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Abstract. A method for counterfactual explanation of machine learning survival models is pro-
posed. One of the difficulties of solving the counterfactual explanation problem is that the classes
of examples are implicitly defined through outcomes of a machine learning survival model in the
form of survival functions. A condition that establishes the difference between survival functions
of the original example and the counterfactual is introduced. This condition is based on using a
distance between mean times to event. It is shown that the counterfactual explanation problem can
be reduced to a standard convex optimization problem with linear constraints when the explained
black-box model is the Cox model. For other black-box models, it is proposed to apply the well-
known Particle Swarm Optimization algorithm. Numerical experiments with real and synthetic data
demonstrate the proposed method.
Key words: interpretable model, explainable AI, survival analysis, censored data, convex
optimization, counterfactual explanation, Cox model, Particle Swarm Optimization.

1. Introduction

Explanation of machine learning models is an important problem in many applications.
For instance, medicine machine learning applications meet a requirement of understand-
ing results provided by the models. A typical example is when a doctor has to have an
explanation of a stated diagnosis in order to have an opportunity to choose a preferable
treatment (Holzinger et al., 2019). This implies that decisions provided by the machine
learning models should be explainable to help machine learning users to understand the
obtained results, for example, doctors need to understand obtained diagnoses. One of the
obstacles to obtain explainable decisions is the black-box nature of many models, espe-
cially, of deep learning models, i.e. inputs and outcomes of these models may be known,
but there is no information what features impact on corresponding decisions provided by
the models. Many explanation methods have been developed in order to overcome this

∗Corresponding author.

https://doi.org/10.15388/21-INFOR468


818 M.S. Kovalev et al.

obstacle and to explain the model outcomes. The explanation methods can be divided into
two groups: local and global methods. Methods from the first group derive explanation
locally around a test example, whereas methods from the second group try to explain the
black-box model on the whole dataset or a part of the datasets. The global explanation
methods are of great interest, but many application areas, especially, medicine, require
to understand decisions concerning a specific patient, i.e. it is important to know what
features of an example are responsible for a black-box model prediction. Therefore, this
paper focuses on local explanations.

It is important to note that users of a black-box model are often not interested why a
certain prediction was obtained and what features of an example led to a decision. They
usually aim to understand what could be changed to get a preferable result by using the
black-box model. Such explanations can be referred to the so-called counterfactual expla-
nations or counterfactuals (Wachter et al., 2017), which may be more desirable, intuitive
and useful than “direct” explanations (methods based on attributing a prediction to in-
put features). According to Molnar (2019), a counterfactual explanation of a prediction
can be defined as the smallest change to the feature values of an input original example
that changes the prediction to a predefined outcome. There is a classic example of the
loan application rejection (Molnar, 2019; Wachter et al., 2017), which explicitly explains
counterfactuals. According to this example, a bank rejects an application of a user for a
credit. A counterfactual explanation could be that “the credit would have been approved
if the user would earn $500 more per month and have the credit score 30 points higher”
(Molnar, 2019; Wachter et al., 2017).

So far, methods of counterfactual explanations have been applied to classification and
regression problems where a black-box model produces a point-valued outcome for every
input example. However, there are many models where the outcome is a function. Some
of these models solve problems of survival analysis (Hosmer et al., 2008), where the out-
come is a survival function (SF) or a cumulative hazard function (CHF). In contrast to the
standard classification and regression machine learning models, the survival models deal
with datasets containing a lot of censored data. This fact complicates the models.

This paper presents a method for finding counterfactual explanations for predictions
of survival machine learning black-box models, which is based on analysis of SFs. The
method allows us to find a counterfactual whose SF is connected with the SF of the original
example by means of some conditions. One of the difficulties of solving the counterfac-
tual explanation problem is that the classes of examples are implicitly defined through
outcomes of a machine learning survival model in the form of SFs or CHFs. Therefore,
a condition establishing the difference between mean times to event of the original ex-
ample and the counterfactual is proposed. For example, the mean time to event of the
counterfactual should be larger than the mean time to event of the original example by
value r . The meaning of counterfactuals in survival analysis under the above condition
can be represented by the statement: “Your treatment was not successful because of a
small dose of the medicine (one tablet). If your dose had been three tablets, the mean time
of recession would have been increased to a required value”. Here the difference between
the required value of the mean time to recession and the recent mean time to recession



Counterfactual Explanation of Machine Learning Survival Models 819

of the patient is r . It depends on the black-box model used in a certain study. In partic-
ular, when the Cox model is considered as a black-box model, the exact solution can be
obtained because the optimization problem for computing counterfactuals is reduced to
a standard convex programming problem. In a general case of the black-box model, the
optimization problem for computing counterfactuals is non-convex. Therefore, one of the
ways for solving the optimization problem is to use some heuristic global optimization
method. An optimization method called Particle Swarm Optimization (PSO), proposed
by Kennedy and Eberhart (1995), can be applied to solving the counterfactual explana-
tion problem. The method is a population-based stochastic optimization technique based
on swarms and motivated by the intelligent collective behavior of some animals (Wang et
al., 2018).

In summary, the following contributions are made in this paper:

1. A statement of the counterfactual explanation problem in the framework of survival
analysis is proposed, and a criterion for defining counterfactuals is introduced.

2. It is shown that the counterfactual explanation problem can be reduced to a standard
convex optimization problem with linear constraints when the black-box model is the
Cox model. This fact leads to an exact solution of the counterfactual explanation prob-
lem.

3. The PSO algorithm is applied to solving the counterfactual explanation problem in a
general case when the black-box model may be arbitrary.

4. The proposed approaches are illustrated by means of numerical experiments with syn-
thetic and real data, which show the accuracy of the method.

The paper is organized as follows. Related work is briefly discussed in Section 2. Basic
concepts of survival analysis and the Cox model are given in Section 3. Section 4 contains
the standard counterfactual explanation problem statement and its extension to the case
of survival analysis. In Section 5, it is shown that the counterfactual explanation problem
for the black-box Cox model is a convex programming problem and therefore can simply
be solved. Its application to the counterfactual explanation problem is considered in Sec-
tion 7. Numerical experiments with synthetic data and real data are given in Section 8.
Discussion of some peculiarities of the proposed method and concluding remarks can be
found in Section 9.

2. Related Work

Local explanation methods and counterfactual explanations. Due to importance of
the machine learning model explanation in many applications, many methods have been
proposed to explain black-box models locally (Arya et al., 2019; Guidotti et al., 2019b;
Molnar, 2019; Murdoch et al., 2019). A critical review and analysis of many explanation
methods can be found in survey papers (Adadi and Berrada, 2018; Arrieta et al., 2019;
Carvalho et al., 2019; Das and Rad, 2020; Guidotti et al., 2019b; Rudin, 2019; Xie et
al., 2020). One of the first local explanation methods is the LIME method (Ribeiro et
al., 2016; Garreau and von Luxburg, 2020), which uses simple and easily understandable
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linear models to approximate the predictions of black-box models locally. LIME, as well as
many local explanation methods, are based on perturbation techniques (Fong and Vedaldi,
2019, 2017; Petsiuk et al., 2018; Vu et al., 2019). Another explanation method, which is
based on the linear approximation, is the SHAP (Lundberg and Lee, 2017; Strumbelj and
Kononenko, 2010), which takes a game-theoretic approach for optimizing a regression
loss function based on Shapley values.

In order to get intuitive and human-friendly explanations, several counterfactual ex-
planation methods (Wachter et al., 2017) were developed by several authors (Buhrmester
et al., 2019; Dandl et al., 2020; Fernandez et al., 2020; Goyal et al., 2019; Guidotti et al.,
2019a; Hendricks et al., 2018b; Looveren and Klaise, 2019; Lucic et al., 2019; Poyiadzi
et al., 2020; Russel, 2019; Vermeire and Martens, 2020; van der Waa et al., 2018; White
and Garcez, 2019). The counterfactual explanation tells us what to do to achieve a desired
outcome.

Some counterfactual explanation methods use combinations with other methods like
LIME and SHAP. For example, (Ramon et al., 2019) proposed the so-called LIME-C and
SHAP-C methods as counterfactual extensions of LIME and SHAP. White and Garcez
(2019) proposed the CLEAR methods which can also be viewed as a combination of
LIME and counterfactual explanations.

Many counterfactual explanation methods apply perturbation techniques to examine
feature perturbations that lead to a different outcome of a black-box model. In fact, this
is an approach to generate counterfactuals to alter an input of the black-box model and to
observe how the output changes. One of the methods using perturbations is the Growing
Spheres method (Laugel et al., 2018), which can be referred to counterfactual explanations
to some extent. The method determines the minimal changes needed to alter a prediction.
Perturbations are usually performed towards interpretable counterfactuals in a lot of meth-
ods (Dhurandhar et al., 2018, 2019; Looveren and Klaise, 2019).

Another direction for applying counterfactuals concerns with counterfactual visual ex-
planations which can be generated to explain the decisions of a deep learning system by
identifying what and how regions of an input image would need to change in order for the
system to produce a specified output (Goyal et al., 2019). Hendricks et al. (2018a) pro-
posed counterfactual explanations in natural language by generating counterfactual textual
evidence. Counterfactual “feature-highlighting explanations” were proposed by Barocas
et al. (2020) by highlighting a set of features deemed most relevant and withholding others.
A counterfactual impact analysis of medical images was considered by Lenis et al. (2020),
and by Bhatt et al. (2019).

Many other approaches have been proposed in the last few years (Verma et al., 2020),
but there are no counterfactual explanations of predictions provided by the survival ma-
chine learning systems. Therefore, our aim is to propose a new method for counterfactual
survival explanations.

Machine learning models in survival analysis. Survival analysis is an important di-
rection for taking into account censored data. It covers many real application problems,
especially in medicine, reliability analysis, risk analysis. Therefore, the machine learning
approach for solving survival analysis problems allows improving the survival data pro-
cessing. Many machine learning survival models have been developed (Lee et al., 2018;
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Wang et al., 2019; Zhao and Feng, 2020) due to importance of survival models in many
applications, including reliability of complex systems, medicine, risk analysis, etc. A com-
prehensive review of machine learning models dealing with survival analysis problems
was provided by Wang et al. (2019). One of the most powerful and popular methods for
dealing with survival data is the semi-parametric Cox proportional hazards model (Cox,
1972). Many modifications have been developed to relax some strong assumptions under-
lying the Cox model. In order to take into account the high dimensionality of survival data
and to solve the feature selection problem with these data, Tibshirani (1997) presented a
modification based on the Lasso method. Similar Lasso modifications, for example, the
adaptive Lasso, were also proposed by several authors (Kim et al., 2012; Witten and Tib-
shirani, 2010; Zhang and Lu, 2007). A further extension of the Cox model is a set of
SVM modifications (Khan and Zubek, 2008; Widodo and Yang, 2011). Various archi-
tectures of neural networks, starting from a simple network (Faraggi and Simon, 1995),
proposed to relax the linear relationship assumption in the Cox model, have been devel-
oped (Haarburger et al., 2018; Katzman et al., 2018; Ranganath et al., 2016; Zhu et al.,
2016) to solve prediction problems in the framework of survival analysis. Despite many
powerful machine learning approaches for solving the survival problems, the most effi-
cient and popular tool for survival analysis under condition of small survival data is the
extension of the standard random forest (Breiman, 2001) called the random survival forest
(RSF) (Ibrahim et al., 2008; Mogensen et al., 2012; Wang and Zhou, 2017; Wright et al.,
2017).

Most of the above models dealing with survival data can be regarded as black-box mod-
els and should be explained. However, only the Cox model has a simple explanation due to
its linear relationship between covariates. Therefore, it can be used to approximate more
powerful models, including survival deep neural networks and random survival forests,
for explaining predictions of these models.

Explanation methods in survival analysis. There are several methods explaining sur-
vival machine learning model predictions. Kovalev et al. (2020) proposed an explanation
method called SurvLIME, which deals with censored data and can be regarded as an ex-
tension of the Local Interpretable Model-agnostic Explanations (LIME) method (Ribeiro
et al., 2016) on the case of survival data. The basic idea behind SurvLIME is to apply
the Cox model to approximate the black-box survival model at a local area around a test
example. SurvLIME used the quadratic norm to take into account the distance between
CHFs. Following ideas behind SurvLIME, Utkin et al. (2020) proposed a modification of
SurvLIME called SurvLIME-Inf. In contrast to SurvLIME, SurvLIME-Inf uses L∞-norm
for defining distances between CHFs. SurvLIME-Inf significantly simplifies the model
and provides better results when a training set is small. Another explanation model pro-
posed by Kovalev and Utkin (2020) is called SurvLIME-KS. This model uses the well-
known Kolmogorov-Smirnov bounds to ensure robustness of the explanation model in
cases with a small amount of training data or outliers of survival data.
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3. Elements of Survival Analysis

3.1. Basic Concepts

In survival analysis, an example (patient) i is represented by a triplet (xi , δi , Ti), where
xi = (xi1, . . . , xid) is the vector of the patient parameters (characteristics) or the vector
of the example features; Ti is time to event of the example; δi is the event indicator taking
two values 0 and 1. If the event of interest is observed, then Ti corresponds to the time
between the baseline time and the time of event happening, δi = 1 in this case, and we
have an uncensored observation. If the example event is not observed, then Ti corresponds
to the time between the baseline time and end of the observation, the event indicator is
δi = 0, and we have a censored observation. Suppose a training set D consists of n triplets
(xi , δi , Ti), i = 1, . . . , n. The goal of survival analysis is to estimate the time to the event
of interest, T , for a new example (patient) with feature vector denoted x, by using the
training set D.

The survival and hazard functions are key concepts in survival analysis for describing
the distribution of event times. The SF, denoted by S(t |x) as a function of time t , is the
probability of surviving up to that time, i.e. S(t |x) = Pr{T > t |x}. The hazard function
h(t |x) is the rate of the event at time t given that no events occurred before time t , i.e.
h(t |x) = f (t |x)/S(t |x), where f (t |x) is the density function of the event of interest. The
hazard rate is defined as

h(t |x) = − d
dt

ln S(t |x). (1)

Another important concept is the CHF H(t |x), which is defined as the integral of the
hazard function h(t |x), i.e.

H(t |x) =
∫ t

0
h(x|x)dx. (2)

The SF can be expressed through the CHF as S(t |x) = exp(−H(t |x)).

3.2. The Cox Model

Let us consider main concepts of the Cox proportional hazards model (Hosmer et al.,
2008). According to the model, the hazard function at time t given predictor values x is
defined as

h(t |x, b) = h0(t)�(x, b) = h0(t) exp
(
ψ(x, b)

)
, (3)

here h0(t) is a baseline hazard function which does not depend on the vector x and the
vector b; �(x) is the covariate effect or the risk function; b = (b1, . . . , bd) is an unknown
vector of regression coefficients or parameters. It can be seen from the above expression
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for the hazard function that the reparametrization �(x, b) = exp(ψ(x, b)) is used in the
Cox model. The function ψ(x, b) in the model is linear, i.e.

ψ(x, b) = xTb =
d∑

k=1

bkxk. (4)

In the framework of the Cox model, the SF S(t |x, b) is computed as

S(t |x, b) = exp
(−H0(t) exp

(
ψ(x, b)

)) = (
S0(t)

)exp(ψ(x,b))
, (5)

here H0(t) is the cumulative baseline hazard function; S0(t) is the baseline SF. It is im-
portant to note that functions H0(t) and S0(t) do not depend on x and b.

The Cox model is one of the models establishing an explicit relationship between the
covariates and the distribution of survival times. It assumes a linear combination of the
example covariates. On the one hand, this is a strong assumption that is not valid in many
cases. It restricts the wide use of the model. On the other hand, this assumption allows
us to apply the Cox model to solving the explanation problems as a linear approximation
of some unknown function of covariates by considering coefficients of the covariates as
quantitative impacts on the prediction.

The partial likelihood in this case is defined as follows:

L(b) =
n∏

j=1

[
exp(ψ(xj , b))∑

i∈Rj
exp(ψ(xi , b))

]δj

, (6)

here Rj is the set of patients known to be at risk at time tj . The term “at risk at time t”
means patients who die at time t or later.

4. Counterfactual Explanation for Survival Models: Problem Statement

We consider a definition of the counterfactual explanation proposed by Wachter et al.
(2017) and rewrite it in terms of survival models.

Definition 1 (Wachter et al., 2017). Assume a prediction function f is given. Computing
a counterfactual z =(z1, . . . , zd) ∈ R

d for a given input x =(x1, . . . , xd) ∈ R
d is derived

by solving the following optimization problem:

min
z∈Rd

{
l
(
f (z), f (x)

) + Cμ(z, x)
}
, (7)

where l(· , ·) denotes a loss function, which establishes a relationship between the ex-
plainable black-box model outputs; μ(z, x) is a penalty term for deviations of z from the
original input x, which is expressed through a distance between z and x, for example, the
Euclidean distance; C > 0 denotes the regularization strength.
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The function l(f (z), f (x)) encourages the prediction of z to be different in accordance
with a certain rule to the prediction of the original point x. The penalty term μ(z, x)

minimizes the distance between z and x with the aim to find the nearest counterfactuals
to x. It can be defined as

μ(z, x) = ‖z − x‖2. (8)

It is important to note that the above optimization problem can be extended by includ-
ing additional terms. In particular, many algorithms of the counterfactual explanation use
a term which makes counterfactuals close to the observed data. It can be done, for exam-
ple, by minimizing the distance between the counterfactual z and the k nearest observed
data points (Dandl et al., 2020) or by minimizing the distance between the counterfactual
z and the class prototypes (Looveren and Klaise, 2019).

Let us consider an analogy of survival models with the standard classification models
where all points are divided into classes. We also have to divide all patients into classes
by means of an implicit relationship between the black-box survival model predictions.
It is important to note that predictions are the CHFs or the SFs. Therefore, the introduced
loss function l(f (z), f (x)) should take into account the difference between the CHFs
or the SFs to some extent, which characterize different “classes” or groups of patients.
It is necessary to establish the relationship between CHFs or between SFs, which would
separate groups of patients of interest. One of the simplest ways is to separate groups of
patients in accordance with their feature vectors. This can be done if the groups of patients
are known, for example, the treatment and control groups. In many cases, it is difficult to
divide patients into groups by relying on their features because this division does not take
into account outcomes, for example, SFs of patients.

Another way for separating patients is to consider the difference between the corre-
sponding mean times to events for counterfactual z and input x. Therefore, several con-
ditions of counterfactuals taking into account mean values can be proposed. The mean
values can be defined as follows:

m(z) = E(z) =
∫ ∞

0
S(t |z)dt, m(x) = E(x) =

∫ ∞

0
S(t |x)dt. (9)

Then the optimization problem (7) can be rewritten as follows:

min
z∈Rd

{
l
(
m(z),m(x)

) + Cμ(z, x)
}
. (10)

We suppose that a condition for a boundary of “classes” of patients can be defined by
a predefined smallest distance between mean values, which is equal to r . In other words,
a counterfactual z is defined by the following condition:

m(z) − m(x) � r. (11)

The condition for “classes” of patients can be also written as

m(x) − m(z) � r. (12)
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Let us unite the above conditions by means of the function

ψ(z) = r − θ
(
m(z) − m(x)

)
� 0, (13)

where parameter θ ∈ {−1, 1}. In particular, condition (11) corresponds to case θ = 1,
condition (12) corresponds to case θ = −1.

It should be noted that several conditions of counterfactuals taking into account mean
values can be proposed here. We take the difference between the mean time to events of
explainable point x and the point z. For example, if it is known that a group of patients
has a certain disease, we can define a prototype xp of the group of patients and try to find
the difference m(z) − m(xp).

Let us consider the so-called hinge-loss function

l
(
f (z), f (x)

) = max
(
0, r − (

f (z) − f (x)
))

. (14)

Its minimization encourages to increase the difference f (z) − f (x) up to r . Indeed,
the condition r � 0 is valid, therefore, the increase of f (z) leads to the decrease of
l(f (z), f (x)). However, when f (z) − f (x) � r , then l(f (z), f (x)) = 0. This implies
that minimization of l(f (z), f (x)) does not encourage to increase the corresponding dif-
ference. But it does not mean that f (z) − f (x) cannot be larger than r . In fact, the loss
function minimization encourages to move point f (z) to the class boundary, but it does
not impact on its moving in the area of another class.

Taking into account (8) and (13), the entire loss function can be rewritten and the
following optimization problem is formulated:

min
z∈Rm

L(z) = min
z∈Rm

{
max

{
0, ψ(z)

} + C‖z − x‖2
}
. (15)

In summary, the optimization problem (15) has to be solved in order to find counter-
factuals z.

It should be noted that counterfactuals can also be found by solving the following
constrained optimization problem:

min
z∈Rm

L(z) = min
z∈Rm

‖z − x‖2, (16)

subject to

ψ(z) � 0. (17)

It is equivalent to problem (15) or to problem (7), which are simply derived from
(16)–(17).

Generally, the function ψ(z) is not convex and cannot be written in an explicit form.
This fact complicates the problem and restricts possible methods for its solution. There-
fore, we propose to use the well-known heuristic method called the PSO. Let us return to
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the problem (15) by writing it in the similar form:

min
z∈Rm

L(z) = min
z∈Rm

{
max

{
0, Cψ(z)

} + ‖z − x‖2
}
. (18)

This problem can be explained as follows. If point z is from the feasible set defined
by condition ψ(z) � 0, then the choice of z minimizes the distance between z and x.
If point z does not belong to the feasible set (ψ(z) > 0), then the penalty Cψ(z) is
assigned. It is assumed that the value of Cψ(z) is much larger than ‖z − x‖2. Therefore,
it is recommended to take large values of C, for example, C = 106.

5. The Exact Solution for the Cox Model

We prove below that problem (18) can be reduced to a standard convex optimization prob-
lem with linear constraints and can be exactly solved if the black-box model is the Cox
model. In other words, the counterfactual example z can be determined by solving a con-
vex optimization problem.

Let t0 < t1 < · · · < tq < tq+1 be the distinct times to event of interest from the set
{T1, . . . , Tn}, where t0 = 0, t1 = mink=1,...,n Tk and tq = maxk=1,...,n Tk , tq+1 = tq + tγ ;
tγ is a parameter which is close to 0. We assume that there hold S(τ |x) = 1 for τ = t0,
0 < S(τ |x) < 1 for τ � t1, and S(τ |x) = 0 for τ > tq+1. Let � = [t0, tq+1] and
divide it into q + 1 subsets �0, . . . , �q such that �q = [tq , tq+1], �j = [tj , tj+1),
� = ⋃

j=0,...,q �j ; �j ∩ �k = ∅, ∀j 	= k. Introduce the indicator function χj (t) taking
the value 1 if t ∈ �j , and 0 otherwise. Then the baseline SF S0(τ ) and the SF S(τ |x)

under condition of using the Cox model can be represented as follows:

S0(τ ) =
q∑

j=0

s0,j · χj (τ ), s0,0 = 1, (19)

and

S(τ |x) =
q∑

j=0

s
exp(zTb)

0,j · χj (τ ). (20)

Hence, the mean value is

m(x) =
∫ ∞

0
S(t |x)dt =

∫ ∞

0

[ q∑
j=0

s
exp(xTb)

0,j χj (t)

]
dt

=
q∑

j=0

s
exp(xTb)

0,j

[∫ ∞

0
χj (t)dt

]
=

q∑
j=0

μjs
exp(xTb)

0,j , (21)

where μj = tj+1 − tj > 0.
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Denote u = zTb and consider the function

π(u) =
q∑

j=0

μjs
exp(u)

0,j . (22)

Compute the following limits:

lim
u→−∞ π(u) =

q∑
j=0

μj lim
u→−∞ s

exp(u)

0,j =
q∑

j=0

μj = tq+1 − t0 = tq+1, (23)

lim
u→∞ π(u) =

q∑
j=0

μj lim
u→∞ s

exp(u)

0,j = μ0 = t1 − t0 = t1. (24)

The derivative of π(u) is

dπ(u)

du
=

q∑
j=0

μj

d
du

[
s

exp(u)

0,j

] =
q∑

j=0

[
μj ln(s0,j )

](
s

exp(u)

0,j exp(u)
)
. (25)

Note that s
exp(u)

0,j exp(u) � 0 for all j and u; μj ln(s0,j ) � 0 for all j . Hence, there
holds

dπ(u)

du
� 0, ∀u. (26)

The above means that the function π(u) is non-increasing with u. Moreover, it is pos-
itive because its limits are positive too. Let us consider the function

ζ(u) = r − θ
(
π(u) − m(x)

)
. (27)

It is obvious that there holds m(x) ∈ [t1, tq ] for arbitrary x.
Let θ = 1. Then

1. ζ(u) is a non-decreasing monotone function;
2. a+ = limu→−∞ ζ(u) = r − tq+1 + m(x);
3. b+ = limu→+∞ ζ(u) = r − t1 + m(x);
4. r ∈ (0, tq+1 − m(x)] (otherwise ψ(z) will be always positive).

It follows from the above that a+ � 0 < b+ and ζ(u) = 0 at a single point u+. By
using numerical methods, we can find point u+. Since the set of solutions is defined by
the inequality ψ(z) � 0, then it is equivalent to ζ(u) � 0 and u � u+ or zTb − u+ � 0.

Let θ = −1. Then

1. ζ(u) is a non-increasing monotone function;
2. a− = limu→−∞ ζ(u) = r + tq+1 − m(x);
3. b− = limu→+∞ ζ(u) = r + t1 − m(x);
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4. r ∈ (0,m(x) − t1] (otherwise ψ(z) will be always positive).

It follows from the above that b− � 0 < a− and ζ(u) = 0 at a single point u−
which can be numerically calculated. Since the set of solutions is defined by the inequality
ψ(z) � 0, then it is equivalent to ζ(u) � 0 and u � u− or −zTb + u− � 0.

The above conditions for r and the sets of solutions can be united

r ∈
(

0,
1

2

[
(1 + θ)

(
tq+1 − m(x)

) + (1 − θ)
(
m(x) − t1

)]]
, (28)

θzTb−1

2

[
(1 + θ)u+ − (1 − θ)u−

]
� 0. (29)

Constraints (17) to the problem (16)–(17) become (29) which are linear with z. It can
be seen from the objective function (16) and constraints (29) that this optimization prob-
lem is convex with linear constraints, therefore, it can be solved by means of standard
programming methods.

The problem (16) with constraints (29) can also be written in the form of the uncon-
strained problem (18), as follows:

min
z∈Rm

L(z) = min
z∈Rm

{
C

(
θzTb−A

) + ‖z − x‖2
}
, (30)

where

A = 1

2

[
(1 + θ)u+ − (1 − θ)u−

]
. (31)

6. Particle Swarm Optimization

The PSO algorithm proposed by Kennedy and Eberhart (1995) can be viewed as a stochas-
tic optimization technique based on a swarm. There are several survey papers devoted to
the PSO algorithms, for example, Wang et al. (2018, 2015). We briefly introduce this
algorithm below.

The PSO performs searching via a swarm of particles that updates from iteration to
iteration. In order to reach the optimal or suboptimal solution to the optimization problem,
each particle moves in the direction to its previously best position (denoted as “pbest”)
and the global best position (denoted as “gbest”) in the swarm. Suppose that the function
f : Rn → R has to be minimized. The PSO is implemented in the form of the following
algorithm:

1. Initialization (zero iteration):

• N particles {u0
k}Nk=1 and their velocities {v0

k }Nk=1 are generated;
• the best position p0

k = u0
k of the particle u0

k is fixed;
• the best solution g0 = arg mink f (p0

k) is fixed.

2. Iteration t (t = 1, . . . , Niter):
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• velocities are adjusted:
(
vt
k

)
i
= w

(
vt−1
k

)
i
+ r1c1

(
pt−1

k − ut−1
k

)
i
+ r2c2

(
gt−1 − ut−1

k

)
i
, (32)

where w, c1, c2 are parameters, r1 and r2 are random variables from the uniform
distribution in interval [0, 1];

• positions of particles are adjusted:

ut
k = ut−1

k + vt
k; (33)

• the best positions of particles are adjusted:

pt
k = arg min

u∈P
f (u), P = {

pt−1
k , ut

k

}; (34)

• the best solution is adjusted:

gt = arg min
k

f
(
pt

k

)
. (35)

The problem has five parameters: the number of particles N ; the number of iterations
Niter; the inertia weight w; the coefficient for the cognitive term c1 (the cognitive term
helps the particles for exploring the search space); the coefficient for the social term c2

(the social term helps the particles for exploiting the search space).
It is clear that parameters N and Niter should be as large as possible. Their upper

bounds depend only on the available computation time that we can spend on iterations.
We take N = 2000, Niter = 1000.

Other parameters are selected by using some heuristics (Bai, 2010; Clerc and Kennedy,
2002), namely,

w = η, c1 = ηφ1, c2 = ηφ2, (36)

where

η = 2κ

|2 − φ − √
φ2 − 4φ| , φ = φ1 + φ2 > 4, κ ∈ [0, 1]. (37)

The following values of the above introduced parameters are often taken: φ1 = φ2 =
2.05, κ = 1. Hence, there hold w = 0.729, c1 = c2 = 1.4945.

Particles are generated by means of the uniform distributions U with the following
parameters:

(
u0

k

)
i
∼ U

(
umin

i , umax
i

)
, umin

i , umax
i ∈ R. (38)

Velocities are similarly generated as:
(
v0
k

)
i
∼ U

(−∣∣umax
i − umin

i

∣∣,−∣∣umax
i − umin

i

∣∣). (39)
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It should be noted that PSO is similar to the Genetic Algorithm (GA) in the sense that
they are both population-based search approaches and that they both depend on informa-
tion sharing among their population members to enhance their search processes using a
combination of deterministic and probabilistic rules. However, many authors (Duan et al.,
2009; Panda and Padhy, 2008; Sooda and Nair, 2011; Wang et al., 2008) claim that PSO
has a better performance in terms of average and standard deviation from multiple runs
of algorithms. PSO converges to arrive at the optimal values in fewer generations than
GA. Moreover, PSO outperforms GA, when a smaller population size is available, and
has higher robustness.

7. Application of the PSO to the Survival Counterfactual Explanation

Let us return to the counterfactual explanation problem in the framework of survival analy-
sis. Suppose that there exists a dataset D with triplets (xj , δj , Tj ), where xj ∈ R

d , Tj > 0,
δj ∈ {0, 1}. It is assumed that the explained machine learning model q(x) is trained on D.
It should be noted that the prediction of the machine learning survival model is the SF
or the CHF, which can be used for computing the mean time to event of interest m(x).
In order to find the counterfactual z, we have to solve the optimization problem (18) with
fixed x, r , and C.

Let us calculate bounds of the domain x for every feature on the basis of the training
set as

xmin
i = min

j

{
(xj )i

}
, xmax

i = max
j

{
(xj )i

}
. (40)

According to the PSO algorithm, the initial positions of particles are generated as

(
u0

k

)
i
∼ U

(
xmin
i , xmax

i

)
. (41)

So, the optimal solution can be found in the hyper parallelepiped X :

X = [
xmin

1 , xmax
1

] × · · · × [
xmin
d , xmax

d

]
. (42)

If there exists at least one point x∗
j in the training set such that ψ(x∗

j ) � 0, then the
region X can be adjusted. Let

zclosest,train = zct = arg min
j

L(xj ). (43)

Let us introduce a sphere B = B(x, Rct ) with centre x and radius Rct = ‖x − zct‖2.
The sphere can be partially located inside the hyper parallelepiped X or can be larger.
Therefore, we restrict the set of solutions by a set M defined as M = X ∩B. To disable a
possible passage beyond the limits of M, we introduce the restriction procedure, denoted
as RP, which supports that:
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1. z = x + min{‖x − z‖2, Rct } z−x
‖x−z‖2

;
2. Loop: over all features of z:

a) (z)i = min{(z)i , xmax
i };

b) (z)i = max{(z)i , xmin
i }.

The initial positions of particles are generated as follows:

u0
1 = zct , u0

2, . . . , u
0
N ∼ U(B), (44)

and the above restriction procedure is used for all points except the first one: u0
k = RP(u0

k),
k = 2, . . . , N . Positions of particles will be adjusted by using the following expression:

ut
k = RP

(
ut−1

k + vt
k

)
. (45)

Initial values of velocities are taken as v0
k = 0, k = 1, . . . , N .

Let us point out properties of the above approach:

• The optimization solutions are always located in the set M.
• The “worst” optimal solution is zct because the optimization algorithm remembers the

point zct at the zero iteration as optimal, and the next iterations never give the worse
solution, if every initial position u0

k starting from k = 2 is out of the feasible set of
solutions, i.e. ψ(u0

k) > 0.

Another important question arising with respect to the above approach on the basis of
the PSO is how to take into account categorical features. We have to note that the pro-
posed method can potentially deal with categorical features. A direct way for taking into
account these features is to consider the optimization problem (18) for different combina-
tions of values of categorical features. Let us represent the feature vector z as (z\zcat , zcat ),
where zcat is the vector consisting of c categorical features. This implies that the prob-
lem (18) has to be solved d1 · d2 · . . . · dc times where di is the number of values of the
i-th categorical feature. The counterfactual can be found by minimizing the loss function
minz\zcat L(z|zcat ) over all possible vectors zcat , i.e. we have to find a vector zcat of the
categorical feature values, which provides the smallest value of minz\zcat L(z|zcat ). Here,
L(z|zcat ) is the loss function under condition of fixed values of zcat . The above approach
is obvious and can be applied to finding the counterfactual in the case of a small number
of categorical features.

8. Numerical Experiments

To perform numerical experiments, we use the following general scheme.
1. The Cox model and the RSF are considered as black-box models that are trained on

synthetic or real survival data. Outputs of the trained models in the testing phase are SFs.
2. To study the proposed explanation algorithm by means of synthetic data, we generate

random survival times to events by using the Cox model estimates.
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In order to analyse the numerical results, the following schemes are proposed for veri-
fication. When the Cox model is used as a black-box model, we can get the exact solution.
This implies that we can exactly compute the counterfactual zver . Adding the condition that
the solution belongs to the hyper parallelepiped X to the problem with objective function
(16) and constraints (29), we use this solution (zver) as a referenced solution in order to
compare another solution (zopt) obtained by means of the PSO. The Euclidean distance
between zver and zopt can be a measure for the PSO algorithm accuracy in the case of the
black-box Cox model.

The next question is how to verify results of the RSF as a black-box model. The prob-
lem is that the RSF does not allow us to obtain exact results by means of formal methods,
for example, by solving the optimization problem (16). However, the counterfactual can
be found with arbitrary accuracy by considering all points or many points in accordance
with a grid. Then the minimal distance between the original point x and each generated
point is minimized under condition ψ(z) � 0 which is verified for every generated z. This
is a computationally expensive task, but it can be applied to testing results. By using the
above approach, many random points are generated from the set M defined in the previ-
ous section and approximate the optimum zver . Random points for verification of results
obtained by using the RSF are uniformly selected from sphere B by using the restriction
procedure RP. The number of the points is set at 106. In fact, this approach can be regarded
as a perturbation method with the exhaustive search. The Euclidean distance between zver
and zopt is the accuracy measure when the black-box model is the RSF, but zver in this
case has another meaning than in the case of the black-box Cox model.

The code of the proposed algorithm in Python is available at https://github.com/
kovmax/XAI_Survival_Counterfactual.

8.1. Numerical Experiments with Synthetic Data

8.1.1. Initial Parameters of Numerical Experiments with Synthetic Data
Random survival times to events are generated by using the Cox model estimates. An al-
gorithm proposed by Bender et al. (2005) for survival time data for the Cox model with the
Weibull distributed survival times is applied to generate the random times. The Weibull
distribution for generation has the scale parameter λ0 = 10−5 and shape parameter v = 2.
For experiments, we generate two types of data having the dimension 2 and 20, respec-
tively. The two-dimensional feature vectors are used in order to graphically illustrate re-
sults of numerical experiments. The corresponding feature vectors x are uniformly gener-
ated from hypercubes [0, 1]2 and [0, 1]20. Random survival times Tj , j = 1, . . . , N , are
generated in accordance with Bender et al. (2005) using parameters λ0, v, b as follows:

Tj =
( − ln(ξj )

λ0 exp(xT
j b)

)1/v

, (46)

where ξj is the j -th random variable uniformly distributed in interval [0, 1]; vectors of
coefficients b are randomly selected from hypercubes [0, 1]2 and [0, 1]20.

https://github.com/kovmax/XAI_Survival_Counterfactual
https://github.com/kovmax/XAI_Survival_Counterfactual
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Fig. 1. Original and counterfactual points by the parameter θ = 1 from (13) for the black-box Cox model trained
on synthetic data.

The event indicator δj is generated from the binomial distribution with probabilities
Pr{δj = 1} = 0.9, Pr{δj = 0} = 0.1.

For testing, two points are randomly selected from the hyper parallelepiped X in ac-
cordance with two cases: θ = 1, condition (11), and θ = −1, condition (12). For each
point, two tasks are solved: with parameter θ = 1 and parameter θ = −1. Parameter r is
also selected randomly for every task.

8.1.2. The Black-Box Cox Model
The first part of numerical experiments is performed with the black-box Cox model and
aims to show how results obtained by means of the PSO approximate the verified results
obtained as the solution of the convex optimization problem with objective function (16)
and constraints (29). These results are illustrated in Figs. 1–2. The left figure in Fig. 1
shows how m(x) changes depending on values of two features x1 and x2. It can be seen
from the figure that m(x) takes values from 280 (the bottom left corner) until 400 (the
top right corner). Values of m(x) are represented by means of colours. Small circles in
the figure correspond to training examples. The bound for the hyper parallelepiped X is
denoted as ∂X and depicted in Fig. 1 by the dashed line. The right figure in Fig. 1 displays
results of solving the problem for the case θ = 1. The light background is the region
outside the feasible region defined by condition ψ(z) � 0. The filled area corresponds to
condition ψ(z) � 0. The bound for the sphere B is denoted as ∂B and depicted in Fig. 1
by the dash-dot line. The explained point x, the verified solution zver , and the solution
obtained by the PSO zopt are depicted in Fig. 1 by the black circle, the square, and the
triangle, respectively. Parameters of the corresponding numerical experiment, including
m(x), θ , r , are presented above the right figure. It can be seen from Fig. 1 that points zver
and zopt almost coincide. The same results are illustrated in Fig. 2 for the case θ = −1.
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Fig. 2. Original and counterfactual points by the parameter θ = −1 from (13) for the black-box Cox model
trained on synthetic data.

Table 1
Results of numerical experiments for the black-box Cox model trained on synthetic data.

d θ r rver ropt ‖zver − x‖2 ‖zopt − x‖2 ‖zver − zopt‖2

2 1 42.80 42.80 42.80 0.367 0.367 4.76 × 10−6

−1 40.50 40.50 40.50 0.395 0.395 1.01 × 10−6

1 20.07 20.07 20.07 0.166 0.166 3.72 × 10−7

−1 60.11 60.11 60.11 0.561 0.561 9.93 × 10−8

20 1 238.94 238.94 238.94 0.322 0.322 1.39 × 10−2

−1 206.29 206.29 206.29 0.476 0.476 1.34 × 10−2

1 315.33 315.33 315.33 0.461 0.461 7.86 × 10−3

−1 91.86 91.86 91.86 0.204 0.205 1.99 × 10−2

Similar results cannot be visualized for the second type of synthetic data when feature
vectors have the dimensionality 20. Therefore, we present them in Table 1 jointly with
numerical results for the two-dimensional data. Parameters rver and ropt in Table 1 are
defined as:

rver = θ
(
m(zver) − m(x)

)
, (47)

ropt = θ
(
m(zopt) − m(x)

)
, (48)

respectively. They show the relationship between original margin r and margins rver and
ropt obtained by means of the proposed methods. In fact, values of rver and ropt indicate
how the obtained counterfactuals fulfil condition (11) or condition (12), i.e. conditions

ψ(zver) = r − rver � 0, ψ(zopt) = r − ropt � 0. (49)
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Fig. 3. Original and counterfactual points by the parameter θ = 1 from (13) for the black-box RSF trained on
synthetic data.

The last three columns also display the relationship between zver , zopt and x. In partic-
ular, the value of ‖zver − zopt‖2 can be regarded as the accuracy measure of the obtained
counterfactual.

8.1.3. The Black-Box RSF
The second part of numerical experiments is performed with the RSF as a black-box
model. The RSF consists of 250 decision survival trees. The results are shown in Figs. 3–4.
In these cases, zver is computed by generating many points (106) and computing m(z) for
each point. The counterfactual zver minimizes the distance ‖zver − x‖ under condition
ψ(zver) � 0. It can be seen from the figures that zver is again very close to zopt .

Results of experiments with training data having two- and twenty-dimensional feature
vectors are presented in Table 2. It can be seen from Table 2 that zopt is very close to zver
by d = 2. It is important to see that zopt is closer to x in comparison with zver by d = 20.
This implies that the proposed algorithm outperforms the direct perturbation method by
the large number of features.

To study the accuracy of the proposed method, we perform testing using n = 200
generated points and use the following measures for the Cox model and the RSF:

MSE = 1

n

n∑
i=1

∥∥z(i)
ver − z(i)

opt
∥∥

2, MSV = 1

n

n∑
i=1

∥∥z(i)
ver − x(i)

∥∥
2,

MSO = 1

n

n∑
i=1

∥∥z(i)
opt − x(i)

∥∥
2, (50)

where upper index i corresponds to i-th generated point xi for explanation.
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Fig. 4. Original and counterfactual points by the parameter θ = −1 from (13) for the black-box RSF trained on
synthetic data.

Table 2
Results of numerical experiments for the black-box RSF trained on synthetic data.

d θ r rver ropt ‖zver − x‖2 ‖zopt − x‖2 ‖zver − zopt‖2

2 1 74.81 75.67 75.39 0.153 0.153 1.14 × 10−3

−1 46.91 49.32 47.59 0.346 0.346 5.90 × 10−3

1 26.35 27.93 26.79 0.259 0.258 7.70 × 10−4

−1 92.27 92.31 92.30 0.401 0.401 6.58 × 10−4

20 1 229.55 232.39 229.72 0.969 0.763 6.68 × 10−1

−1 133.46 135.84 133.50 0.876 0.563 6.44 × 10−1

1 249.88 265.91 250.15 0.982 0.641 5.90 × 10−1

−1 63.30 63.56 63.40 0.570 0.220 4.99 × 10−1

Table 3
Accuracy measures MSV, MSO, MSE for synthetic data by different values of d.

Cox model RSF
d MSV MSO MSE MSV MSO MSE

2 0.394 0.394 8.58 × 10−7 0.393 0.393 1.03 × 10−3

20 0.420 0.421 4.61 × 10−2 0.922 0.631 0.447

Values of r and θ are randomly selected. Table 3 shows the above accuracy measures
for d = 2 and 20. It can be seen from Table 3 that the proposed method outperforms the
method with the almost exhaustive search by large numbers of features. At the same time,
it provides the same results by small numbers of features when the Cox black-box model
is used for comparison.
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Fig. 5. Original and counterfactual points by the parameter θ = 1 from (13) for the black-box Cox model trained
on the dataset Stanford2.

8.2. Numerical Experiments with Real Data

We consider the following real datasets to study the proposed approach: Stanford2 and
Myeloid. The datasets can be downloaded via R package “survival” and their brief descrip-
tions can be also found in https://cran.r-project.org/web/packages/survival/survival.pdf.

The dataset Stanford2 consists of survival data of patients on the waiting list for the
Stanford heart transplant program (Escobar and Meeker, 1992). It contains 184 patients.
The number of features is 2 plus 3 variables: time to death, the event indicator, the subject
identifier.

The dataset Myeloid is based on a trial in acute myeloid leukemia (Le-Rademacher
et al., 2018). It contains 646 patients. The number of features is 5 plus 3 variables: time
to death, the event indicator, the subject identifier. In this dataset, we do not consider
the feature “sex” because it cannot be changed. Moreover, we consider two cases for the
feature “trt” (treatment arm), when it takes values “A” and “B”. In other words, we divide
all patients into two groups depending on the treatment arm. As a result, we have three
datasets: Stanford2 and Myeloid-A and Myeloid-B.

8.2.1. The Black-Box Cox Model
Since examples from the dataset Stanford2 have two features which can be changed (age
x1 and T5 mismatch score x2), then results of numerical experiments for this dataset can
be visualized, and they are shown in Figs. 5–6. We again see that points zver and zopt are
close to each other. The same follows from Table 4 which is similar to Table 1, but contains
results obtained for real data. If one considers values in the last column of Table 4 as the
method accuracy values, then one can conclude that the method provides outperforming
results. This means that the Cox model used as a black-box model accurately supports the
dataset, and the PSO provides a good solution.

https://cran.r-project.org/web/packages/survival/survival.pdf
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Fig. 6. Original and counterfactual points by the parameter θ = −1 from (13) for the black-box Cox model
trained on the dataset Stanford2.

Table 4
Results of numerical experiments for the black-box Cox model trained on real data.

Dataset θ r rver ropt ‖zver − x‖2 ‖zopt − x‖2 ‖zver − zopt‖2

Stanford2 1 198.5 198.5 198.5 0.983 0.983 5.62 × 10−7

−1 497.7 497.7 497.7 7.217 7.217 7.96 × 10−9

1 805.4 805.4 805.4 9.145 9.145 1.03 × 10−8

−1 186.5 186.5 186.5 1.663 1.663 1.16 × 10−8

Myeloid-A 1 600.1 600.1 600.1 205.94 205.94 2.36 × 10−4

−1 144.2 144.2 144.2 40.38 40.38 2.15 × 10−5

1 362.0 362.0 362.0 103.54 103.54 2.16 × 10−4

−1 318.7 318.7 318.7 124.69 124.69 1.11 × 10−3

Myeloid-B 1 57.08 57.08 57.08 28.437 28.437 2.30 × 10−5

−1 421.8 421.8 421.8 126.75 126.75 5.10 × 10−4

1 206.8 206.8 206.8 260.91 260.91 2.77 × 10−3

−1 498.9 498.9 498.9 124.94 124.94 4.85 × 10−4

Results of experiments with the Cox model trained on datasets Stanford2, Myeloid-A
and Myeloid-B are shown in Table 4. One can see that the proposed method also provides
exact results for datasets Myeloid-A and Myeloid-B.

8.2.2. The Black-Box RSF
Results for the black-box RSF trained on the dataset Stanford2 are presented in Figs. 7–8.
We again see that zver is close to zopt . Results of numerical experiments with datasets
Stanford2, Myeloid-A and Myeloid-B are shown in Table 5. We see from Table 5 that
values of A are positive for all datasets. This means that the PSO provides better results
than the method based on generating the large number of random points.
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Fig. 7. Original and counterfactual points by the parameter θ = 1 from (13) for the black-box RSF trained on
the dataset Stanford2.

Fig. 8. Original and counterfactual points by the parameter θ = −1 from (13) for the black-box RSF trained on
the dataset Stanford2.

To study the accuracy of the proposed method on real data, we perform testing using
n = 40 points from every dataset and compute the accuracy measures (50). Results are
shown in Table 6.

9. Discussion and Concluding Remarks

On the one hand, the proposed method and its illustration by means of numerical exam-
ples extend the class of explanation methods and algorithms dealing with survival data,
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Table 5
Results of numerical experiments for the black-box RSF trained on real data.

Dataset θ r rver ropt ‖zver − x‖2 ‖zopt − x‖2 ‖zver − zopt‖2

Stanford2 1 225.3 236.7 236.7 0.533 0.532 0.11
−1 417.9 418.2 418.0 27.54 27.541 0.27
1 166.4 171.7 171.7 0.921 0.920 0.005
−1 303.9 348.9 348.9 13.74 13.74 0.041

Myeloid-A 1 9.26 10.10 10.10 99.92 99.69 3.96
−1 36.72 37.36 37.36 275.62 274.97 7.84
1 6.73 10.10 10.10 130.50 130.32 5.63
−1 24.66 25.03 25.03 88.39 86.08 13.0

Myeloid-B 1 28.52 30.02 30.02 100.88 99.77 5.69
−1 198.0 200.8 198.9 523.08 521.19 11.7
1 2.10 5.54 5.54 123.14 122.76 9.28
−1 185.3 196.0 192.6 245.58 244.16 9.20

Table 6
Accuracy measures MSV, MSO, MSE for real data by different values of d.

Cox model RSF
Dataset MSV MSO MSE MSV MSO MSE

Stanford2 29.14 29.14 6.39 × 10−8 47.38 47.14 0.19
Myeloid-A 134.1 134.1 4.55 × 10−4 118.2 117.3 4.64
Myeloid-B 158.8 158.8 9.82 × 10−4 166.7 164.9 5.91

which include methods like SurvLIME (Kovalev et al., 2020), SurvLIME-KS (Kovalev
and Utkin, 2020), SurvLIME-Inf (Utkin et al., 2020). On the other hand, the method also
extends the class of counterfactual explanation models which are becoming increasingly
important for interpreting and explaining predictions of many machine learning diagnos-
tic systems. To the best of our knowledge, none of the available counterfactual explanation
methods explain the survival analysis functional predictions, for example, the SF. More-
over, in spite of importance of the counterfactual explanation, there are only a few papers
discussing its meaning and its real applications in medicine, and there are no papers which
discuss the counterfactual explanation in terms of survival analysis.

At the same time, a choice of a correct personalized treatment for a patient is the most
actual problem. Petrocelli (2013) pointed out that counterfactual thinking as cognitively
available representations of undesirable outcomes impact on decision making in medicine.
A former undesirable experience of a doctor with a patient can change the doctor’s deci-
sions in the next similar case.

The counterfactual problem can be met in the framework of the heterogeneous treat-
ment effect analysis (Athey and Imbens, 2016; Kallus, 2016; Kunzel et al., 2019; Wager
and Athey, 2015). The combination of this counterfactual problem with survival analysis
was investigated by Zhang et al. (2017), where the authors try to answer the counterfactual
questions: what would the survival outcome of a treated patient be, if he had not accepted
the treatment; what would the outcome of an untreated patient be, if he had been treated?
Answers on these questions add up to survival analysis of two groups of patients: treated
and untreated.
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The counterfactual explanation aims to implicitly identify many patient subgroups tak-
ing into account all their characteristics and to find an optimal treatment which can be
regarded as the personalized treatment. At that, the outcome of every patient is the SF
or the CHF depending on the corresponding subgroup. This identification is carried out
under condition that the explained black-box survival model is perfect.

The most important question arising with respect to the proposed method is what the
counterfactual explanations, taking into account SFs or CHFs, mean. It can be seen from
the results that predictions of survival machine learning models differ from the standard
classification or regression predictions which are mainly point-valued and have the well-
known meanings. Even if we have a probability distribution defined on classes as a pre-
diction in classification, we choose a class with the largest probability. Survival models
provide predictions which are not familiar to a doctor or a user. Moreover, it is difficult
to expect that a doctor is thinking in terms of basic concepts from survival analysis, and
their decisions are represented in the form of SFs or CHFs. We have discussed in Ko-
valev et al. (2020) that a doctor can consider some point-valued measures, for instance,
the mean time to event, the probability of event before some time. The same can be applied
to counterfactual explanations. For instance, a doctor knows that a certain mean time to
recession of a patient, which is attributable to patients from a subgroup, can be achieved
by applying some treatment. The proposed method allows us to find an “optimal” treat-
ment to some extent, which can move the patient to the required subgroup. Counterfactuals
can also help to test whether the survival characteristics of a patient would have occurred
had some precondition been different. Moreover, counterfactuals help a doctor to decide
which intervention will move a patient out of an at-risk group under condition that the
at-risk group is defined by the mean time to a certain event.

Another important question for discussion is why the term “machine learning survival
models” is used in the paper instead of the term “survival models”. The point is that
the paper aims to explain survival models which are black boxes that is only their inputs
and the corresponding outputs are known. Many machine learning survival models can
be regarded as black-box models, for example, RSFs, deep survival models, the survival
SVM, etc. (Wang et al., 2019). In contrast to these black-box models, there are many
survival models which are not black boxes, i.e. they are self-explainable and do not need
to be explained. For example, the Cox model is self-explainable because its coefficients
characterize impacts of covariates. We used the Cox model in numerical examples as the
black-box one in order to compare its results with results of the proposed explanation
method. At the same time, we also used the RSF which is a black-box machine learning
survival model. This model is machine learning because it is an survival extension of the
well-known ensemble-based machine learning model, Random Forest.

We have mentioned that one of the important difficulties of using the proposed method
is to take into account categorical features. The difficulty is that the optimization problem
cannot handle categorical data and becomes a mixed integer convex optimization prob-
lem whose solving is a difficult task in general. Sharma et al. (2019) proposed a genetic
algorithm called CERTIFAI to partially cope with the problem and for computing counter-
factuals. The same problem was studied by Russel (2019). Nevertheless, an efficient solver
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for this problem is a direction for further research. There are also some modifications of
the original PSO taking into account categorical and integer features (Chowdhury et al.,
2013; Laskari et al., 2002; Strasser et al., 2016). However, their application to the consid-
ered explanation problem is another direction for further research. We would like to point
out an interesting and simple method for taking into account categorical features proposed
by Kitayama and Yasuda (2006). According to this method, penalty functions of a specific
form are introduced, and discrete conditions on the variables can be treated in terms of
the penalty functions. Then the augmented objective function becomes multimodal and
extrema (minima) are generated near discrete values. This simple way can be a candidate
for the extension of this method on the case of computing optimal counterfactuals.

We have studied only one criterion for comparison of SFs of the original example
and the counterfactual. This criterion is the difference between mean values. In fact, this
criterion implicitly defines different classes of examples. However, other criteria can be
applied to the problem and to separating the classes, for example, difference between val-
ues of SFs at some time moment. The median is also useful to consider, as mean is often
very hard to interpret due to the influence of the tail, and that is beyond knowledge for
most practitioners. The study of other criteria is also an important direction for further
research.

Another interesting problem is when the feature vector is an image, for example, a com-
puter tomography image of an organ. In this case, we have a high-dimensional explanation
problem whose efficient solution is also a direction for further research.
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