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Abstract. An image or volume of interest in positron emission tomography (PET) is reconstructed
from gamma rays emitted from a radioactive tracer, which are then captured and used to estimate the
tracer’s location. The image or volume of interest is reconstructed by estimating the pixel or voxel
values on a grid determined by the scanner. Such an approach is usually associated with limited
resolution of the reconstruction, high computational complexity due to slow convergence and noisy
results.

This paper presents a novel method of PET image reconstruction using the underlying assump-
tion that the originals of interest can be modelled using Gaussian mixture models. Parameters are es-
timated from one-dimensional projections using an iterative algorithm resembling the expectation-
maximization algorithm. This presents a complex computational problem which is resolved by a
novel approach that utilizes L1 minimization.
Key words: Gaussian mixture models, positron emission tomography, Expectation-Maximization
(EM) algorithm, image segmentation.

1. Introduction

In positron emission tomography (PET), image reconstruction implies generating an im-
age of a radiotracer’s concentration to estimate physiologic parameters for objects (vol-
umes) of interest. Pairs of photons arise from emissions of annihilated positrons, and crys-
tals placed in the scanner detect these pairs. When two are activated at the same time, the
device records an event. Each possible pair of crystals is connected by a line or volume of
response (LOR, VOR), depending on whether the scan is 2D or 3D. Assuming there are no
contaminating physical effects or noise, the total number of coincidence events detected
and the total amount of tracer contained in the tube are proportional. In the 2D case, we
observe events along lines of response (LORs) joining two detector elements, lying within
a specified imaging plane. The data are recorded as event histograms (sinograms or pro-
jected data) or as a list of recorded photon-pair events (list-mode data). Classic PET image
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reconstruction methodology is explained in more detail in e.g. Tong et al. (2010), Alessio
and Kinahan (2006) or Reader and Zaidi (2007).

Modern image reconstruction methods are mostly based on maximum-likelihood
expectation-maximization (MLEM) iterations. Maximum likelihood is used as the opti-
mization criterion, combined with the expectation-maximization algorithm for finding its
solution. To overcome the computational complexity and slow convergence of the MLEM,
the ordered subsets expectation-maximization (OSEM) algorithm has been introduced
(Hudson and Larkin, 1994). Since MLEM or OSEM estimation of pixels or voxels is
usually noisy (Tong et al., 2010), use of post-filtering methods is necessary. On the one
hand, image reconstruction from its projections is a mature research field with well known
methods and proven results. On the other hand, known limitations made a challenge for a
different approach presented in this paper.

In image segmentation, a number of algorithms based on model-based techniques uti-
lizing prior knowledge have been proposed to model uncertainty, cf. Zhang et al. (2001,
1994). The Gaussian mixture model (GMM) is well-known and widely used in a vari-
ety of segmentation and classification problems (Friedman and Russell, 1997; Ralašić
et al., 2018), as many observed quantities exhibit behaviour congruent with the model.
A good overview of the application of GMMs and their generalizations to problems in im-
age classification, image annotation and image retrieval can be found, e.g. in Tian (2018).
However, in those problems the sample is from the GMM itself, whereas in this case the
observed data is lower-dimensional (i.e. lines) and the points of origin are unknown.

In this paper, we propose a new robust method for reconstructing an object from
a simulated PET image. The challenge of estimating Gaussian parameters from lower-
dimensional data is solved by utilizing a novel L1 minimizing algorithm. With it, our
framework becomes similar to the standard Expectation-Maximization (EM) algorithm.
Instead of values in individual pixels or voxels, we estimate parameters of the object’s
model. This enables us to model one or more objects of interest, each as a mixture of
one or more components, assuming that the entire object is a source of radiation with
varying intensity. We focus on the two-dimensional case for clarity, but an extension to
three dimensions would follow in a similar fashion. To the best of our knowledge, this is
the first attempt to use parametric models in PET image reconstruction in this way. Pa-
rameters of Gaussian mixture models have not been estimated from lower-dimensional
data due to computational complexity, which is circumvented here by the algorithm that
efficiently finds global minimums. This paper is organized into six sections. Section 2
gives an overview of traditional methodology in 2D PET imaging. Section 3 describes
the estimation of Gaussian mixture model parameters from PET data. Section 4 shows
the implementation of iterative estimates in the EM-like algorithm. Finally, experimental
results in Section 5 and discussion conclude the paper.

2. Two-Dimensional PET Imaging

Data are collected along lines lying within a specific imaging plane. Traditionally, data
are organized into sets of projections, integrals along all lines (LORs) for a fixed direc-
tion φ. The collection of all projections for 0 � φ < 2π forms a two-dimensional function
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Fig. 1. (a) Simulated measurements for N = 400 and K = 2. (b) The corresponding sinogram.

of the distance of the LOR from the origin, denoted by s, and angle φ. The line-integral
transform of f (x, y) → p(s, φ) is called the X-ray transform (Natterer, 1986), which in
2D is the same as the Radon transform (Helgason, 1999). The path for any fixed point in
the projection space resembles a sinusoidal curve. This is traditionally represented by a
sinogram, a graph where these paths are drawn for all points of activity simultaneously.
Figure 1 illustrates one synthetic measurement and the corresponding sinogram. Classical
reconstruction methods, most notably the filtered backprojection (FBP), rely on the inte-
gral transform, cf. Natterer (1986), O’Sullivan and Pawitan (1993), Alessio and Kinahan
(2006). They do not include or depend on any assumptions about the data. Assumptions
such as form, volume and dependence could be utilized to obtain more precise estimates.

3. Estimating the Gaussian Mixture Model

A Gaussian mixture model (Reynolds, 2015) is a weighted sum of K component Gaussian
densities as given by the equation:

p(x|τk,μk,�k) =
K∑

k=1

τk f (x|μk,�k), (1)

where x is a d-dimensional observation, τi (i = 1, . . . , K) are the weights of each Gaus-
sian component, and f (x|μk,�k) are the Gaussian component densities. We assume that
a given observation x is a realization from exactly one of the K Gaussian mixture com-
ponents, and each component density is a d-variate Gaussian function of the form:

f (x|μk,�k) = 1√
(2π)d |�k|

exp

(
−1

2
(x − μk)

T �−1
k (x − μk)

)
. (2)

The set of probabilities {τk} such that
∑K

k=1 τk = 1 defines the probabilities that x be-
longs to the corresponding Gaussian component. The complete Gaussian mixture model
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is parameterized by the mean vectors {μk}, covariance matrices {�k} and mixture weights
{τk} for all Gaussian component densities.

Traditionally in this setting, the GMMs are used to model activity concentration in
voxels (Layer et al., 2015) or pixel values (Nguyen and Wu, 2013). Those models do not
take into account the spatial correlation between observations, which can be corrected by
introducing Markov random fields (Layer et al., 2015; Nguyen and Wu, 2013). In other
image segmentation problems, this can be addressed by modelling the mixture weights as
probability vectors, thereby creating a spatially varying finite mixture model (SVFMM)
(Xiong and Huang, 2015).

Here, we apply the GMM directly to the spatial data, focusing only on the locations
and not the values at those locations. In other words, the location of the tracer, i.e. the
particles that originate the gamma rays, is represented by the the K Gaussian components.
The points x that are realizations from these components are latent (unobserved). Our
observations, i.e. events, are lines through these points at random angles ϕ, however, using
convenient properties of Gaussian distributions we will still be able to accurately estimate
the parameters.

As mentioned earlier, Gaussian mixture models have naturally appeared in many signal
processing (Yu and Sapiro, 2011; Léger et al., 2011) and biometrics problems (Reynolds,
2015; Reynolds et al., 2000). Due to the flexibility of the mixtures, GMMs are conve-
nient and effective for modelling various types of signals, as well as image inverse and
missing/noisy data problems.

Note that in our simulations we assume that K , the number of mixture components,
is known. In practical applications it should also be estimated, which is a further (and not
insignificant) problem. For mixture components that are sufficiently separated in space,
such as in Fig. 1, the sinogram itself could give insight into the most adequate number
of components, otherwise ideas suggested in, e.g. Leroux (1992), Chen (1995), Cheng
(2005), should be explored.

For clarity, in this section we focus only on one Gaussian component. Assuming we
know a set of N events whose points of origin come from a Gaussian distribution with
parameters (μ,�), we can estimate those parameters.

3.1. Estimation of μ Using Minimal Distance

Each event in two dimensions is uniquely given by its slope k = tan ϕ and an intercept l

(or by any two equivalent parameters) and we can write the event equations as

aT
i x + li = 0, ai = [tan ϕi−1]T , i = 1, . . . , N. (3)

The mean vector μ = [μx μy]T can be estimated in multiple ways. One method is to
find the point in space whose total squared distance from all events is minimal. Clearly,
the solution depends on our definition of distance. Formally, one would prefer to find the
point whose total distance (not squared) is minimal, but that presents a nonlinear problem
which is significantly more difficult to solve, and we will show that the linear problem
provides a satisfying solution.
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In general, the squared distance between d-dimensional vectors is defined as

d2(v1, v2) = (v1 − v2)
T W (v1 − v2), (4)

for some d × d weight matrix W . In particular, when W = I the distance in (4) is Eu-
clidian, and W = �−1 gives the Mahalanobis distance. In our case, d = 2 and a planar
line is given by one equation, but similar results would follow for higher dimensions.

First, note that for a fixed μ the solution to

min d2(x,μ) such that aix + li = 0,

is (Golub and Van Loan, 2012) the solution to[
2W ai

aT
i 0

]
·
[
x

μ
i

λ

]
=

[
2Wμ

−li

]
. (5)

Now the optimal μ is the one that minimizes the expression

min
N∑

i=1

(
x

μ
i − μ

)T
W

(
x

μ
i − μ

)
, (6)

where x
μ
i is determined by (5). To solve this, first note that the solution to (5) is

[
x

μ
i

λ

]
=

[
2W ai

aT
i 0

]−1

·
[

2Wμ

−li

]
.

To accommodate this, we will denote the expression in (6) by d2 and expand it:

d2 =
N∑

i=1

(
x

μ
i − μ

)T
W

(
x

μ
i − μ

)
=

N∑
i=1

([
x

μ
i

λ

]
−

[
μ

λ

])T

·
[
W 0
0 0

]
·
([

x
μ
i

λ

]
−

[
μ

λ

])
.

For simplicity, denote

xiλ =
[
x

μ
i

λ

]
, μλ =

[
μ

λ

]
and W̃ =

[
W 0
0 0

]
.

Now d2 equals

N∑
i=1

(
xT

iλW̃xiλ − xT
iλW̃μλ − μT

λ W̃xiλ + μT
λ W̃μλ

)
,

which we will differentiate piecewise to find the minimum. We have:
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1)

d

dμ
xT

iλW̃xiλ = 2

[
2Wμ

−li

]T

Bi

[
2W ai

aT
i 0

]−1 [
2W

0

]
,

where

Bi =
([

2W ai

aT
i 0

]−1
)T

W̃ .

2)

d

dμ
μT

λ W̃xiλ = μT
λ BT

i

[
2W

0

]
+

[
2Wμ

−li

]T

Bi

[
I

0

]
.

3)

d

dμ
μT

λ W̃xiλ = μT
λ BT

i

[
2W

0

]
+

[
2Wμ

−li

]T

Bi

[
I

0

]
.

4)

d

dμ
μT

λ W̃μλ = 2μT
λ W̃

[
I

0

]
.

Note that in all calculations we use the fact that W and, by extension, W̃ are symmetric.
By plugging these equations into d

dμ and equating that with 0 to obtain the minimum, we
get:

d

dμ
d2 =

N∑
i=1

([
2Wμ

−li

]T

· Bi

([
2W ai

aT
i 0

]−1 [
2W

0

]
−

[
I

0

])
−

− μT
λ

(
BT

i

[
2W

0

]
− W̃

[
I

0

]))
= 0.

Define

[
M i

mi

]
= Bi

⎛⎝[
2W ai

aT
i 0

] [
2W

0

]
−

⎡⎣1 0
0 1
0 0

⎤⎦⎞⎠ ,

[
N i

0

]
= BT

i

[
2W

0

]
− W̃

⎡⎣1 0
0 1
0 0

⎤⎦ .
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From the previous equation we now have

N∑
i=1

([
2μT W T ,−li

] ·
[
M i

mi

]
− [

μT , λi

] ·
[
N i

0

])
= 0,

N∑
i=1

(
2μT W T M i − limi − μT N i

) = 0,

μT

N∑
i=1

(
2W T M i − N i

) =
N∑

i=1

limi ,

from which it follows that

μT =
( N∑

i=1

limi

)
·
( N∑

i=1

(
2W T M i − N i

))−1

. (7)

It remains to verify that this stationary point μ is also a turning point. However, since a
point whose sum of squared distances from all lines is minimal must exist from a geomet-
rical perspective, the solution in (7) is indeed the (global) minimum.

3.2. Estimation of � Using 1D Projections

In the two-dimensional setting, since � is a symmetric matrix,

� =
[
�11 �12

�12 �22

]
,

we need to estimate three parameters: �11, �12 and �22.
Figure 2 depicts a single event and its corresponding LOR. Recall that the line is de-

termined by two parameters, one of which is the slope tan ϕ, where ϕ is the angle between
the line and the x-axis. If we rotate the coordinate system by ϕ − π

2 , in the new coordinate
system the y-axis is parallel to the event. If we represent the Gaussian distribution as in
the image, in this new setup it rotated by ψ = π

2 −ϕ. Since a rotated Gaussian distribution
is again Gaussian, in this new coordinate system the event is parallel to the y-axis, and the
Gaussian distribution has parameters

(
T μ, T �T T

)
, where T =

[
cos ψ − sin ψ

sin ψ cos ψ

]
is the rotation matrix. (8)

Given the original event parameters, the coordinates of the intersection of the event
and the new x-axis are (−l sin ψ, 0). The projection of the Gaussian distribution onto the
new x-axis remains Gaussian, and the parameters of this one-dimensional distribution are
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Fig. 2. Illustration of the rotation. The event (LOR) is parallel to the new y-axis.

components of the original two-dimensional Gaussian. From (8) we see that the expecta-
tion is given by

(T μ)1 = cos ψμx − sin ψμy,

and variance is(
T �T T

)
11 = cos2 ψ�11 − 2 cos ψ sin ψ�12 + sin2 ψ�22. (9)

We can use these one-dimensional projections and their squared (Euclidian) distance
from the mean, to estimate the variance in (9). This squared distance is equal to (cos ψμx−
sin ψμy + l sin ψ)2, which gives us a system of equations:

As = b, where s =
⎡⎣�11

�12

�22

⎤⎦ , (10)

A =

⎡⎢⎢⎢⎣
cos2 ψ1 −2 sin ψ1 cos ψ1 sin2 ψ1

cos2 ψ2 −2 sin ψ2 cos ψ2 sin2 ψ2
...

...
...

cos2 ψN −2 sin ψ1 cos ψN sin2 ψN

⎤⎥⎥⎥⎦ ,

and b =
⎡⎢⎣ (cos ψ1μx − sin ψ1μy + l1 sin ψ1)

2

...

(cos ψNμx − sin ψNμy + lN sin ψN)2

⎤⎥⎦ .

This problem is clearly overdetermined, since there are (dozens of) thousands of measure-
ments. There is no exact solution and the best approximation is found by solving

min
s

‖As − b‖. (11)
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Note that the solution will depend on the type of norm used in (11). Following classical
methodology, the ordinary least squares (OLS) method gives the solution that minimizes
the L2 norm. This solution can be found by solving the equivalent problem

AT As = AT · b, i.e. s = (
AT A

)−1
AT · b.

As we will show in Section 5, OLS performs poorly when we introduce more than one
component, so we will need to use alternative methods. L1 minimization is a popular ap-
proach in engineering problems because it gives sparse solutions, but it had also been
shown that it is less sensitive than the more traditional L2 minimization (Bektaş and
Şişman, 2010). The main argument against L1 minimization would be computational
complexity, which can be alleviated by using iterative methods. In this paper, the L1 min-
imization algorithm proposed in Sović Kržić and Seršić (2018) is used to solve a modified
problem

As = k · b, (12)

where k is a constant corrective scale factor. In a sufficiently large sample, one would have
enough data points in each direction φ to obtain a one-dimensional variance estimate. In
the absence of that, we are able to obtain a robust estimator for the parameters of the co-
variance matrix following the median absolute deviation (MAD) estimator of deviation σ

(Rousseeuw and Croux, 1993), i.e.

k = (

(0.75)

)2 ≈ 1.48262,

where 
 denotes the distribution function of the standard normal random variable.

4. EM-Like Algorithm

In many statistical models, maximum likelihood parameter estimation can not be per-
formed directly since most equations do not have an explicit closed solution. Several
iterative methods have been developed to combat this, most notably the expectation-
maximization (EM) algorithm. It had been proposed and used in many different circum-
stances before its proper introduction in Dempster et al. (1977). The name comes from
its two-step setup, namely the expectation (E) and maximization (M) step which inter-
change until an acceptable solution is found. In the context of GMMs, and generally in
emission tomography (Shepp and Vardi, 1982), the issue is that the true mixture member-
ship is unknown (latent). The E step for given mixture parameters estimates probabilities
{τk} from (2) for each data point. The M step then (re)estimates the mixture parame-
ters from the points assigned to that mixture with their corresponding probabilities. As
already mentioned, our observations are lines and the true data points are latent, how-
ever, we can replicate the iterative steps using estimates from Section 3. Alternatively,
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this could also be considered a Lloyd-like algorithm, where the difference from the con-
ventional Lloyd’s algorithm (Lloyd, 1982) is that we allow different distance functions of
the form (4). The algorithm initializes parameters arbitrarily, and then alternates between
the following steps:

1. Compute class membership probabilities. For each event, compute the squared distance
from each component mean. We distinguish between a hard classification where we
assign the event to its nearest component, and a soft classification where membership
probability is inversely proportional to the squared distance.

2. Estimate component parameters. Either from a hard or soft classification, where each
event participates with its proportional share, parameters of each component are esti-
mated using methodology from Section 3.

The L1 minimization algorithm recursively reduces and increases dimensionality of the
observed subspace and uses weighted median to efficiently find the global minimum, and
has shown to overperform state-of-the-art competitive methods when there are relatively
few parameters to be estimated from a very high number of equations. For details, see
Appendix and Sović Kržić and Seršić (2018).

This approach allows for different variants, depending on the type of distance used
(Tafro and Seršić, 2019).

In this paper, initial steps of the iterative algorithm use Euclidian distance in (4). Since
later iterations improve the estimates, the distance gradually transforms into the Maha-
lanobis distance, i.e.

W = (1 − α)I + α�̂
−1

, (13)

where α increases from 0 to 1. It is known that, for � given, the estimate obtained using
the Mahalanobis distance is also the maximum likelihood estimate for μ. Therefore, in
later iterations we obtain an MLE-like estimate of μ.

5. Results

To evaluate the methodology, we experimented in the two-dimensional setting with K = 1
and K = 2 components.

First, for proof of concept we show that the method in Section 3 provides good esti-
mates with both L1 and L2 minimization, for several covariance matrices with varying
corresponding correlation coefficients:

�1 = 0.05I , �2 =
[

0.02 −0.01
−0.01 0.05

]
, �3 =

[
0.01 0.02
0.02 0.05

]
.

These matrices represent different shapes, i.e. different types of dependence, from inde-
pendent (�1) to strongly dependent (�3) variables. Since the 2D covariance matrix is of
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the form

� =
[

σ 2
x ρσxσy

ρσxσy σ 2
y

]
,

it is determined by three parameters – σx , σy and ρ(= ρxy). This corresponds to the
three-dimensional vector

s = [�11 �12 �22]T = [
σ 2

x ρσxσy σ 2
y

]T
in (10). Instead of observing true and estimated � matrices we will calculate the error in
estimation of s for each s that corresponds to matrices above:

s1 =
⎡⎣0.05

0
0.05

⎤⎦ , s2 =
⎡⎣ 0.02

−0.01
0.05

⎤⎦ , s3 =
⎡⎣0.01

0.02
0.05

⎤⎦ .

Note that the corresponding correlation coefficients can be calculated from these vectors,
and they are ρ1 = 0, ρ2 ≈ −0.3, ρ3 ≈ 0.9.

5.1. One-Dimensional Estimation

Accuracy of an estimate v̂ of vector v can be assessed in many ways, for illustrative pur-
poses we chose relative error, i.e.

‖e‖ = ‖v̂ − v‖
‖v‖ ,

where ‖ · ‖ denotes the standard Euclidian norm in both expressions.
Initial value of α in the distance weight matrix was set to zero, and proportionally

increased to 1 in the final iteration. The left side of Fig. 3 illustrates how the errors in

Fig. 3. Left: Relative error in estimation of μ from a single measurement (N = 1000 events). Right: Average
relative error for increasing sample size, for three types of covariance.
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Table 1
Mean estimation error, K = 1.

N = 1000 s1 s2 s3

L1 method 13.78% 11.88% 9.28%
L2 method 8.27% 7.61% 7.6%

N = 10000 s1 s2 s3

L1 method 4.28% 3.66% 2.93%
L2 method 2.61% 2.38% 2.37%

the estimation of μ change with the number of iterations in a single experiment with
N = 1000 points, for all three types of covariance matrices. Depending on the type of
covariance matrix, the accuracy increases as |ρ| increases, but in all three scenarios the
estimation is stable within less than 10 iterations, and sufficiently accurate. In further
experiments, the number of iterations in the algorithm was set to 10, with the distance
metric varying according to (13). The right side of Fig. 3 shows how the accuracy in
estimation of μ increases with the sample size, with the number of experiments set to 100
for each sample size. The relative errors decreases as the number of points increases, as is
expected, but we can also notice that the error is fairly similar even for sample sizes that
are very small (compared to the usual sample sizes in PET imagery).

For each of these types of covariances we then simulated a measurement from N =
1000 and N = 10000 points and calculated the average estimate of vector s using L1 and
L2 minimization separately. We repeated the experiment 1000 times in each case. Results
are given in Table 1.

Given that the variance of the traditional standard deviation estimator (from points)
equals σ 4

n−1 , estimations within 10% from N = 1000 events are acceptable, which justifies
the methodology described in Section 3. Significantly more accurate estimation from N =
10000 events further confirms this. It is also notable that in general the accuracy of the
estimate increases as |ρ| increases from 0 to 1, i.e. when the set of points of origin is more
elongated in shape.

5.2. Two-Dimensional Estimation

For K = 2 components we repeated the experiment as described in Section 4 for various
combinations of types of vector s. We used hard classification, where we assign each
line to at most one component. We experimented with various constraints, from simply
assigning events to more likely components to assignations only when the probability of
belonging is above a certain threshold.

For synthetic measurements from a variety of original (real) GMMs the algorithm
proved robust regardless of the values of initial parameters, with estimation using L1 min-
imization and the scaling factor k correcting the bias. The L2 minimization method proved
inefficient, since wrongly assigned events would cause unstable estimations and “breaks”
in the algorithm.

Table 2 shows the percentage of correctly classified events for several combinations of
covariance matrices, where a total of N = 4000 events were simulated from two mixtures
(N1 = 2500, N2 = 1500) for each combination. Events were classified with no probability
thresholds, i.e. each event was assigned to the more likely component. We can conclude



2D PET Image Reconstruction Using Robust L1 Estimation of the Gaussian Mixture Model 665

Table 2
Correct classification, K = 2.

Cov. 1 Cov. 2 Comp. 1 Comp. 2 Total

�1 �2 87.63% 93.49% 89.83%
�2 �3 93.52% 92.13% 93.00%
�3 �1 91.26% 95.83% 92.98%

Fig. 4. (a) Classical FBP reconstruction. (b) Proposed reconstruction using L1 minimization.

overall that the algorithm has a very good classification rate which, combined with the
results for individual components, gives reason to expect accurate estimations for multiple
components.

An illustration of the results for K = 2, N = 4000 is shown in Fig. 4, along with the
corresponding classical FBP method.

6. Conclusion

These results show proof of concept that it is possible to reconstruct data from latent
mixture models using lower-dimensional observations and state-of-the-art computational
techniques. Estimation from lower-dimensional measurements had not been thoroughly
developed for Gaussian mixture models in general, and especially in this context. This
paper shows that the main obstacle, slow computational speed, can be evaded by an alter-
native approach to minimization, which opens the door to various new procedures. Further
work includes other metrics and membership calculation and utilizing traditional methods
to obtain the number of mixing components and optimal initial values.

The fact that the reconstructed image is given by its parametric model (mean vectors
{μk}, covariance matrices {�k} and mixture weights {τk}) has many benefits. This ap-
proach would allow for accurate reconstruction from significantly fewer measurements,
thus decreasing patients’ exposure to radiation. It is virtually of infinite resolution, since
the Gaussian components can be evaluated at each spatial point. The model is sparse: it
consists from only a few parameters needed for successful object representation. Hence,
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future research will be oriented to compressed sensing approach (Rani et al., 2018; Ralašić
et al., 2018, 2019) for reducing the number of projections, in this case reduced radio-
tracer’s concentration. Due to robustness of the proposed reconstruction method, a post-
filtering step is not needed. This novel point of view aims to match the accuracy of iterative
parametric models with the computational speed of the analytic approach by combining
advantageous statistical models with state-of-the-art techniques from other image recon-
struction problems.

Appendix

The L1 minimization algorithm recursively reduces and increases dimensionality of the
observed subspace and uses weighted median to efficiently find the global minimum. Re-
duction of dimensionality is achieved by extracting of parameters and inserting them into
remaining equations in (12). If [Ai1 Ai2 Ai3] is the i-th row of matrix A, and bi the i-th
element of vector k · b, the i-th equation of the system is

bi = �11Ai1 + �12Ai2 + �13Ai3.

We choose equation j1 from the set i = 1, . . . , N and extract one of its parameters, e.g.
�11:

�11 = −Aj12

Aj11
�12 − Aj13

Aj11
�22 + bj1 . (14)

We insert it into all other equations and get a new system with only two unknown
parameters:

bi − bj1Ai1 =
(

Ai2 − Aj1

Aj11
Ai1

)
�12 +

(
Ai3 − Aj13

Aj11
Ai1

)
�22,

for i �= j1. Now, we choose some other equation j2, j2 �= j1 and extract one of the
remaining parameters, e.g. �12:

�12 = −Aj23Aj11 − Aj13Aj21

Aj22Aj11 − Aj12Aj21
�22 + (bj2 − bj1Aj21)Aj11

Aj22Aj11 − Aj12Aj21
. (15)

We insert �12 into all other equations and get the system of N −2 equations with only
one unknown parameter �22:

b
(1)
i = A

(1)
i �22, (16)
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where i �= j1, j2,

b
(1)
i = bi − bj1Ai1 −

(
Ai2 − Aj12

Aj11
Ai1

)
(bj2 − bj1Aj21)Aj11

Aj22Aj11 − Aj12Aj21
,

A
(1)
i = Ai3 − Aj13

Aj11
Ai1 −

(
Ai2 − Aj12

Aj11
Ai1

)
Aj23Aj11 − Aj13Aj21

Aj22Aj11 − Aj12Aj21
.

Parameter �22 is calculated by minimizing L1 norm

min
N∑

i=1
i �=j1,j2

∣∣b(1)
i − A

(1)
i �22

∣∣
which equals

min
N∑

i=1
i �=j1,j2

∣∣A(1)
i

∣∣∣∣∣∣ b
(1)
i

A
(1)
i

− �22

∣∣∣∣.
The value of parameter �22 is given by the weighted median (MED):

(�22, j3) = MED
(∣∣A(1)

i

∣∣♦ b
(1)
i

A
(1)
i

∣∣∣∣N
i=1,i �=j1,j2

)
, (17)

where j3 is an ordinal number of the concomitant equation and ♦ is the replication op-
erator. The weighted median can be obtained using the algorithm given in Sović Kržić
and Seršić (2018). The value of parameter �22 is an element of set {b(1)

i /A
(1)
i }. Chosen

equations {j1, j2, j3} define a local minimum in 1D, a vertex.
Return to a higher dimension is achieved by putting calculated parameter value �22 in

(15). To further descending in L1 cost surface, we fix equations j1 and j3, and try to find
new j4 using (16)–(17). If j4 �= j2, new vertex is defined by {j1, j2, j3} = {j1, j3, j4}
and we repeat the same procedure. If j4 = j2, we conclude that the vertex {j1, j2, j3} is a
local minimum in observed 2D subspace, thus we return to 3D by fixing j2 and j3 and try
to find new j4 instead of j1. We repeat the previous procedure until we cannot find new
equation. Since the L1 cost surface is convex, the global minimum is reached. Parameters
�11, �12 and �22 are given by (14), (15) and (17).
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