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Abstract. We introduce a compact formulation for the fixed-destination multi-depot asymmetric
travelling salesman problem (FD-mATSP). It consists of m salesmen distributed among D depots
who depart from and return to their respective origins after visiting a set of customers. The proposed
model exploits the multi-depot aspect of the problem by labelling the arcs to identify the nodes that
belong to the same tour. Our experimental investigation shows that the proposed-two index formula-
tion is versatile and effective in modelling new variations of the FD-mATSP compared with existing
formulations. We demonstrate this by applying it for the solution of two important extensions of the
FD-mATSP that arise in logistics and manufacturing environments.
Key words: logistics, travelling salesman, multiple depot, fixed-destination.

1. Introduction

Routing problems are combinatorial optimization problems that are concerned with de-
signing a set of routes for a fleet of salesmen or vehicles, in order to satisfy customer
demand. These problems have broad applicability in industry and constitute the core of
the transportation and logistics companies. Two of the most common routing problems
are the travelling salesman problem (TSP) (Lawler et al., 1985; Laporte, 1992a; Reinelt,
1994; Davendra, 2010) and the vehicle routing problem (VRP) (Laporte, 1992b; Toth and
Vigo, 2002; Golden et al., 2008; Kumar and Panneerselvam, 2012). They are also two of
the most challenging problems to solve.

In recent years, several interesting studies have considered a fleet of salesmen or ve-
hicles to be located at several depots from where requests or distribution of goods to cus-
tomers is made (Montoya-Torres et al., 2015; Ramos et al., 2020). Multi-depot routing
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problems can be classified as non-fixed-destination (where the salesmen or vehicles can
return to any depot) or as fixed-destination (where the vehicles return to their starting
points) (Bektaş, 2012). For a review of work on multi-depot routing problems, please see
Montoya-Torres et al. (2015).

The case of fixed-destination in multi-depot routing problems is an important feature
that has been studied in different applications. These include the fixed-destination multiple
travelling salesman problems (Burger et al., 2018), the symmetric generalized multiple-
depot multiple travelling salesman problem (Malik et al., 2007), the postal distribution
problem, the less-than-truckload transport operations, and balance billing-cycle vehicle
routing problems (Bektaş, 2012).

In this paper, we study the fixed-destination multi-depot asymmetric travelling sales-
man problem (FD-mATSP), which can be defined as follows: Given a complete graph
with vertex set N = D ∪C, where the first |D| nodes of N = {1, . . . , n} comprise a set of
depots having md salesmen located initially at depot d ∈ D; and where C = {|D| + 1,

|D| + 2, . . . , n} comprises the set of customers to be visited, and given an asymmetric
distance matrix [cij ], find m = ∑

d∈D md tours, with md tours starting and ending at
depot d ∈ D, while collectively having visited a customer i exactly once, ∀i ∈ C, such
that the total distance travelled is minimized.

Less than a handful of compact formulations for the FD-mATSP are reported in the
literature. Typically, these formulations incorporate three components: routing, subtour
elimination constraints (SECs), and fixed-destination constraints (FDCs). The first com-
ponent enforces vehicles to depart and return to the depots after visiting each client exactly
once, while the second component prohibits cycles in the solution. The last component en-
sures that the salesmen return to their origins. Kara and Bektaş (2006) used a set of three-
index binary variables to capture the routing and fixed-destination components. Then,
Bektaş (2012) introduced a set of two-index binary variables to capture the routing part
and a set of three-index continuous variables to model the fixed-destination component.
Later, Burger et al. (2018) extended the work presented in Burger (2014) and introduced
a set of two-index binary variables to capture the routing of vehicles and an additional
novel set of two-index variables to label the nodes in order to identify the ones belonging
to the same tour, and thereby enforcing the fixed-destination requirements.

In this paper, we formulate a new model for the FD-mATSP, which exploits the multi-
depot aspect of the problem and uses two-index variables to label the arcs in order to
enforce the fixed-destination requirement, which was motivated by the work reported in
Aguayo (2016). Bektaş et al. (2020) have independently developed this formulation for the
FDCs. We call this formulation the “arc labelled formulation” (ALF). Bektaş et al. (2020)
also propose a “path labelled formulation” (PLF). However, in this paper, we consider only
the ALF because of the inapplicability of the PLF to the variants of the FD-mATSP that we
address. For a relative performance of these two formulations to solve the FD-mATSP, see
Bektaş et al. (2020). In this paper, we present a computational investigation on the perfor-
mance of the ALF, the two-index formulation of Burger et al. (2018), and the three-index
formulation of Bektaş (2012) to capture the FDCs, along with some underlying insights.
The two variants of the FD-mATSP that we consider are as follows. In the first variant,
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the nodes are split into pick-up customers and delivery customers. Each depot has only one
capacitated vehicle available and an initial inventory of a product. The quantities collected
from pick-up customers can be supplied to any delivery customer. Also, a transshipment
is allowed at pick-up customizer locations, while a delivery customer is visited only once.
The problem is to determine vehicle routes to meet customer demands with vehicles not
exceeding their respective capacities and returning to their starting depots after incurring
minimum total cost. In the second variant, given a set of identical vehicles at each depot,
which might differ in number, a set of customers with known quantities of products for
pick-up, and a set of transfer points to enable transfer of products among vehicles, the
problem is to determine vehicle routes to pick up products from all the customers such
that the vehicles return to their starting depots and the total cost incurred is minimized.

The remainder of this paper is organized as follows. In Section 2, we present the exist-
ing and proposed formulations for the FD-mATSP. In Section 3, we extend our formulation
to two new variants of the FD-mATSP in order to show its versatility. In Section 4, we
present results of our computational investigation of the proposed formulation. Conclud-
ing remarks are made in Section 5.

2. Mathematical Formulations for the FD-mATSP

In this section, we first present a general formulation for the FD-mATSP in Section 2.1,
while in Section 2.2, we present some pertinent polynomial-length subtour elimination
constraints (SECs). We present a three-index formulation due to Bektaş et al. (2020) and
a two-index formulation due to Burger et al. (2018) for the FD-mATSP in Section 2.3.
And finally, we introduce our compact two-index formulation for the FD-mATSP in Sec-
tion 2.4.

2.1. General Formulations for the FD-mATSP

First, consider the following notation. Let D be the set of depots, D = {1, . . . , |D|}, C be
the set of customers to be visited, C = {|D| + 1, . . . , n}, where n is the total number of
nodes, and N = {1, . . . , n} be the set of nodes, N = {D ∪ C}. Furthermore, let cij be
the distance from node i to node j, (i, j) ∈ N , i �= j and md be the number of salesmen
located at depot d ∈ D. Note that cij , i, j ∈ D are not defined since flow from a depot to
another depot and to itself is not permitted; however, we can let cij = ∞, i, j ∈ D.

We define the following decision variable. Let xij = 1 if arc (i, j) is used in the
solution, and equal to 0, otherwise, ∀(i, j) ∈ N . The general formulation for the FD-
mATSP is as follows:

FD-mATSP:
Minimize

∑

i∈C

∑

j∈C,j �=i

cij xij +
∑

d∈D

∑

i∈C

cdixdi +
∑

i∈C

∑

d∈D

cidxid (1)
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subject to
∑

i∈C

xdi = md, ∀d ∈ D, (2)

∑

i∈C

xid = md, ∀d ∈ D, (3)

xdi + xid � 1, ∀i ∈ C, ∀d ∈ D, (4)
∑

j∈N

xji = 1, ∀i ∈ C, i �= j, (5)

∑

j∈N

xij = 1, ∀i ∈ C, i �= j, (6)

xij ∈ {0, 1}, ∀i, j ∈ N, (7)
Subtour elimination constraints (SECs), (8)
Fixed destination constraints (FDCs). (9)

The objective function (1) minimizes the total distance travelled, while Constraints (2)
and (3), respectively, enforce that md salesmen depart and return to depot d , ∀d ∈ D.
Constraints (4) prohibit a tour with a unique customer. Constraints (5) and (6) assure that
each customer is visited and departed exactly once, and Constraints (7) define the do-
main of decision variables. Constraints (8) are the subtour elimination constraints (SECs)
which prohibit disconnected cycles, and Constraints (9) are the fixed-destination con-
straints (FDCs) enforcing the salesmen to return to their starting depots. Next, we present
both polynomial-length SECs and FDCs for the FD-mATSP. Exponential-length SECs
and FDCs are described in Burger et al. (2018) and Bektaş (2012).

2.2. Compact SECs

Letting ui indicate a real number representing the order in which a customer i is visited
in an optimal tour, Kara and Bektaş (2006) adapt the MTZ-SECs to multi depot travelling
salesman problem as follows:

KB-SECs:
ui − uj + Lxij + (L − 2)xji � L − 1, ∀i, j ∈ C, i �= j, (10)

ui + (L − 2)
∑

d∈D

xdi −
∑

d∈D

xid � L − 1, ∀i ∈ C, (11)

1 � ui � |C|, ∀i ∈ C, (12)

ui +
∑

d∈D

xdi + (2 − K)
∑

d∈D

xid � 2, ∀i ∈ C. (13)

K and L are the minimum and the maximum number of nodes a salesman can visit, re-
spectively. We assume K = 2 and that there is no restriction on L. In this case, we can set
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L = |C| − 2(
∑

d∈D md − 1). Constraints (10) are used to break any infeasible subtours.
Constraints (11) and (13) collectively impose the bounding limitations.

Letting yij be the flow on arc (i, j), i �= j , ∀i, j ∈ N , we can adapt the single com-
modity flow-based SECs proposed by Gavish and Graves (1978) as follows:

GG-SECs:
ydi � Kxdi, ∀d ∈ D, i ∈ C, (14)
ydi � Lxdi, ∀d ∈ D, i ∈ C, (15)
yij � (L − 1)xij , ∀i, j ∈ C, i �= j, (16)
∑

j∈N

yji −
∑

j∈N

yij = 1, ∀i ∈ C, i �= j, (17)

ydi = 0, ∀d ∈ D, i ∈ C, (18)
yij � 0, ∀i, j ∈ N. (19)

Constraints (14)–(19) impose the connectivity of the graph induced by the x-variables.
Consequently, a path defined by the flow variables yij exists starting from each depot,
d ∈ D, and terminating at that depot after visiting some customers in C. This is achieved
by pushing one unit of flow from depots to customers. Constraints (14)–(16), respectively,
impose the load balancing restrictions that each path carries at most L and at least K units
of flow. Finally, Constraints (17) ensure that each customer appears on a path that start
from a depot and converges at it by maintaining the flow of a unit commodity.

2.3. Compact FDCs

Let zd
ij be the flow on arc (i, j) from depot d , ∀i, j ∈ N , i �= j , ∀d ∈ D, Bektaş (2012)

propose the following FDCs (FDCs1 from now on):

FDCs1:
zd
ij � xij , ∀i, j ∈ N, ∀d ∈ D, (20)
∑

i∈C

zd
di = md, ∀d ∈ D, (21)

∑

i∈C

zd
id = md, ∀d ∈ D, (22)

∑

j∈N

zd
ji −

∑

j∈N

zd
ij = 0, ∀d ∈ D, ∀i ∈ C, i �= j, (23)

zd
ij � 0, ∀i, j ∈ N, ∀d ∈ D. (24)

Constraints (20)–(24) impose the fixed-destination feature of the problem by requiring
md units of flow to leave and come back to each depot d using only those arcs for which
xij > 0.
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Letting ki be a variable that indicates the label assigned to customer i, ∀i ∈ N , Burger
et al. (2018) introduce the following FDCs (FDCs2 from now on):

FDCs2:
kd = d, ∀d ∈ D, (25)
ki − kj + (|D| − 1

)
(xij + xji) � |D| − 1, ∀i, j ∈ N, i �= j, (26)

kj − ki + (|D| − 1
)
(xij + xji) � |D| − 1, ∀i, j ∈ N, i �= j, (27)

ki � 0, ∀i ∈ N. (28)

Constraints (25)–(27) label the nodes visited from each d ∈ D based on the particular
index d so that an exchange of salesmen among depots leads to a contradiction. Constraints
(28) capture the domain of the decision variables.

2.4. Proposed FDCs

Letting y′
ij be a variable that indicates the label assigned to arc (i, j), i �= j , ∀i, j ∈ N ,

we propose the following FDCs (FDCs3 from now on):

FDCs3:
y′
ij � |D|xij , ∀i, j ∈ N, (29)

y′
di = dxdi, ∀d ∈ D, ∀i ∈ C, (30)

y′
id = dxid , ∀d ∈ D, ∀i ∈ C, (31)
∑

j∈N

y′
ji −

∑

j∈N

y′
ij = 0, ∀i ∈ C, i �= j, (32)

y′
ij � 0, ∀i, j ∈ N. (33)

A label d is assigned to all the salesmen leaving from depot d , and this label is used as
a flow that is maintained throughout the tours of the salesmen from that depot. To this
end, Constraints (29) enforce flow to only occur on arcs for which xij > 0. Constraints
(30) and (31) enforce d units to depart and return to each base using those arcs for which
xdi > 0 and xid > 0, ∀d ∈ D, ∀i ∈ C, respectively. Constraints (32) are the standard flow
conservation constraints, and Constraints (33) represent the domain of the y′

ij -variables.
Note that FDCs2 labels the nodes, while FDCs3 labels the arcs visited by each d ∈ D.

Lemma 1. FDCs3 is equivalent to FDCs1.

Proof. We prove this claim by verifying the equivalence between FDCs1 and FDCs3. If
we let y′

ij = ∑
d∈D dzd

ij , ∀i, j ∈ N , then, y′
ij , ∀i, j ∈ N , satisfy Constraints (29)–(33).

Similarly, a feasible path for a d in FDCs3 is equivalent to setting zd
ij = 1, ∀i, j , on this

path, and zd
ij = 0, otherwise, ∀d ∈ D. Consequently, zd

ij , ∀i, j ∈ N , ∀d ∈ D, will satisfy
Constraints (20)–(24). Hence, FDCs1 and FDCs3 are equivalent.
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From now on, we will use the following notation to refer to different formulations.
Note that in all cases we use the GG-SECs, (14)–19, since they outperform or perform
similarly than the other SECs.

MCF: refers to the multi-commodity formulation reported in Bektaş (2012) based on
FDCs1; (1)–(7), (14)–(19), (20)–(24).
NLF: indicates the node-labelling formulation presented in Burger et al. (2018) based
on FDCs2; (1)–(7), (14)–(19), (25)–(28).
ALF: denotes the arc-labelling formulation introduced in this paper based on FDCs3;
(1)–(7), (14)–(19), (29)–(33).

We establish the following analytical comparison between these formulations in terms of
the strength of their linear programming (LP) relaxations.

Lemma 2. The (LP) relaxation of none of the formulations ALF, NLF, and MCF is tighter
than the other.

Proof. We prove this claim by showing that any of these formulations dominates the other
depending upon the problem instance considered. We refer to the LP relaxation results for
these formulations presented in Table 6. For Instance ftv47, (Zlp), the LP bound of NLF
is strictly larger than that of ALF. However, for Instance ft53, the LP bound of ALF is
strictly larger than that of NLF.

Regarding ALF and MCF, for Instance ftv47, the LP bound of MCF is strictly larger
than that of ALF. However, for Instance ftv55 the LP bound of ALF is strictly larger than
of MCF.

As regards MCF and NLF, again for Instance ftv47, the LP bound of MCF is strictly
larger than that of NLF. However, for Instance ftv55 the LP bound of NLF is strictly larger
than that of MCF.

3. Extensions of the FD-mATSP

In this section, we present two extensions of the FD-mATSP to illustrate the versatility and
computational effectiveness of the two-index compact formulation (ALF) compared with
the ones reported in the literature. To that end, we consider the fixed-destination multiple-
vehicle routing problem with transshipment (FD-mVRPT), and the fixed-destination
multi-depot collection problem with transfer points (FD-mDCPTP).

3.1. FD-mVRPT

The FD-mVRPT can be defined as follows. We have a set of D depots each having exactly
one capacitated vehicle with an initial inventory of a product, a set of P pickup customers
supplying units of a product, and a set E of delivery customers demanding units of a
product. The quantities collected from pickup customers can be supplied to any delivery
customer. Furthermore, a transshipment is allowed, i.e. units can be transferred among
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Fig. 1. Optimal solution obtained by adapting the compact formulation presented in Bektaş (2012) and in this
paper to the FD-mVRPT.

vehicles at pickup customers, while the delivery customers must be visited exactly once.
The problem consists of determining a set of routes so that the total cost is minimized in
such a way that the delivery customers receive the amount demanded, the vehicle capacity
is never exceeded, and vehicles return to their respective starting points. The FD-mVRPT
can be viewed as a variant of diverse routing problems encountered in real-life applications
such as the swapping problem wherein vehicles transport objects among customers (Anily
and Hassin, 1992), the movement of full and empty containers between warehouses and
customers (Zhang et al., 2009), the problem of collaborative transport in the milk industry
(Paredes-Belmar et al., 2017), and re-balancing in urban bicycles renting systems (Chira
et al., 2014).

We illustrate the FD-mATSP in Fig. 1. It consists of two depots D = {1, 2}, each
having one vehicle with a capacity of Q = 190 units each, and available commodity in
the amount 20 and 32 units, respectively; six pickup customers, P = {3, 4, 5, 6, 7, 8};
and two delivery customers, E = {9, 10}. The given amount of the product supplied
or demanded is denoted by qi , where its positive and negative values indicate pickup and
delivery customers, respectively. The variable yij indicates the level of the load carried on
an arc (i, j). The optimal solution displayed in Fig. 1 incurs a cost of 447. Vehicle 1 departs
from Depot 1 (solid line) to Pickup Location 3 to leave there 20 units, and then, it returns
to its starting point. Vehicle 2 departs from Depot 2 (dotted line) and visits Location 5,
picking up 22 units, and then it travels to Customers 3 to pick up 45 units (20 of which
were left by Vehicle 1). Then, Vehicle 2 visits Locations 10, 8, 4, 6, 7, and 9; and finally, it
returns to its origin. This solution can be obtained by adapting the formulations proposed
in Bektaş (2012) and in this paper, which allow visiting pickup customer multiples times
to collect items.
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Fig. 2. Optimal solution obtained by adapting the compact formulation presented in Burger et al. (2018) to the
FD-mVRPT.

However, it is not possible to obtain the solution presented in Fig. 1 by adapting the
formulation reported in Burger et al. (2018). In this optimal solution, Vehicles 1 and 2,
starting from Depots 1 and 2, respectively, transfer units at Pickup Location 3. The formu-
lation by Burger et al. (2018) does not allow customers to be visited more than once since
it would require multiple and different labels to be assigned to a node due to vehicles from
different depots visiting that node, which the formulation does not permit. This is evident
if we try to label the nodes in Fig. 1, which will result in assigning two different labels
to Customer 3 (that is visited by Vehicle 1 and 2), i.e. k3 = 1 and k3 = 2. By adapting
the formulation presented in Burger et al. (2018), we obtain a sub-optimal solution shown
in Fig. 2 having a cost of 484 with a unique visit to pickup Location 3. Besides, in some
cases, this formulation might become infeasible if all feasible solutions require transfers
among vehicles.

3.1.1. General Formulation for the FD-mVRPT
Before we introduce the model, consider the following notation:

Sets and parameters:

D : Set of depots, D = {1, . . . , |D|}.
P : Set of pickup customers, P = {|D| + 1, . . . , |P |}.
E : Set of delivery customers, E = {|D| + |P | + 1, . . . , |E|}.
C : Set of customers, C = P ∪ E.
N : Set of all customers, with N = D ∪ C.

Parameters:
cij : Distance from customer i to customer j , ∀i, j ∈ N .
qi : Amount supplied (demanded) by customer i, ∀i ∈ N , qi > 0, i ∈ P ,

and qi < 0, i ∈ E (qd , ∀d ∈ D, represents the initial inventor available
at depot d).

Q : Vehicle capacity.
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Let xij be equal to 1 if arc (i, j) is used in the solution, and equals 0 otherwise, ∀i, j ∈
N , i �= j , and wi be equal to the amount collected from the inventory in location i, ∀i ∈ P .
The formulation is as follows:

FD-mVRPT:
Minimize

∑

i∈N

∑

j∈N

cij xij (34)

subject to
∑

i∈C

xdi = 1, ∀d ∈ D, (35)

∑

i∈C

xid = 1, ∀d ∈ D, (36)

∑

j∈N

xji = 1, ∀i ∈ E, (37)

∑

j∈N

xij = 1, ∀i ∈ E, (38)

∑

i∈N

xij =
∑

i∈N

xji, ∀ ∈ C, (39)

wi � qi

∑

j∈N

xji, ∀i ∈ P, (40)

xij ∈ {0, 1}, ∀i, j ∈ N, i �= j, (41)
wi � 0, ∀i ∈ P, (42)
SECs and capacity constraints, (43)
FDCs (44)

The objective function (34) minimizes the total cost, while Constraints (35) and (36) en-
force that each vehicle departs and returns to each depot, respectively. Constraints (37)
and (38) assure that each delivery customer is visited and departed exactly once, while
Constraints (39) are the standard flow conservation constraints. Constraints (40) restrict
the amount collected at pickup customers. Constraints (41) and (42) define domains of
decision variables. Constraints (43) are the subtour elimination constraints (SECs) and ca-
pacity constraints which prohibit disconnected cycles, and Constraints (44) are the fixed-
destination constraints.

The KB-SECs cannot be extended to this problem since they are developed on the
assumption that each node is visited exactly once; and thus, can lead to a contradiction
on the labels assigned to nodes visited more than once. Therefore, we only extend the
GG-SECs, which are presented next.

Letting yij be the flow on arc (i, j), i �= j , ∀i, j ∈ N , then we can adapt the single
commodity flow-based SECs proposed by Gavish and Graves (1978) as follows:

ydi � qdxdi, ∀d ∈ D, ∀i ∈ C, (45)



A Two-Index Formulation for the Fixed-Destination Travelling Salesman Problem 681

yij � Qxij , ∀i, j ∈ N, (46)
∑

i∈N

yji −
∑

i∈N

yij = qj , ∀j ∈ E, i �= j, (47)

∑

i∈N

yji −
∑

i∈N

yij = wj , ∀j ∈ P, i �= j. (48)

Constraints (45) ensure that the flow from each depot does not exceed the initial inventory
available, while Constraints (46) enforce the flow variables yij to exist only when there is
an arc connecting i and j , and limit the vehicle capacity to Q. Constraints (47) and (48)
are the flow conservation constraints at delivery and pick-up customers, respectively.

We adapt FDC1s, FDC2s, FDC3s, Constraints (20)–(24), (25)–(27) and (29)–(33),
to enforce vehicles to return to their starting points.

3.2. FD-mDCPTP

The FD-mDCPTP can be stated as follows. We have a set D of depots with md vehicles
in depot D, each having a capacity of Q, a set of customers, C, with qi units of a product
available to collect at customers i ∈ C, and a set of T transfer points used to transfer
products among vehicles. The problem involves determining a set of routes so that all
units supplied by customers are collected, the vehicle capacity is never exceeded, and the
vehicles return to their starting depots. The FD-mDCPTP belongs to a class of transporta-
tion problems involving intermediate facilities (Guastaroba et al., 2016). An application
of this problem arises in dairy industries for the collection of milk (Lou et al., 2016).
Trucks must collect and transport milk from a set of producers belonging to a cooperative
to different processing plants, and transfer points are used to reload milk among vehicles
to reduce the transportation costs.

We present an example to illustrate the FD-mDCPTP (see Fig. 3). We have two de-
pots, D = {1, 2}, each having two identical vehicles with a capacity of Q = 50 units,
three transfer points, T = {3, 4, 5}, and eleven customers, C = {6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16}. The given amount of the product offered by customers i is denoted by qi , and
a variable yij indicates the level of the load carried in an arc (i, j). The optimal solution
is displayed in Fig. 3 having a cost of 263, and it uses the Transfer Point 3 to interchange
goods between vehicles departing from different depots.

3.2.1. General Formulation for the FD-mDCPTP
Sets:

D : Set of depots, D = {1, . . . , |D|}.
T : Set of transfer points, T = {|D| + 1, . . . , |D + T |}.
C : Set of customers, C = {|D + T | + 1, . . . , n}.
N : Set of all the nodes, N = D ∪ T ∪ C.
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Fig. 3. An illustration of the FD-mDCPTP.

Parameters:
cij : Distance from customer i to customer j , ∀i, j ∈ N .
qi : Amount offered by customer i, ∀i ∈ C.
md : Number of vehicles located at depot d, ∀d ∈ D.
Q : Vehicle capacity.

Let xij be equal to 1 if arc (i, j) is used in the solution, and equal to 0, otherwise,
∀i, j ∈ N , i �= j , and vi be equal to 1 if the transfer point i is used to transfer goods
between two or more vehicles, and equal to 0, otherwise. The formulation is as follows:

FD-mDCPTP:
Minimize

∑

i∈N

∑

j∈N

cij xij (49)

subject to:
∑

i∈T ∪C

xdi = md, ∀d ∈ D, (50)

∑

i∈T ∪C

xid = md, ∀d ∈ D, (51)

∑

j∈N

xji = 1, ∀i ∈ C, (52)

∑

j∈N

xij = 1, ∀i ∈ C, (53)

∑

i∈N

xij −
∑

i∈N

xji = 0, ∀j ∈ T ∪ C, i �= j, (54)

xij � vj , ∀i ∈ N, ∀j ∈ T , (55)
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∑

i∈N

xij � 2 ∗ vj , ∀j ∈ T , i �= j, (56)

vi ∈ {0, 1}, ∀i ∈ T , (57)
xij ∈ {0, 1}, ∀i, j ∈ N, (58)
SECs and capacity constraints, (59)
Fixed destination constraints (FDCs). (60)

The objective function (49) minimizes the total cost, while Constraints (50) and (51)
enforce that each vehicle departs and returns to its depot, respectively. Constraints (52)
and (53) ensure that each costumer is visited exactly once, while Constraints (54) are the
standard flow conservation constraints. Constraints (55) capture if the transfer location is
used, while Constrains (56) enforce that if the transfer location is open (vj = 1), then at
least two vehicles must visit this location. Constraints (57) and (58) define the domains of
decision variables. Constraints (59) are the subtour elimination constraints (SECs) and ca-
pacity constraints, which prohibit disconnected cycles, and Constraints (60) are the fixed-
destination constraints.

Letting yij be the flow on arc (i, j), i �= j , ∀i, j ∈ N , we can adapt the single com-
modity flow-based SECs as follows:

ydj = 0, ∀d ∈ D, ∀j ∈ D, (61)
yij � Q ∗ xij , ∀i, j ∈ N, (62)
∑

i∈N

yij −
∑

i∈N

yji = qj , ∀j ∈ C, i �= j, (63)

∑

i∈N

yij −
∑

i∈N

yji = 0, ∀j ∈ T , i �= j, (64)

yij � 0, ∀i, j ∈ N. (65)

Constraints (61) prohibit to send products between depots, while Constraints (62) en-
force the flow variables yij to exist when there is an arc connecting i and j , and they
also limit the vehicle capacity to Q. Constraints (63) and (64) are the flow conservation
constraints at customers and transfer points, respectively. Constraints (63) ensure that the
total amount supplied by customer i is collected, and Constraints (64) prohibit inventory
at transfer points. Constraints (65) define domain of the decision variables. Note that cij ,
i, j ∈ D are not defined as a flow from one depot to another depot and to itself are not
permitted; i.e. we can define cij = ∞, i, j ∈ D.

We use FDC1s and FDC3s, Constraints (20)–(24) and (29)–(33), respectively, as fixed-
destination constraints. FDC2s will generate restrictive solutions and may not be able to
even find a feasible solution. Consequently, we will not investigate the performance of
FDC2s in our computational experiments.
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Table 1
Instances for the FD-mATSP used in Bektaş (2012).

Instance Name n |D|
1 ftv33.tsp 34 2
2 ftv35.tsp 36 2
3 ftv38.tsp 39 2
4 p43.tsp 43 2
5 ftv44.tsp 45 2
6 ftv47.tsp 48 2
7 ry48p.tsp 48 2
8 ft53.tsp 53 2
9 ftv55.tsp 56 2
10 ftv55.tsp 56 3
11 ftv64.tsp 65 2
12 ftv64.tsp 65 3
13 ft70.tsp 70 2
14 ft70.tsp 70 3
15 ftv70.tsp 71 2
16 ftv70.tsp 71 3
17 kro124p.tsp 100 2
18 kro124p.tsp 100 3
19 ftv170.tsp 171 5
20 ftv170.tsp 171 5

4. Computational Results

In this section, we compare the results obtained for the proposed two-index formulation
with those obtained for the formulations reported in the literature on the FD-mATSP.
We also present the results of this compact formulation extended to the FD-mVRPT and
the FD-mDCPTP. All formulations were solved directly in OPL using CPLEX version
12.8.0, with default parameters using a computer with an Intel Xeon(R) CPU E5-2623 v4
@2.60GHZx8 with 62.8 GB of RAM. A time limit of 10,800 seconds was set for all runs.

4.1. Instances

For the FD-mATSP, we use the first 20 instances presented in Bektaş (2012) and derived
from TSPLIB (1997), as displayed in Table 1. The columns of this table denote the instance
number (Instance), the ATSP problem from where it was derived (ATSP instance), the
number of nodes (n), and the number of depots (|D|), respectively. The number of nodes
varies from 34 to 171, and the number of salesmen at each depot, d ∈ D, is assumed to
be two, and thus, a total of 2|D| salesmen are available.

For the FD-mVRPT, we created two sets of instances. The first set, displayed in Ta-
ble 2, is based on the instances reported in Table 1 for which sets P and E, as well as the
parameters qi and Q, are generated following the steps described below.

Step 1: (Generation of temporal customer demands q̄i). q̄i = 	U(30, 100)
, ∀i ∈ C.
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Table 2
Modified instances derived from the TSPLIB (1997) for FD-mVRPT.

Instance Name n |C| |D| |P | |E| Q

1 ftv33.tsp 34 32 2 16 16 560
2 ftv35.tsp 36 34 2 18 16 590
3 ftv38.tsp 39 37 2 18 19 630
4 p43.tsp 43 41 2 22 19 720
5 ftv44.tsp 45 43 2 21 22 760
6 ftv47.tsp 48 46 2 24 22 780
7 ry48p.tsp 48 46 2 24 22 730
8 ft53.tsp 53 51 2 24 27 820
9 ftv55.tsp 56 54 2 28 26 840
10 ftv55.tsp 56 53 3 26 27 650
11 ftv64.tsp 65 63 2 33 30 1070
12 ftv64.tsp 65 62 3 30 32 650
13 ft70.tsp 70 68 2 34 34 1190
14 ft70.tsp 70 67 3 33 34 730
15 ftv70.tsp 71 69 2 34 35 1200
16 ftv70.tsp 71 68 3 34 34 750
17 kro124p.tsp 100 98 2 47 51 1680
18 kro124p.tsp 100 97 3 50 47 1100
19 ftv170.tsp 171 166 5 86 80 1040
20 ftv170.tsp 171 166 5 84 82 1090

Step 2: (Generation of P and E). We first determine an integer m = ⌈∑
i∈C q̄i

2

⌉
. Then,

the first set of customers in J , J ⊂ C, such that
∑

i∈J q̄i < m, form the set P , and the
set E = C − P .

Step 3: (Checking Feasibility). Given the partitioned sets P and E, it is possible that the
resulting supply is less than the demand. Therefore, we determine F units, such that∑

i∈P q̄i + F = ∑
j∈E q̄j , and distribute them evenly among the depots (1 to |D|).

Step 4: (Generating vehicle capacity.) We assume a unique vehicle to be present in each
depot for both set of instances. We determine the capacity of each vehicle as Q =
⌈ ∑

i∈E qi

|D| × 10

⌉ × 10. Note that expression
∑

i∈E qi

|D| gives a vehicle capacity. We round

this number to the next highest 10 by dividing this number by 10 and rounding to the
nearest integer, and then multiply it by 10 again.

Step 5: (Generation of qi). qi = q̄i , ∀i ∈ P , and qi = −q̄i , ∀i ∈ E.

The second set of instances for the FD-mVRPT, displayed in Table 3, is based on the
multi-depot vehicle routing problem (MDVRP) instances proposed in Cordeau (2007).
We adapt these instances following the steps described above, except for Step 1, in which
we make q̄i = q∗

i , i ∈ C, where q∗
i is the demand in the original instance. Furthermore,

in Step 4, we compute Q = max
{
Q∗,

⌈∑
i∈E qi

D ∗ 10

⌉}∗10, where Q∗ is the original vehicle
capacity reported in Cordeau (2007).

For the FD-mDCPTP, we created the set of instances displayed in Tables 4 and 5, which
are based on those reported in Tables 2 and 3. We generate the number of transfer points
using a uniform distribution, |T | = 	U(1, 2)
. The qi values are the same as those used
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Table 3
Modified instances derived from the MDVRP (Cordeau, 2007) for FD-mVRPT.

Instance Name n |C| |D| |P | |E| Q

21 p01 54 50 4 27 23 100
22 p02 54 50 4 27 23 160
23 p03 80 75 5 42 33 140
24 p04 108 100 8 50 50 370
25 p05 102 100 2 50 50 370
26 p06 103 100 3 50 50 250
27 p07 104 100 4 50 50 190
28 p12 82 80 2 41 39 110
29 p13 82 80 2 41 39 200
30 p14 82 80 2 41 39 180
31 pr01 52 48 4 83 61 230
32 pr02 100 96 4 21 23 200
33 pr03 148 144 4 48 44 195
34 pr04 196 192 4 96 96 320
35 pr07 78 72 6 35 37 200

Table 4
Modified instances derived from the TSPLIB (1997) for the FD-mDCPTP.

Instance Name n |C| |D| |T | Q

1 ftv33.tsp 34 30 2 2 510
2 ftv35.tsp 36 31 2 3 530
3 ftv38.tsp 39 35 2 2 570
4 p43.tsp 43 39 2 2 690
5 ftv44.tsp 45 41 2 2 710
6 ftv47.tsp 48 44 2 2 780
7 ry48p.tsp 48 43 2 3 730
8 ft53.tsp 53 49 2 2 820
9 ftv55.tsp 56 52 2 2 840
10 ftv55.tsp 56 50 3 3 650
11 ftv64.tsp 65 61 2 2 1020
12 ftv64.tsp 65 59 3 3 620
13 ft70.tsp 70 66 2 2 1160
14 ft70.tsp 70 65 3 2 710
15 ftv70.tsp 71 66 2 3 1120
16 ftv70.tsp 71 66 3 2 730
17 kro124p.tsp 100 96 2 2 1650
18 kro124p.tsp 100 94 3 3 1050
19 ftv170.tsp 171 163 5 3 1020
20 ftv170.tsp 171 163 5 3 1070

for the FD-mVRPT, and Q = ⌈ ∑
i∈C qi∑

d∈D md × 10

⌉ × 10. Finally, qj = 0, ∀j ∈ T . We

assume md = 2 vehicles at each depot.
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Table 5
Modified instances derived from the MDVRP (Cordeau, 2007) for the

FD-mDCPTP.

Instance Name n |C| |D| |T | Q

21 p01 54 47 4 3 100
22 p02 54 48 4 2 100
23 p03 80 73 5 2 140
24 p04 108 97 8 3 360
25 p05 102 98 2 2 370
26 p06 103 97 3 3 240
27 p07 104 97 4 3 180
28 p12 82 77 2 3 100
29 p13 82 78 2 2 110
30 p14 82 78 2 2 110
31 pr01 52 45 4 3 80
32 pr02 100 94 4 2 160
33 pr03 148 142 4 2 220
34 pr04 196 189 4 3 310
35 pr07 78 69 6 3 80

4.2. Results for FD-mATSP

We report the results obtained for ALF (proposed formulation), NLF (Burger et al., 2018)
and MCF (Bektaş, 2012) developed for the FD-mATSP (see Section 2). These results are
displayed in Table 6, where, for each formulation, we report the LP relaxation value (Zlb)
obtained by relaxing integrality on all binary variables, the objective value of the integer
solution (Zip), and the computational time in seconds (CPU) or the integer optimality gap
(CPU/Gap) reported by CPLEX, respectively (if an optimal solution is found, then we
report T ; otherwise, we report the %gap value and underline it). For each instance, we have
highlighted in bold the minimum CPU/Gap value. NLF obtained the minimum CPU/Gap
in 16 out of 20 cases outperforming the other formulations. ALF outperformed MCF by
achieving the minimum CPU/Gap in 16 out of 20 cases. For Instances 12 for which ALF
outperforms MCF, it also does so against NLF. The average optimality gaps attained for
ALF, NLF, MCF are 3.14%, 1.53%, and 8.82%, while their average computational times
are 1321.5, 1199.4, and 1768.1, respectively. All the instances were solved to optimality
by each formulation except for Instances 19 and 20.

Based on the results presented above, we can make the following remarks:

1 NLF outperformed the other two compact formulations for the FD-mATSP, whereas
ALF outperformed MCF.

2 From an analytical comparison, none of the formulations dominates the other in terms
of the strength of their LP relaxations.

3 From the practitioners’ viewpoint, we recommend using the formulations in the order:
NLF, ALF and MCF.
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Table 6
Results for the ALF, NLF, and MCF-based formulations on the FD-mATSP.

ALF NLF (Burger et al., 2018) MCF (Bektaş, 2012)
Instance Name Zlp Zip CPU/Gap Zlp Zip CPU/Gap Zlp Zip CPU/Gap

1 ftv33.tsp 1424.75 1579 62.39 1425.36 1579 26.79 1426.13 1579 52.69
2 ftv35.tsp 1590.35 1669 6.12 1600.43 1669 4.39 1593.23 1669 6.07
3 ftv38.tsp 1640.77 1730 20.48 1647.12 1730 10.51 1643.55 1730 16.41
4 p43.tsp 2092.18 5695 99.38 2092.16 5695 36.61 2092.25 5695 1565.15
5 ftv44.tsp 1709.92 1802 12.31 1715.66 1802 4.62 1715.24 1802 13.37
6 ftv47.tsp 1848.25 1975 30.13 1862.57 1975 27.47 1862.73 1975 53.5
7 ry48p.tsp 15218.09 15864 47.94 15219.05 15864 36.59 15218.09 15864 109.45
8 ft53.tsp 6733.17 7396 17.83 6715.23 7396 36.41 6793.2 7396 12.97
9 ftv55.tsp 1642.58 1797 204.65 1647.44 1797 147.66 1550.73 1797 531.34
10 ftv55tsp 1865.66 2013 81.03 1869.5 2013 9.06 1879.31 2013 380.31
11 ftv64.tsp 1889.29 1992 104.5 1896.4 1992 40.96 1899.13 1992 150.38
12 ftv64.tsp 1928.62 2062 78.95 1924.88 2062 365.66 1961.76 2062 1297.76
13 ft70.tsp 40788.65 41105 224.95 40803.28 41105 35.76 40803.52 41105 373.86
14 ft70.tsp 41726.99 42272 664.24 41759.79 42272 471.79 41731.58 42272 1016.82
15 ftv70.tsp 1968.26 2074 76.74 1980.55 2074 41.56 1982.31 2074 197.39
16 ftv.70.tsp 2099.75 2296 2600.35 2102.01 2296 778.26 2114.43 2295.99 6180.85
17 fro124p.tsp 36329.11 37407 245.53 36329.11 37407 144.62 36329.11 37407 659.36
18 kro124p.tsp 36874.41 38076 252.7 36774.28 38076 169.92 36792.4 38076 1144.4
19 ftv170.tsp 3121.47 4087 20.13% 3122.63 3920 16.26% 3134.22 26751 88.14%
20 ftv170.tsp 2093.78 5696.99 42.61% 3095.11 3833.999 14.39% 3107.31 26596 88.15%

4.3. Results for FD-mVRPT

We report the results obtained by the proposed formulation (ALF) and the one by Bektaş
(2012) (MCF) adapted for the FD-mVRPT presented in Section 3.1.1. Recall that the
formulation based on NLF (Burger et al., 2018) is only an approximation and does not
represent the problem exactly. The results are displayed in Table 7. The columns in this
table are identical to those in Table 6, and the sign “–” is used to denote an infeasible
solution generated by a formulation. ALF obtained the minimum T /Gap in 33 out of 35
cases, outperforming MCF. The average optimality gaps attained for ALF and MCF are
4.72% and 7.12% with average computational times of 5555.8 and 6275.5, respectively.

From the results presented above, we can infer the following:

1 The proposed formulation (ALF) outperformed (MCF) for the FD-mVRPT.
2 From the practitioners’ viewpoint, our proposed formulation is effective in modelling

logistics problems having fixed-destinations in which customers can be visited more
than once as in FD-mVRPT.

4.4. Results for FD-mDCPTP

In Table 8, we present the results obtained by the proposed formulation (ALF) versus the
one reported in Bektaş (2012) (MCF) for the FD-mDCPTP (see Section 3.2). The columns
in this table are identical to those in Table 6. ALF outperformed MCF in 29 out of 35
cases. The average optimality gap for the former and the latter are 11.17% and 18.76%,
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Table 7
Results for FD-mVRPT.

ALF MCF
Instance Name Zlp Zip CPU/Gap Zlp Zip CPU/Gap

1 ftv33.tsp 909.63 1401 20.16 899.47 1401 43.93
2 ftv35.tsp 1006.67 1560 19.63 1006.63 1560 45.74
3 ftv38.tsp 1045.32 1623 36.22 1045.24 1623 79.52
4 p43.tsp 2612.14 5630 181.22 2612.14 5630 127.07
5 ftv44.tsp 1114.05 1710 75.48 1114.05 1710 95.59
6 ftv47.tsp 1194.56 1834 45.32 1194.56 1834 70.69
7 ry48p.tsp 9229.94 15049 234.5 9229.94 15049 162.4
8 ft53.tsp 4411.48 7103 101.13 4407.62 7103 178.45
9 ftv55.tsp 1146.70 1666 88.18 1145.27 1666 202.99
10 ftv55tsp 1240.06 1713 80.98 1229.19 1713 292.06
11 ftv64.tsp 1272.95 1905 145.71 1269.72 1905 284.33
12 ftv64.tsp 1332.10 1932 197.17 1322.52 1932 645.91
13 ft70.tsp 23483.95 39924 0.13% 23469.02 40124 1.12%
14 ft70.tsp 24869.02 40293 0.68% 23869.02 40752 2.74%
15 ftv70.tsp 1255.34 1995 247.54 1254.21 1995 481.88
16 ftv.70.tsp 1384.61 2058 354.41 1384.61 2058 1218.66
17 fro124p.tsp 23255.89 37280 6618.4 23255.89 37905 4.17%
18 kro124p.tsp 23418.21 37444 1.79% 23418.21 38375 4.84%
19 ftv170.tsp 2319.22 3376 16.29% 2319.22 7674 67.32%
20 ftv170.tsp 2300.82 3742 25.16% 2300.82 – † 10800
21 p01 271.34 449 1697.67 278.97 449 3057.51
22 p02 263.11 445 573.872 263.11 445 1354.55
23 p03 340.18 558 1.51% 340.28 561 2.63%
24 p04 338.96 641 6.91% 348.20 644 9.55%
25 p05 335.15 623 3.20% 343.37 642 11.40%
26 p06 342.23 649 5.82% 357.92 644 6.63%
27 p07 347.45 676 9.21% 371.079 923 40.38%
28 p12 817.43 1616 9.65% 1100.66 1642 11.21%
29 p13 925.21 1617 9.74% 1100.66 1626 10.35%
30 p14 817.43 1617 9.74% 1100.66 1626 10.40%
31 pr01 510.19 867 102.17 510.19 867 725.11
32 pr02 546.88 1174 2.61% 546.88 1239 10.6%
33 pr03 762.99 1821 21.01% 823.77 2054 37.7%
34 pr04 998.14 2288 40.16% 1018.13 – † 10800
35 pr07 625.90 1074 1.44% 625.90 1100 5.80%

† Infeasible solution.

respectively, with a maximum gap of 46.51% for the former and 92.31% for the latter.
The proposed two-index formulation is therefore more suitable for modelling variations
of the fixed-destination routing problems in which transfer locations are used to minimize
transportation costs.

5. Concluding Remarks

We have presented a compact formulation for the fixed-destination multi-depot asymmet-
ric travelling salesman problem (FD-mATSP), wherein m salesmen depart from D de-
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Table 8
Results for the FD-mDCPTP.

ALF MCF
Instance Name Zlp Zip CPU/Gap Zlp Zip CPU/Gap

1 ftv33.tsp 1368.13 1595 167.96 1368.62 1595 822.57
2 ftv35.tsp 1519.53 1690 85.63 1519.72 1690 162.11
3 ftv38.tsp 1556.56 1760 740.09 1556.56 1760 1170.64
4 p43.tsp 2883.29 5728 0.15% 2883.29 5728 0.10%
5 ftv44.tsp 1713.88 1869 336.69 1713.88 1869 737.34
6 ftv47.tsp 1794.81 2084 8.21% 1811.23 2134 6.43%
7 ry48p.tsp 14497.04 16967 2.96% 14497.04 16919 4.27%
8 ft53.tsp 6788.11 7812 2.16% 6849.43 7812 7730.61
9 ftv55.tsp 1599.02 1870 3.68% 1619.74 1863 2.15%
10 ftv55tsp 1828.73 2085 1577.87 1849.92 2085 1932.86
11 ftv64.tsp 1912.83 2090 3.26% 1914.87 2117 4.28%
12 ftv64.tsp 2042.2 2558 10.14% 2055.966 2600 14.91%
13 ft70.tsp 39886.53 40924 0.20% 39886.9 41328 2.53%
14 ft70.tsp 40989.59 45312 4.87% 40993.4 44616 6.69%
15 ftv70.tsp 1960.52 2246 1.84% 1962.43 2243 4.24%
16 ftv.70.tsp 2192.5 2652 8.93% 2194.64 2514 5.43%
17 fro124p.tsp 35875.4 51698 11.32% 35875.4 48613 23.11%
18 kro124p.tsp 37538.71 58555 24.77% 37561.039 58324 32.87%
19 ftv170.tsp 3549.63 7452 36.15% 3551.57 6277 42.25%
20 ftv170.tsp 3579.12 7229 40.42% 3580.48 47485 92.31%
21 p01 416.68 514 7.63% 416.68 532 11.80%
22 p02 427.10 524 8.88% 427.10 540 12.38%
23 p03 532.53 667 12.64% 532.53 928 37.64%
24 p04 581.51 638 2.28% 581.51 748 17.05%
25 p05 574.00 667 7.40% 574.00 672 8.31%
26 p06 587.22 732 14.51% 587.22 867 27.93%
27 p07 606.61 819 21.31% 606.64 977 34.59%
28 p12 968.16 1229 1.71% 968.16 1314 10.43%
29 p13 973.42 1222 0.93% 973.42 1222 1.20%
30 p14 973.42 1222 1.76% 973.42 1222 1.21%
31 pr01 846.45 1059 8.36% 846.45 1105 12.05%
32 pr02 1048.51 1563 23.14% 1048.51 2736 56.43%
33 pr03 1346.24 2784 44.48% 1346.24 3848 60.21%
34 pr04 1366.37 3041 46.51% 1366.37 4861 66.78%
35 pr07 1016.39 1679 31.73% 1016.39 2588 57.04%

pots and return to their origins after collectively visiting a set of customers exactly once.
The proposed compact formulation labels an arc based on the depot from where the sales-
man visits that arc. This label is used as a flow that is maintained throughout the tour of a
salesman from that depot. We show that the proposed and existing formulations for the FD-
mATSP do not dominate each other in terms of the strength of their linear programming
relaxations. The proposed formulation was demonstrated to be more versatile and effective
to solve other variations of this problem. We have demonstrated this by applying it to the
solution of two important extensions of the FD-mATSP, namely, the fixed-destination mul-
tiple vehicle routing problems with transshipment (FD-mVRPT), and the fixed-destination
multi-depot collection problem with transfer points (FD-mDCPTP). The proposed formu-
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lation outperformed a three-index formulation due to Bektaş (2012) and a two-index for-
mulation due to Burger et al. (2018) when adapted to both problems. Hence, the proposed
compact formulation has the potential to effectively solve various routing and logistics
problems with applicability in contemporary logistics and manufacturing management
environments. For future work, we propose to extend the proposed formulation to other
routing problems as well as design more effective exact algorithms based on a polyhedral
analysis of the model that exploits the underlying flow-based structure.
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