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Abstract. In this paper we propose modifications of the well-known algorithm of particle swarm
optimization (PSO). These changes affect the mapping of the motion of particles from continuous
space to binary space for searching in it, which is widely used to solve the problem of feature se-
lection. The modified binary PSO variations were tested on the dataset SVC2004 dedicated to the
problem of user authentication based on dynamic features of a handwritten signature. In the ex-
ample of k-nearest neighbours (kNN), experiments were carried out to find the optimal subset of
features. The search for the subset was considered as a multicriteria optimization problem, taking
into account the accuracy of the model and the number of features.
Key words: feature selection, handwritten signature, particle swarm optimization, biometric
authentication.

1. Introduction

A handwritten signature is one of the most commonly used instruments of person authen-
ticating. There are two types of handwritten signature recognition: static (offline) and dy-
namic (online) (Mailah and Han, 2012). Static type consists only in processing a graphic
image of the signature. Dynamic recognition involves the analysis of dynamic parame-
ters, such as coordinates, pressure, pen speed, and the total time of the signature. Such
dynamic parameters can’t be determined with only the final image of the signature, so the
task of falsification is much more complicated. Research has shown that dynamic signa-
ture recognition can significantly improve the accuracy of user identification (Linden et
al., 2018).

To obtain initial dynamic signature signals, various technical devices are used, for ex-
ample, a graphic tablet (Nelson and Kishon, 1991) or a pen equipped with special sensors
(Sakamoto et al., 2001). Further, it is necessary to extract features from the received sig-
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nals. Features should make it possible to distinguish one user from another, taking into
account the variability of the signature of the same user (Li and Jain, 2015).

Features can be extracted from the time domain, frequency domain or wavelet trans-
form domain (Wu et al., 2018). For feature extraction, algorithms such as Fourier trans-
form (Dimauro, 2011) or discrete wavelet transform can be used (Fahmy, 2010). However,
after extracting features, their number may be quite large. It negatively affects the oper-
ating time of the user authentication system. In addition, not all of the obtained features
can be equally useful for the correct identification of the user, some of them can reduce
the classification accuracy. To solve this problem, the feature selection is used.

The selection of the most informative features when constructing a machine learning
model is not only a way to reduce the computational complexity of the model, but also to
improve the forecast accuracy. This procedure is particularly important for data describ-
ing digitized signals, which generally contain a large number of variables with different
informativeness. In particular, some of these variables have a crucial role to recognize the
corresponding signals, while others may be useless or even may have a negative effect for
the recognition process.

There are three groups of feature selection methods: filters, wrappers and embedded
methods. While the last group is particular to specific decision algorithms, the rest are
more general. Filters are applied during a stage of data preprocessing. They rely on analy-
sis of the relationship between feature space and output variable. The criteria for assessing
the relationship can be mutual information, chi-square test, Fisher’s test, correlation co-
efficient and other characteristics. Disadvantages of this group of methods include the
complexity of assessing a synergy between subsets of features and some separation of
filters from decision algorithms.

In contrast, methods from the wrapper group function in conjunction with the decision
algorithm. They select a subset of features that allows achieving the best value of the
objective function of the model. As a rule, optimization algorithms are used as wrappers,
and, above all, metaheuristics. However, not all metaheuristics in their original version are
capable of working in a binary search space, such as, for example, the genetic algorithm.
The development of effective variations of binary algorithms is an urgent task.

One of the most famous metaheuristics is the particle swarm algorithm (PSO). It is a
stochastic search method based on the iteratively repeated interaction of a group of parti-
cles (Shi and Eberhart, 1999). Its advantages are simplicity and computational efficiency
due to the small number of tunable parameters and low memory usage.

This article is devoted to the task of PSO binarization. Binarization is a modification
of the algorithm to perform a search in binary space. The contributions of this article are
as follows:

• We propose the following new methods for binarization of continuous metaheuristics:
Local search, New fitness, The merge procedure, The hybrid method of the modified
arithmetic operation and the merge procedure.

• We modify the continuous PSO with new binarization methods to select features of the
user’s classification based on a handwritten signature.
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• We propose and demonstrate the effectiveness of our binary PSOs for classifying a
user by handwritten signature. We will show that these new enhancements have greater
authentication efficiency compared to standard binary PSO with transform functions.

The rest of the article is organized as follows. Section 2 reviews binarization methods
in the literature. Section 3 describes the investigated modifications of the PSO algorithm
for finding sub-optimal subsets of features. Section 4 describes the experiment. Section 5
contains a statistical comparison of PSO binarization methods for the problem of user
authentication by handwritten signature. Finally, Section 6 contains an overview of the
main results.

2. Literature Review

2.1. Metaheuristic Algorithm PSO

Each solution vector in the algorithm is a particle moving due to the combined ef-
fect of the force of inertia, memory and acceleration reported by the best particle. The
coordinates of the ith particle at the time of iteration t are determined by the vector
xi (t) = (xi1(t), xi2(t), . . . , xiD(t)), where i = 1, 2, . . . , N , N is a particle count in a
swarm. All particles store their best position pi (t) = (pi1(t), pi2(t), . . . , piD(t)) for
the iterations they have passed. The velocity of a particle is set by a vector vi (t) =
(vi1(t), vi2(t), . . . , viD(t)). The speed and position of the ith particle at t +1 iteration are
determined by the following expressions:

xi (t + 1) = xi (t) + vi (t + 1), (1)
vi (t + 1) = w × vi (t) + c1 × rand1 × (

pi (t) − xi (t)
)

+ c2 × rand2 × (
pg(t) − xi (t)

)
, (2)

where c1, c2 are positive acceleration coefficients; pi(t) is a vector of previous coordi-
nates of the particle xi(t) that had the best value of the fitness function, pg(t) is a vector
of coordinates of the particle that reached the best value of the fitness function in the en-
tire swarm for t iterations; w is the empirical coefficient of inertia; rand1 and rand2 are
random numbers from the interval [0, 1]. The swarm stops moving when at least one of
the following conditions is met: the swarm has reached a state of equilibrium, an optimal
solution has been found, or a specified number of iterations has been performed.

2.2. Feature Selection

Feature selection can be represented as an NP-hard binary optimization problem (Kohavi
and John, 1997). The most optimal solution of this problem can be guaranteed to be found
only by a brute-force search. However, brute-force approach is ineffective for solving this
problem, since the size of the feature space in modern datasets can amount to several tens
or even hundreds. Going through all possible combinations of such number of elements is
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a very time- and resource-consuming task. The decision to this problem can be the use of
metaheuristic algorithms that allow finding a suboptimal solution in an acceptable time.

Most metaheuristic algorithms are designed to operate in a continuous search space.
However, binary search space may be considered as a more suitable way to deal with
feature selection task due to its structure. Accordingly, in order to use metaheuristics
for addressing the feature selection task in binary search space, their modification is re-
quired. The modification should allow the algorithm to function in a binary space, while
maximally preserving the original idea of metaheuristics. There are many ways to bina-
rize metaheuristic algorithms. The main ones will be considered below: the method of
modified algebraic operations, the method of transformation functions, and the quantum
method.

1) Modified algebraic operations: The idea of the method is that to convert the al-
gorithm to the binary version, it is enough to put their logical analogues in accordance
with the original mathematical operations of the formulas used. For example, to use dis-
junction (OR) instead of addition, conjunction (AND) instead of multiplication, exclusive
or (XOR) instead of subtraction, and logical negation (NOT). Thus, the search space of
the algorithm changes from continuous to binary, but the original idea of changing the
position of particles is formally preserved.

However, there are two disadvantages that make it difficult to apply this method to
some algorithms. The first is that the method is practically inapplicable if the algorithm
uses any operations other than addition, subtraction, multiplication, and division. The sec-
ond disadvantage is typical for all methods that require working with binary vectors. Many
metaheuristic algorithms, in addition to operations directly on vectors, also use a variety
of coefficients represented by real numbers. When switching to binary vectors, these co-
efficients must also be changed or abandoned, which leads to a change in the original idea
of the algorithm and, accordingly, may affect the quality of its work. So, when modifying
the PSO algorithm, the authors of Yuan et al. (2009) refused to use the inertia coefficient,
and used randomly generated binary vectors as speed coefficients.

Despite the external similarity of the algorithm binarized by the method of modified
algebraic operations with the original continuous algorithm, its results are not always sat-
isfactory. In such cases, the authors of some works use only a part of logical operations or
use their own modified versions instead of some “classic” logical operations. In Kıran and
Gündüz (2012) when binarizing the artificial bee colony algorithm, the authors analysed
the use of logical operations and came to the conclusion that it is necessary to use only
two of them: XOR and NOT. In this case, the NOT operation was modified as follows:
a random real number from 0 to 1 was generated, and if it was greater than 0.5, a logical
negation was performed, otherwise the vector remained unchanged.

2) Transfer functions: Transformation functions are often used to switch from a con-
tinuous space to a binary one. They convert a real number into the range between zero
and one. If the calculated function value is greater than a random number, then the cor-
responding element of the vector either takes the value of one, or is replaced with the
opposite (Mirjalili and Lewis, 2013).

This method avoids the limitations of the previous method, since it does not require any
changes to the original algorithm. However, this method has another complexity, which
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consists in the problem of choosing a specific function as a transformation one. The re-
search (Mirjalili and Lewis, 2013), which examined six transformation functions from
two families (S-shaped and V-shaped), showed that the use of V-shaped functions signif-
icantly improves the performance of the PSO algorithm. In Souza et al. (2020), the PSO
algorithm, binarized with a V-shaped transformation function, was used to select features
when solving the problem of static verification of a handwritten signature. S-shaped and
V-shaped transform functions have also been successfully applied to binarize gray wolf
algorithm (Chantar et al., 2020), bat swarm (Qasim and Algamal, 2020), dragonfly al-
gorithm (Mafarja et al., 2017), and butterfly swarm (Arora and Anand, 2019). In Ghosh
et al. (2020), a new X-shaped transformation function, consisting of two S-shaped ones,
was proposed and applied to binarize the Social Mimic algorithm. With this approach,
one vector of real numbers is converted into two binary vectors, from which the best is
selected.

3) Quantum Method: The idea of this method is to use vectors represented by Q-bits in-
stead of binary vectors, and principles that apply to quantum mechanics, such as quantum
superposition. In Hamed et al. (2009), it was shown that using the quantum method for
binarization of the PSO algorithm allows increasing the speed of searching for the optimal
set of features. In Barani et al. (2017), the authors also explored a quantum approach for
binarization of the gravitational search algorithm when solving the feature selection task
using the kNN classifier. The principle of superposition was used in the work, and a quan-
tum rotation gate was applied to update the solutions. The researchers concluded that the
proposed algorithm can significantly reduce the total number of features, while maintain-
ing a comparable classification accuracy relative to other algorithms. The authors (Ashry
et al., 2020) compared binary gray wolf algorithms using the quantum method (BQI-
GWO) and the S-shaped transformation function (BGWO). Comparison of the algorithms
showed that the BQI-GWO makes it possible to exclude a larger number of features, while
increasing the classification accuracy. Researchers in Zouache and Ben Abdelaziz (2018)
proposed a hybrid swarm intelligence algorithm based on quantum computations and a
combination of the firefly algorithm and PSO for feature selection. Quantum computations
provided a good tradeoff between the intensification and diversification of search, while
the combination of the firefly algorithm and PSO made it possible to efficiently investi-
gate the generated subsets of features. To evaluate the relevance of these subsets, rough
set theory was employed.

3. Formulation of the Problem and Algorithmic Framework

3.1. Formulation of the Problem

The set of instances is a list of objects of the type xi = {xi1, xi2, . . . , xiD}, where xij is
a value of the j th feature of the ith object, j ∈ {1, 3, . . . , D}, D is a number of features,
i ∈ {1, 2, . . . , N}, N is a number of objects. The task of classification is to match each
object with the most suitable class from the set of all classes c = {c1, c2, . . . , cK}, K is a
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number of classes. Decision algorithms restore the dependence between input attributes
and classes.

In this paper, k-nearest neighbour (KNN) is used as a decision algorithm, as one of the
simplest and most frequently used classifiers. The algorithm has only one parameter k that
indicates the number of neighbours used to define a class label for a new data instance. As
a result of the absence of other parameters, the algorithm does not need a learning stage
or setting of these parameters, which is expressed in its high speed.

The algorithm operation process can be described as follows:

1. To determine the value k.
2. Save all positions and class labels of all training data (TR).
3. For each new instance of data X:

3.1 Calculate distances from X to each of the elements TR.
3.2 Choose from TR k elements with the shortest distances up to X.
3.3 Define a class c label that has a majority of the elements selected in Step 3.2.
3.4 Assign the X to class c.

In this paper, the value of k was chosen to be 5, which is the most preferred value in the
literature (Hancer, 2020, 2021).

The feature selection problem is formulated as follows: on the given set of features,
find a feature subset that does not cause a significant decrease in classification accuracy,
or even increases it, when the number of features is decreased. The solution is represented
as a vector s = {s1, s2, . . . , sD}, where si = 0 means that the ith feature is excluded from
classification and si = 1 means that the ith feature is used by the classifier.

Since an algorithm that works as a wrapper has been chosen to select features, a fitness
function that evaluates the quality of a subset of selected variables must be used. We have
applied the following function:

Fit = α × Error + (1 − α) × F/D, (3)

where Error is a classification error, F is a number of features in the evaluated subset, α is
the priority coefficient between an error and the ratio of selected features, α ∈ [0, 1]. The
classification error is the number of incorrectly classified objects in relation to the total
number of instances.

The task of the binary optimization algorithm is to search for the minimum of the given
function.

3.2. Fuzzy Entropy and Mutual Information

Since first founded by Shannon (1948) to address communication, information theory
has now been implemented to a variety of fields, from clustering, fuzzy logic to decision
making, just to name a few. Specifically, information theory has been implemented to
quantify information. The information quantity is described as the amount of information
observed in an event (called uncertainty) computed using probabilistic measures. In ad-
dition to the probabilistic measures, the fuzziness measures are also very common as an



Binary PSO Variants for Feature Selectionin Handwritten Signature Authentication 529

uncertainty measure among researchers. In particular, the fuzziness measures differ from
the probabilistic measures by introducing vagueness uncertainties rather than randomness
uncertainties.

The first fuzziness extension of the Shannon’s entropy was first considered by De Luca
and Termini (1972). Specifically, the fuzzy entropy was described on the basis of a mem-
bership function. Based on the axioms of De Luca and Termini, Al-Ani and Khushaba
(2012) defined the membership of kth feature belonging to ith class as follows:

μik =
(‖x̂i − xk‖σ

r ± ε

) −2
m−1

, (4)

where m is the fuzziness, σ is the standard deviation, r is the radius of the data such that
r = max ‖x̂i − xk‖σ , x̂i is the mean of data samples belonging to ith class.

Based on the membership function defined by Eq. (4), the memberships of all data
samples (with size NP) for each of fuzzy sets (with size C) along kth and lth features
are respectively denoted as A and B. In other words, A and B are C × NP membership
matrixes for kth and lth features, respectively. Based on the membership matrix, the fuzzy
marginal uncertainty measure along each kth feature is defined as follows:

P(k) =
√

AA′
NP

. (5)

The fuzzy marginal entropy along each kth feature is then calculated as follows:

H(k) = −
∑∑

P(k) log P(k). (6)

The fuzzy joint entropy, called H(k, l), between kth and lth features is calculated as fol-
lows:

H(k, l) = −
∑∑ √

AB ′
NP

log

√
AB ′

NP
. (7)

Using the joint entropy, the fuzzy mutual information between kth and lth features can be
calculated as follows:

I (k, l) = H(k) + H(l) − H(k, l). (8)

Assuming S is a selected feature subset for a dataset. The intra-class feature depen-
dencies (denoted as relevancy (Rel)) and the inter-feature dependencies (denoted as re-
dundancy (Red)) are respectively defined as follows:

Rel(S) =
∑
k∈S

I (k, y), (9)

Red(S) =
∑
k∈S

∑
l∈S

I (k, l), (10)
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where y denotes the output variable. Then, in terms of the intra-class and the inter-feature
dependencies, the fuzzy version of MIFS (Battiti, 1994) along S can be calculated as
follows:

FMIFS = γ × Rel + (1 − γ ) × Red, (11)

where γ is a priority coefficient between Rel and Red.
In case of fuzzy entropy measures, the fuzzy version of symmetry uncertainty (SU)

(Witten and Frank, 2002) between the kth feature and the output variable can be calculated
as follows:

FSU(k, y) = H(k) + H(k|y)

H(k) + H(y)
, (12)

where H(k|y) represents the conditional entropy of the output variable given kth feature.

3.3. Proposed Binary PSO Variants

This subsection describes the investigated modifications of the PSO algorithm for find-
ing suboptimal subsets of features. A population of randomly generated binary vectors s

is given to the algorithm input. After passing a specified number of iterations, the PSO
outputs a solution with the best value of the fitness function.

3.3.1. Standard Binary PSO with S-Shaped Transformation Function
This method uses an S-shaped transformation function to update elements of binary vec-
tors. The transformation function takes as input the velocity of the j th element of the
particle. We use the following standard expression:

FS(vj ) = 1

1 + e−vj
, (13)

where vj is the velocity value of the particle element sj , j is a position number of the
element in the vector s. Based on the velocity, the function value is calculated, which is
then converted to the binary equivalent according to a specific rule:

si =
{

1, rand(0, 1) < FS(vj ),

0, otherwise.
(14)

Thus, the elements with the highest positive speed are more likely to be equal to zero.
V-shaped transformation functions are symmetric about the ordinate axis. In this pa-

per, two such functions were tested. The first one is calculated using hyperbolic tangent:

FV1(vj ) = ∣∣tanh(vj )
∣∣. (15)
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The second function belongs to the same family:

FV2(vj ) =
∣∣∣vj

/√
1 + (vj )2

∣∣∣. (16)

To update elements in the binary feature vector, we will use the same rule:

IF rand(0, 1) < FV (vj ), then sj = 1, else sj = 0,

where FV (vj ) is one of the two V-shaped transformation functions. In this case, a vector
element that has gained high negative speed also has a high chance of becoming zero.

3.3.2. Local Search
Due to its promising performance with differential evolution for feature selection, the local
search module (Hancer, 2019) is also adopted in the standard binary PSO with S-shaped
transformation function to eliminate less informative features from the selected feature
subset of the global best solution and add unselected informative features to the selected
feature subset of the global best solution (pg). Once all the positions are updated, the
add/remove process is applied in a probabilistic manner. The add process is described as
follows:

1. A set of unselected features in the data, which are not present in the selected subset, are
ranked in descending order in terms of the fuzzy version of the SU criterion, defined
by Eq. (10).

2. A predefined percentage of top features from the unselected feature subset are deter-
mined as candidate features for the selected feature subset.

3. The mean value of the fuzzy SU (called mean(FSU)) criterion within the selected fea-
ture subset is computed.

4. If the fuzzy SU score of each candidate feature is greater than mean(FSU), it is added
to the selected feature subset.

The remove process is described as follows:

1. The features from the selected subset are ranked in terms of the fuzzy version of the
MIFS criterion, defined by Eq. (9).

2. A predefined percentage of selected features from the selected feature subset which
own lower fuzzy MIFS scores are determined as candidates for the elimination process.

3. A random number between 0 and 1 is generated for each candidate.
4. If the random number of each candidate is smaller than a user-specified threshold, it is

eliminated from the selected feature subset.

After adding or removing features, the fitness value of the updated feature subset is cal-
culated by Eq. (1). If the fitness value of the updated feature subset is better than that
of the current selected feature subset, the positions of pg are then updated based on the
updated feature subset. This process is repeated for a smaller predefined number of iter-
ations. Notice that the fuzzy SU and the fuzzy MIFS scores of each feature in the data
are first calculated before the evolutionary process to avoid additional computational cost.
More information concerning the local search module can be found in Hancer (2019).
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3.3.3. New Fitness
The overall aim of a wrapper method is to minimize both the classification error rate and
the number of features using a classifier. From an optimization perspective, a wrapper
method tries to minimize the objective function, defined by Eq. (1). Different from wrap-
pers, filters select a feature subset by evaluating the relationships between feature space
and the output variable. To evaluate this relationship, information theoretic criteria may
be treated as the most widely applied for feature selection among a variety of criteria. To
utilize filter criteria in wrappers, researchers generally use the following cases:

1) Two-stage feature selection: In this case, a filter approach is initially carried out to
reduce a feature space, and then a wrapper approach is performed on the reduced feature
space. However, no interaction is built between the stages, i.e. it does not guarantee high-
performing feature subsets.

2) Locally hybridized feature selection: In this case, a local elimination module based
on a filter (wrapper) evaluation is adopted in a wrapper (filter) method to increase the ef-
fectiveness of the method in the feature space. Compared to the previous case, this case
can help a feature selection method to obtain high-performing feature subsets. The afore-
mentioned method, called local search, is an example of this case.

To bring the positive effects of both wrappers and filters, different from these cases,
we develop a new fitness function which does not require any additional module or com-
putations during the selection process. The newly developed function is adopted in the
standard binary PSO with an S-shaped transformation function, defined as follows.

newFF = α × (Error × Rel) + (1 − α) × (F/D × Red), (17)

where Rel and Red are defined by Eqs. (7) and (8).

3.3.4. The Merge Procedure
The essence of this operation is to save matching elements of two binary vectors and
randomly select from non-matching elements. Getting the value of the dj element of the
resulting d vector from the corresponding elements of the a and b vectors can be described
as follows:

merge(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

dj = aj = bj , if aj = bj ,

dj = aj , if aj �= bj and rand � 0.5,

dj = bj , if aj �= bj and rand > 0.5,

(18)

where aj is the j th element of the input vector a, bj is the j th element of the input vector b,
dj is the j th element of the output vector d , and rand is a random real number from 0 to 1.

An example of how this operation works is shown as follows. Assume that a =
[1, 0, 0, 1], b = [1, 0, 1, 0], rand1 = 0.38 and rand2 = 0.67. The first two elements
of vectors a and b are the same, so d1 = 1, d2 = 0. To determine the values of the third
and fourth elements, we generate two random numbers: rand1 to determine d3 and rand2

to determine d4. Since rand1 < 0.5, then d3 = a3 = 0. Similarly, since rand2 > 0.5, then
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d4 = b4 = 0. Thus, the resulting vector d will be equal to [1, 0, 0, 0]. The essence of the
binarization method in this case will be to replace all the original arithmetic operations
with the merge operation.

3.3.5. The Hybrid Method of the Modified Arithmetic Operation and the Merge
Procedure

This approach to binarization is a combination of the modified algebraic operations and
the merge procedure. As in the method of modified algebraic operations, instead of multi-
plication you need to use conjunction (AND), instead of subtraction – exclusive or (XOR),
but instead of addition – the merge procedure.

After the binarization of the PSO algorithm by this method, change of the particle
position can be described by the following expressions:

s(t + 1) = merge
(
s(t), v(t + 1)

)
, (19)

v(t + 1) = merge(v(t), merge
(
randbinvector1 ∧ (

p(t) ⊕ s(t)
)
,

randbinvector2 ∧ (
pg(t) ⊕ s(t)

))
, (20)

where p(t) is a vector of previous coordinates of the particle s(t) with the best value of
the fitness function, pg(t) is a vector of coordinates of the particle that reached the best
fitness function in the entire swarm for t iterations; randbinvector1 and randbinvector2

are random binary vectors.
As already mentioned when describing the method of modified algebraic operations,

the disadvantage of this method is the impossibility to use real coefficients. That is why
in this case the coefficients w, c1, c2 will not be used.

4. Description of the Experiment

4.1. Preprocessing

The graphics tablets produce signals of the X-axis and the Y -axis for the points where the
user touches the tablet with a digital pen. These signals are the source of the pure digi-
tized data. While writing a signature, it is possible to obtain signatures which differ in the
case of size, orientation and deviation due to some factors (e.g. the limited space and the
inclination of the tablet) even with the same person. Such differences may adversely affect
the reliability of a verification system. Therefore, all signatures should be transformed in
the case of position, rotation and size to decrease the differences in the signals. We follow
the procedures described in Lam and Kamins (1989), Yanikoglu and Kholmatov (2009)
to carry out the transformation process, defined as follows:

1. Elimination of discontinuities: It is possible to observe discontinuities (broken lines)
in signals, if the user detaches the pen from the tablet while writing the signature. To re-
combine the broken lines in signals, two interpolation techniques can be used. If the space
between broken lines is wide, the newton interpolation can be used; otherwise, the linear
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interpolation can be applied. For more detailed information concerning the reconstruction
of broken lines, please see Samet and Hancer (2012).

2. Elimination of the signature inclination: The angles of a signature written by the
same user is possible to be varied. The signature inclination is reduced using an exponen-
tial function with respect to the X-axis, defined as in Yanikoglu and Kholmatov (2009).

3. Normalization: The user can write his or her signature in any area of the tablet.
Accordingly, the positions of the signature may differ. To address this issue, normalization
is applied by subtracting the mean value from each value of the signal.

4. Scaling: The same person can write his or her signature in different sizes. It is there-
fore necessary to scale their size at a reasonable rate.

4.2. Feature Extraction

A set of dynamic signature features described by authors of Fierrez-Aguilar et al. (2005)
are used in this work. One hundred features were selected. The initial data for the feature
extraction are x and y signals (x1, x2, . . . , xN ; y1, y2, . . . , yN). Some of the features used
require signals that characterize the velocity and acceleration of the digital pen. For the
velocity signals, their absolute values and values for each coordinate are computed; for
the acceleration signals, only their relative values are used. These signals can be obtained
using the x and y signals. The absolute velocity signals at certain instants can be measured
using the distance between two adjacent touch points of the pen. The absolute velocity
signals are defined as follows:

vi =
√

(xi+1 − xi)2 + √
(yi+1 − yi)2

�t
,

where i = 1, 2, . . . , N − 1 and �t is the duration of an instant. The velocity signals in
the respective coordinates are computed as follows:

Vxi
= xi+1 − xi

�t
, vyi

= yi+1 − yi

�t
,

where i = 1, 2, . . . , N − 1. The relative acceleration signals in the respective coordinates
are computed as follows:

axi
= vxi+1 − vxi

�t
, vyi

= vyi+1 − vyi

�t
,

where i = 1, 2, . . . , N − 2.

4.3. Dataset

The signature signals were taken from the SVC2004 dataset (Task 1) (Yeung et al., 2004).
There were 40 sets of signatures. Each set contained 20 genuine signatures from one signer
and 20 skilled forgeries from at least four other signers. Each signer was asked to provide
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Table 1
The brief notation of the tested modifications of the PSO algorithm.

Method Designation

The S-shaped transformation function standard
Previous method with new fitness function newFF
New version of local search local
The merge operation merge
The hybrid method of the modified arithmetic and merging operation opmerge
The FV1 transformation functions tanh
The FV2 transformation function Vshaped

20 genuine signatures. For privacy reasons, the signers were advised not to use their real
signatures. Instead, each of them was asked to design a new signature and practice writ-
ing it so that this new signature remained relatively consistent over different signature
instances, just like a real one. The signers were also reminded that consistency should not
be limited to the spatial consistency in the signature shape and it should also include the
temporal consistency of the dynamic features.

4.4. Parameter Settings

Table 1 shows the designations of the studied PSO modifications. The parameter settings
for these PSO modifications are presented as follows. The population size is set to 50 and
the maximum number of evaluations is chosen as 2500 for all the methods. The parameters
of local are set to the default values defined in Hancer (2019). The following parameters
were used in methods using transformation functions: positive acceleration coefficients c1

and c2 are equal to 1, the coefficient of inertia w is 0.5.

5. Experimental Results

The experiment was conducted in accordance with a 10-fold cross-validation scheme. The
data was split into ten training and ten test samples. However, instances in different test
samples are not repeated. Due to the stochasticity of the algorithm, each version was run
30 times, and then the results were averaged.

5.1. Classification Results

Table 2 presents the results of constructing classifiers using the binary PSO variants in
terms of different α values. Four characteristics are given: overall accuracy, type I error
(False Rejection Rate, FRR), type II error (False Acceptance Rate, FAR), and the number
of selected features (Features). Type I error shows what percentage of legitimate users
was mistaken by the classifier for an intruder. Type II error demonstrates the percentage of
intruders who managed to deceive the classifier and pass their signature off as the signature
of a legitimate user. Bold text in the table indicates the best results within a group with
one value of the coefficient α in the fitness function.
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Table 2
Averaged classification results after feature selection by the PSO algorithm.

Metric Accuracy
Coefficient α = 1 α = 0.9 α = 0.7 α = 0.5

standard 88.34 ± 5.22 89.18 ± 5.57 88.75 ± 5.76 88.65 ± 5.69
newFF 87.69 ± 3.65 89.18 ± 3.69 89.93 ± 4.07 89.58 ± 4.77
local 88.29 ± 5.09 90.64 ± 5.54 90.37 ± 5.57 89.72 ± 5.94
merge 87.20 ± 6.83 87.62 ± 7.14 87.54 ± 7.17 87.68 ± 7.07
opmerge 89.82 ± 6.62 88.35 ± 7.94 88.49 ± 7.82 88.07 ± 8.07
tanh 88.38 ± 6.51 87.88 ± 7.73 87.99 ± 7.63 87.64 ± 8.10
Vshaped 88.80 ± 6.70 87.65 ± 7.91 87.49 ± 8.25 87.65 ± 8.05

Metric FRR
Coefficient α = 1 α = 0.9 α = 0.7 α = 0.5

standard 2.84 ± 3.07 3.90 ± 4.64 4.02 ± 4.36 4.10 ± 4.71
newFF 2.28 ± 1.53 2.26 ± 1.65 2.31 ± 2.01 2.68 ± 2.87
local 2.92 ± 3.16 5.08 ± 5.23 5.43 ± 5.44 5.35 ± 5.63
merge 2.73 ± 3.62 3.82 ± 5.55 3.97 ± 5.52 3.73 ± 5.47
opmerge 4.35 ± 5.67 9.08 ± 9.16 9.05 ± 9.13 9.04 ± 8.93
tanh 3.08 ± 4.07 5.48 ± 7.36 5.37 ± 7.46 6.05 ± 8.21
Vshaped 3.47 ± 4.72 6.59 ± 8.49 6.67 ± 8.56 6.77 ± 8.54

Metric FAR
Coefficient α = 1 α = 0.9 α = 0.7 α = 0.5

standard 20.48 ± 9.62 17.74 ± 9.88 18.49 ± 10.40 18.60 ± 10.21
newFF 22.35 ± 6.74 19.39 ± 6.73 17.83 ± 7.51 18.15 ± 8.64
local 20.49 ± 9.30 13.65 ± 9.08 13.82 ± 9.11 15.22 ± 9.96
merge 22.88 ± 12.74 20.94 ± 13.10 20.95 ± 13.21 20.91 ± 12.96
opmerge 16.00 ± 11.92 14.22 ± 12.40 13.97 ± 12.76 14.82 ± 12.86
tanh 20.16 ± 12.11 18.77 ± 13.37 18.65 ± 13.41 18.68 ± 13.79
Vshaped 18.93 ± 12.17 18.12 ± 13.45 18.35 ± 14.17 17.93 ± 13.43

Metric Features
Coefficient α = 1 α = 0.9 α = 0.7 α = 0.5

standard 48.17 ± 4.99 28.97 ± 2.76 28.65 ± 2.72 26.27 ± 2.46
newFF 66.54 ± 3.75 49.25 ± 3.26 36.16 ± 2.81 29.12 ± 2.55
local 46.65 ± 5.28 9.19 ± 4.64 8.11 ±4.45 6.95 ± 3.83
merge 55.64 ± 8.84 30.27 ± 4.35 30.29 ± 4.33 29.53 ± 4.24
opmerge 37.60 ± 10.99 1.89 ± 0.66 1.89 ± 0.64 1.87 ± 0.62
tanh 47.33 ± 9.98 16.07 ± 5.58 16.07 ± 5.58 12.95 ± 5.59
Vshaped 44.21 ± 10.35 10.10 ± 4.13 10.25 ± 4.06 9.57 ± 3.71

The presented results show that with a value of α less than one, the number of features
in the set decreases with any method. In this case, the overall accuracy of the classification
is either improving (methods standardFF, newFF, local, merge) or decreasing (methods
opmerge, tanh, Vshaped). In general, the best ability to reduce features with a decrease in
the coefficient α was demonstrated by the methods opmerge, local and Vshaped. It should
be indicated that the classification model built on a smaller number of features can even
provide a remarkable performance from the perspective of the other metrics. For instance,
opmerge can achieve competitive verification results despite selecting only 2 features from
100 available features. For another instance, local shows the best verification performance
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Table 3
Ranks of Friedman’s two-way analyses for investigated metrics.

Metric 1 – Accuracy
Coefficient α = 1 α = 0.9 α = 0.7 α = 0.5

standard 4.01 3.05 2.67 2.91
newFF 4.54 3.34 2.64 2.67
local 3.97 2.55 3.61 3.61
merge 5.15 4.85 4.85 4.64
opmerge 2.97 4.22 4.32 4.11
tanh 3.9 4.9 4.74 4.91
Vshaped 3.45 5.09 5.16 5.14

Metric FRR
Coefficient α = 1 α = 0.9 α = 0.7 α = 0.5

standard 3.79 4.11 4.21 4.38
newFF 2.35 1.48 1.46 1.78
local 3.64 3.3 2.96 2.94
merge 3.59 3.03 3.23 2.83
opmerge 5.74 5.69 5.85 5.53
tanh 4.13 4.73 4.63 4.98
Vshaped 4.78 5.68 5.66 5.59

Metric FAR
Coefficient α = 1 α = 0.9 α = 0.7 α = 0.5

standard 4.18 2.43 2.36 2.75
newFF 4.71 4.24 3.8 3.78
local 4.04 3.48 4.4 4.23
merge 5.28 5.61 5.2 5.36
opmerge 2.63 3.04 3.11 3.06
tanh 3.91 4.58 4.6 4.5
Vshaped 3.26 4.64 4.53 4.33

Metric FRR
Coefficient α = 1 α = 0.9 α = 0.7 α = 0.5

standard 3.4 2.38 2.18 2
newFF 6.4 7 6.9 6.3
local 4.35 5.25 5.18 5.13
merge 5.85 5.75 5.93 6.58
opmerge 2.15 1 1 1
tanh 3.33 3.98 4 4
Vshaped 2.53 2.65 2.83 3

for lower α cases by reducing the dimensionality at least ten times compared to the orig-
inal feature set. In other words, the corresponding methods have shown good skills to
detect noisy features or variables. It is therefore possible to build less complex and more
generalized classification models that can obtain promising verification results.

5.2. Statistical Processing of Results

Table 3 summarizes the mean ranks calculated according to Friedman’s criterion for dif-
ferent metrics and values of the coefficient α (at 40 observations and 6 degrees of free-
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Fig. 1. Pareto front based on the ranks of the classification error and the number of features.

dom). The ranks for Accuracy and Errors (FAR, FRR) are multidirectional. To bring them
to a single scale, we consider 1-Accuracy (called Error) instead of Accuracy. Since the
p-value in all cases was equal to zero, which is less than the significance level (0.05),
it can be concluded that there is a significant statistical difference in the results of the
modification methods used.

Graphs have been created on the basis of the obtained average rank values in order to
assess the Pareto front in terms of the ratio of metrics to the number of selected features.
In the first group of graphs shown in Fig. 1, the inverse metric, classification error, was
used instead of accuracy.

From the graphs obtained, it is clear that in all cases the use of the opmerge method
provides the smallest set of features. With α coefficients equal to 0.7 and 0.5, PSO with
the newFF fitness function allowed us to obtain a classifier with the lowest error. The best
results in terms of the ratio of error and number of features were demonstrated by PSO
with the local modification when the value of the coefficient α is less than one.

Fig. 2 shows plots with a Pareto front for the ratio of the type I error (FRR) and the
number of selected features. The smallest value of the type I error for any value of the coef-
ficient α was obtained using newFF, but this method coped worst of all with the selection
of features.

Fig. 3 shows graphs with a Pareto front in terms of the ratio of type II error (FAR) and
the number of selected features. Opmerge and local showed the lowest type II error values.
For the first, this statement is valid for any value of the coefficient α, for the second, only
for α less than 1.
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Fig. 2. Pareto front based on the ranks of the type I error and the number of features.

Fig. 3. Pareto front based on the ranks of the type II error and the number of features.
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6. Conclusion

The work considered seven approaches for PSO modification when solving the task of fea-
ture selection for a handwritten signature authentication. The investigated methods made
it possible in the considered set SVC2004, containing 100 input variables, to select sub-
sets of size from 66.54 (using new fitness function with coefficient α = 1) to 1.87 features
(combination of the modified algebraic operations and the merge procedure with coeffi-
cient α = 0.5). The best selection ability was demonstrated by the hybrid method, which
combines the modified algebraic operations with the author’s method of merging binary
vectors. This method should be used when it is necessary to reduce the complexity of the
authentication model as much as possible. If there is a requirement to ensure maximum
availability for legal users, it is appropriate to use PSO with the new proposed fitness
function, as this method demonstrates the smallest type I error. The smallest type II error,
which indicates that the system is more secure from intruders, was shown by PSO with
new local search. The same method made it possible to obtain a balanced result in terms
of the ratio between the overall error and the number of features with the coefficient α

equal to 0.9.
The determination of the α parameter may be a difficult and time-consuming pro-

cess depending on a specified handwritten-signature problem. It would be better if the fit-
ness functions which comprise of two conflicting objectives are reconsidered as a multi-
objective optimization problem. This is because it is reported in the literature that it is
possible to achieve higher learning performance by adopting feature selection in a multi-
objective design. Concerning this subject, a possible arising problem is how a single so-
lution will be selected from the Pareto Front. In the future, we will try to address this
problem to reach higher verification performance.
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