects that the use of blockchain
has on the performance of the system working with large ontologies. Our tests have shown
that consistency checking in Apache Jena becomes memory intensive when working with
large ontologies, which prevents us from running consistency checking on our entire on-
tology.

5.2. Evaluation Ontology

For testing the transaction manager, we needed a large ontology to demonstrate common
use scenarios. By using a large ontology we can demonstrate the performance of our sys-
tem for larger projects. There are several such ontologies that are publicly available. We
decided to use the DBpedia (Lehmann et al., 2015) since it is one of the most well-known
general knowledge ontologies. We decided to only load the parts of DBPedia, necessary
for running our test queries. The final size of the database was 2.8 GB. The parts that we
used are: (1) the ontology structure, (2) home pages of resources, (3) numerical proper-
ties of entities, and (4) entity types. By including these parts of the ontology, our database
contained all of the entities, their numeric properties, home pages, and types. The evalua-
tion ontology, therefore, contained approximately 7 million entities of about 800 different
types with around 3000 different properties. Approximately 6.5 million of the entities fall
under one of the DBpedia types, while the rest have a type from another ontology. Alto-
gether there were around 9 million triplets in our testing ontology.

5.3. Initialization

During the initialization, the smart contract was first published to the Ethereum network
and then all four parts of the data from DBpedia were stored in the local database. The
files required for the initialization of the ontology were uploaded to the IPFS network,
so they can be retrieved by anyone using their identifiers. The IPFS identifiers were then
stored on the blockchain using the smart contract. We compared this with the initialization
process when only using the Apache Jena library without the blockchain. The times and
gas cost of each operation is presented in Table 2. In this scenario, the steps for publishing
the initial ontology to the IPFS and storing the IPFS identifiers in the smart contract were
performed in four steps. In the table, we present the sum of all four times and prices. The
reason for the four parts is that we used four parts of the DBpedia in our testing and each
part is stored in a separate file.

Most of the time was spent loading the data to the Jena TDB database. This part has
to be performed even if we are only using a local ontology without the blockchain. The
reason for a slow operation is that our initial ontology contains a large amount of data,
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Table 2
The time required and the cost of performing an initialization of the transaction management

system with the DBpedia ontology. The columns under “Blockchain transaction manager”
describe the performance of our system, while the last column describes only using local
ontology without blockchain. The steps “Publishing initial data to IPFS” and “Publishing

identifiers” were performed in four parts, since we have four initial files.

Blockchain transaction manager Apache Jena
Operation Time [s] Gas used Price [€] Time [s]

Loading initial data to Jena 311 ± 14 / / 311 ± 14
Publishing the smart contract 17 ± 0.11 310149 ± 0.0 1.09 ± 0.0 /
Publishing initial data to IPFS 9.52 ± 0.17 / / /
Publishing identifiers 70 ± 10 395652 ± 0.0 1.39 ± 0.0 /
Total 407 ± 13 705801 ± 0.0 2.47 ± 0.0 311 ± 14

which requires a substantial amount of processing before it can be used. In addition to
that, we have to perform blockchain synchronization steps in our implementation which
take about two minutes.

5.4. Running a Query

The most common operation is running a query. The steps required to run a query are
described in Section 4.3. We evaluated the performance of this scenario by running three
queries. The first query only retrieved values and did not change the data, so the smart
contract did not get updated. The second query performed the insert operation, and the
third query deleted an entity in the ontology. The final two queries changed the ontology
so they had to be stored on the IPFS and recorded in the smart contract. The time required
to run each query is presented in Table 3. The select query (1) is performed locally and
does not require a blockchain update. The insert query is first performed locally (2a), then
the query is uploaded to the IPFS network (2b) and stored by an identifier. Finally, the
identifier is stored on the blockchain using the smart contract (2c). The same process is
used for the delete query (3a–3c).

The query for retrieving data took a similar amount of time compared to only running
locally without the blockchain. This was expected since we only use the local database to
retrieve the data. The two queries for inserting and deleting data both took significantly
longer to complete on our implementation than on a system only using Apache Jena. This
was also expected since changes to the ontology require the creation of a record on the
blockchain and communication with the IPFS network. Most of the time required for these
queries was used for updating the smart contract.

5.5. Rebuilding the Ontology After a Data Loss

One of the advantages of using blockchain is that we can recover the entire ontology in
the event of a data loss. To showcase that, our third test was a complete recovery of the
ontology. This is done in three steps. First, the IPFS identifiers are retrieved from the
blockchain. Since this is only a read operation, it can be performed quickly and does not
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Table 3
Time spent on each of the test queries for the implementation using Ethereum blockchain (columns under

“Blockchain transaction manager”) and a local Apache Jena instance with no blockchain (last column). We
performed three queries (written in bold). Insert and delete queries require multiple steps so operations 2a–2c

and 3a–3c show data for individual steps.

Blockchain transaction manager Apache Jena
Operation Time [s] Gas used Price [€] Time [s]

1: SELECT 1.28 ± 0.26 / / 1.28 ± 0.26
2a: INSERT local 0.41 ± 0.03 / / 0.41 ± 0.03
2b: INSERT upload to IPFS 0.2 ± 0.03 / / /
2c: INSERT save to Ethereum 17 ± 4.54 94677 ± 0.0 0.33 ± 0.0 /
2: INSERT total 18 ± 4.52 94677 ± 0.0 0.33 ± 0.0 0.41 ± 0.03
3a: DELETE local 0.42 ± 0.01 / / 0.42 ± 0.01
3b: DELETE upload to IPFS 0.2 ± 0.02 / / /
3c: DELETE save to Ethereum 16 ± 0.15 111777 ± 0.0 0.39 ± 0.0 /
3: DELETE Total 16 ± 0.15 111777 ± 0.0 0.39 ± 0.0 0.42 ± 0.01

Table 4
Time and cost of each operation required for rebuilding an ontology from

blockchain. Since all of the performed operations only read data, they do not require
payment. The implementation without blockchain cannot perform this scenario.

Operation Time [s] Gas used Price [€]

Read IPFS IDs from Ethereum 0.59 ± 0.02 / /
Download initial ontology from IPFS 0.59 ± 0.02 / /
Apply initial ontology to local DB 309 ± 9.87 / /
Get update IDs from Ethereum 0.15 ± 0.0 / /
Download update queries from IPFS 0.02 ± 0.01 / /
Apply update queries 1.07 ± 0.04 / /
Total 311 ± 9.88 / /

require gas payment. After that, the data is downloaded from the IPFS network. Finally,
the data is loaded to the Jena database. These three steps are repeated first for the initial
data and second for the transactions that were applied on top of the initial database. Times
for all parts of the operation are presented in Table 4. Just like in the initialization scenario,
most of the time is spent loading the ontology to Jena. This is expected since the ontology
is still the same size. This is also the reason that the entire process of restoring the ontology
from the blockchain takes a similar amount of time compared to the loading of initial data
in the initialization of the ontology in Section 5.3.

When recovering an ontology, we can also choose to only apply changes up to a certain
point. This way we can get an ontology from a certain time instead of using the latest one.
A user could also use our system to create a new branch of the ontology. Creating a branch
requires the creation of a new Ethereum smart contract.
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Table 5
Time and cost of each step in the collaborative ontology editing scenario. The

implementation without blockchain cannot perform this scenario.

Operation Time [s] Gas used Price [€]

A initializes the ontology 407 ± 13 705801 ± 0.0 2.47 ± 0.0
A executes DELETE query 16 ± 0.15 111777 ± 0.0 0.39 ± 0.0
B loads ontology from blockchain 311 ± 9.88 / /
B executes INSERT query 18 ± 4.52 94677 ± 0.0 0.33 ± 0.0
A reads IDs from the blockchain 0.16 ± 0.02 / /
A downloads data from IPFS 0.02 ± 0.0 / /
A applies changes locally 1.06 ± 0.03 / /
A executes a SELECT query 1.28 ± 0.26 / /
Total 736 ± 15 912255 ± 0.0 3.2 ± 0.0

5.6. Collaboration Between Users

Our final test was designed to simulate collaborative editing of an ontology. We created
two separate users A and B each with their own Ethereum wallet. The users then edited
the ontology together. This scenario is constructed from previous scenarios. In the first
step, user A initializes the ontology. The steps required for the initialization are shown
in Section 5.3. User A then performs a delete query. The steps required for the delete
operation are presented in Section 5.4. After that, user B reconstructs the ontology from
the blockchain as is shown in Section 5.5. User B then executes an insert query adding
an element to the ontology. The steps for the insert query are presented in more detail in
Section 5.4. After that, user A updates their local ontology to the latest version by reading
the identifier of the change performed by B from the blockchain, downloading the query
from the IPFS network, and executing it on the local ontology. Finally, user A performs a
select query to confirm that the change is visible. Times and prices of each operation are
presented in Table 5. This scenario is also not possible if we are not using the blockchain.
Because of that, we do not present the results for the basic Apache Jena implementation
without our modifications.

Most of the time in this scenario is used for initialization of the ontology for both users.
In real use, this is not a big issue, since the ontology only has to be initialized once. Another
operation that requires a relatively long time is the execution of queries that change the
ontology data. The long time is the result of limitations with Ethereum smart contracts.
This can be improved by combining larger changes into one transaction. The operations
that require only read operations are performed quickly.

In this test, each user had their own local Semantic database. It is also possible to
share a single local Semantic database amongst multiple users. In this case, it is especially
important that all changes to the content of the database are done through our transaction
manager. If a user changes the database directly, the change does not get recorded on the
blockchain so we get an inconsistency between the local ontology and the one stored on
the blockchain. This inconsistency can be later resolved by restoring the ontology from
the blockchain. In our implementation, we recommend the use of Apache Jena TDB as the
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Table 6
Time and cost of each step in the consistency checking scenario. Some operations

perform smart contract functions and require gas payment.

Operation Time [s] Gas used Price [€]

Loading initial data to Jena 80 ± 2.92 / /
Checking consistency 25 ± 0.83 / /
Publishing the smart contract 17 ± 0.09 310149 ± 0.0 1.09 ± 0.0
Publishing initial data to IPFS 3.35 ± 0.13 / /
Publishing identifiers 49 ± 5.26 301014 ± 0.0 1.06 ± 0.0
Perform SELECT query 0.18 ± 0.02 / /
Perform DELETE query 0.02 ± 0.0 / /
Checking consistency after update 151 ± 4.87 / /
Upload query to IPFS 0.22 ± 0.01 / /
Save identifier to Ethereum 16 ± 0.21 111777 ± 0.0 0.39 ± 0.0

Total 492 ± 11 722940 ± 0.0 2.53 ± 0.0

database for storing the ontology. However, the proposed transaction management system
could also work with any other Semantic database.

Each change of the ontology gets executed as a transaction, where all changes get
reverted in case of an error at any point. In the proposed implementation the changes are
synchronized with the blockchain before each set of queries that the user requests. The
synchronization is done by checking for new changes on the blockchain. After that, the new
queries are loaded from the IPFS network and applied to the local database. Another option
for the implementation would be to synchronize the local ontology with the one stored on
the blockchain in real-time as the changes get made. In both cases, we get the latest version
of the ontology before the new change gets applied. This is important since we could get
an inconsistent state of the ontology if the local database would not contain the same
information that is stored on the blockchain. Lastly, the transaction gets committed and
new changes get recorded on the blockchain.

5.7. Consistency Checking

We performed an additional scenario to test the effects that consistency checking has on
the performance of the system. In this test, we only loaded three out of four parts of our on-
tology, because consistency checking over the entire ontology was too memory intensive.
For consistency checking, we used transitive rules. In this scenario, the user first loads the
initial ontology and checks for consistency. The initial ontology is then uploaded to IPFS
and the Ethereum network. After that, the user performs a SELECT and a DELETE query.
These queries were selected to demonstrate the effect of consistency checking on a query
that only reads the data and on a query that also changes the data. After the DELETE
query, consistency is checked again. After that the update is also uploaded to the IPFS
and to the Ethereum network. The time and payment required for each step of the process
are presented in Table 6.

Checking the ontology consistency requires less time than the initialization of the on-
tology. On the other hand, we have observed that the memory required to perform a con-
sistency check becomes an issue with large ontologies. The consistency check also has to
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be performed after each query that changes the data. We believe that the benefits of us-
ing consistency checking outweigh the performance cost when editing smaller ontologies.
When working with larger ontologies, for example, the entire DBpedia, the consistency
checking is too demanding for practical use. This is not a limitation of our transaction
manager, but rather of the Apache Jena framework.

6. Conclusion and Future Work

We propose a system for ontology management that uses the Ethereum and the IPFS net-
works to track changes and enable collaborative ontology building (Gašperlin, 2021). We
tested our implementation on several scenarios and compared the results to an implemen-
tation without the distributed management part. Based on the results we conclude that the
biggest bottleneck when using our system is the time required to change the smart con-
tract on the Ethereum network. This means that each query that changes the data, takes
between 15 and 30 seconds. This is a limitation of using Ethereum and can be circum-
vented by combining multiple changes into a single transaction since the time remains
mostly the same regardless of the size of the transaction. By using the Ethereum smart
contract we also get multiple advantages, that would be difficult to achieve otherwise. The
system is completely decentralized and does not require any centralized servers or storage.
We can track the history of every change that can not be changed by anyone. We can also
track the author of each change in a tamper-resistant way.

One option for speeding up the operation might be to store the IPFS identifiers in
another way. We could, for instance, store them in a file with a static address on the IPFS
network. By doing so, the amount of time required to publish a transaction would decrease;
however, we would lose the protection against changes to the recorded history. In addition
to that, we would no longer have a tamper-resistant way of recording the author of each
change.

In our current implementation, consistency is checked in the program before a change
is sent to the smart contract. This means that an adversary could bypass the check and
publish a change that breaks the ontology consistency. For future research, we propose a
voting mechanism that would require enough trusted users to approve the consistency of
a change in order for the change to get applied to the ontology. This would prevent anyone
from applying inconsistent changes.
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