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Abstract. This paper aims to develop a Fermatean fuzzy ELECTRE method for solving multi-
criteria group decision-making problems with unknown weights of decision makers and incomplete
weights of criteria. First, a new distance measure between Fermatean fuzzy sets is proposed based on
the Jensen–Shannon divergence. The cross entropy for Fermatean fuzzy sets is defined. Three kinds
of dominance relationships for Fermatean fuzzy sets are proposed. Then, two optimization models
are constructed to obtain positive ideal decision-making information and negative ideal decision-
making information, respectively. Accordingly, the credibility degree of each decision maker is cal-
culated. Decision makers’ dynamic weights are determined by their credibility degrees. Besides, to
obtain the weights of criteria, an optimization model is constructed based on grey relational analysis
for Fermatean fuzzy numbers. Finally, the strong, medium and weak Fermatean fuzzy concordance
and discordance sets are identified to construct the Fermatean fuzzy concordance and discordance
matrices, respectively. A practical case study is carried out to illustrate the feasibility and applica-
bility of the proposed ELECTRE method. Comparative analyses are performed to demonstrate the
superiority and effectiveness of the proposed ELECTRE method.
Key words: Fermatean fuzzy sets, ELECTRE method, outranking relations, dynamic weights.

1. Introduction

With the increasing complexity of the socio-economic environment, it is difficult for single
Decision Maker (DM) to consider all relevant aspects of a problem, because of the lim-
itation of individual’s knowledge or experience. Multi-Criteria Group Decision-Making
(MCGDM) is a widely used efficient method for the complex decision-making problems.
DMs or experts express their opinions or preferences about alternatives with respect to dif-
ferent criteria to obtain the best alternative (Wu et al., 2019). For traditional MCGDM, the
decision information is represented by crisp numerical values. However, due to the com-
plexity and vagueness of decision-making problems, it is usually challenging for experts
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Fig. 1. Comparison of spaces of FMGS, PMGs and IMGs.

to evaluate an object with crisp numerical values. Therefore, various types of fuzzy sets
have been applied to MCGDM problems, such as Fuzzy Set (FS) (Zadeh, 1965; Choua
and Shen, 2008; Chiclana et al., 2007), Intuitionistic Fuzzy Set (IFS) (Atanassov, 1986;
Jiang and Hu, 2021), Pythagorean Fuzzy Set (PFS) (Yager, 2014; Mohagheghi et al., 2017;
Zhou and Chen, 2020), etc. Although IFS and PFS are extensively scrutinized by scholars,
their applications are relatively limited due to many limitations over the selection of the
membership and non-membership grades.

Since Fermatean Fuzzy Set (FFS) proposed by Senapati and Yager (2019c) is able to
model the uncertainty in real-life decision-making problems better than IFS and PFS, FFS
has received increasing attention. The advantage of FFS is illustrated by an example that
an expert may express his/her preference for an alternative over criterion with member-
ship degree 0.8 and non-membership degree 0.9, then it is clearly 0.8 + 0.9 � 1 and
0.82 + 0.92 � 1, but 0.83 + 0.93 � 1. From this point of view, the FFS provides a larger
preference domain for experts to express fuzzy information than PFS and IFS. Hence,
the space of Fermatean Fuzzy Membership Grades (FFMGs) is greater than the space of
Intuitionistic Fuzzy Membership Grades (IFMGs) and Pythagorean Fuzzy Membership
Grades (PFMGs), which is shown in Fig. 1. Figure 1 indicates that IFMGs are all points
below the line x+y � 1, PFMGs are all points with x2+y2 � 1, and FFMGs are all points
with x3 + y3 � 1. The analysis above suggests that FFS can be used more extensively in
MCGDM problems. Therefore, it is necessary to research the theory of FFS.

Since the seminal work of Senapati and Yager (2019c), FFS has been investigated
by many scholars. Senapati and Yager (2019c) combined the technique for order pref-
erence by similarity to ideal solution (TOPSIS) approach with FFS to handle the multi-
criteria decision-making (MCDM) problem. Senapati and Yager (2019b) defined four new
weighted aggregated operators including Fermatean fuzzy weighted average operator, Fer-
matean fuzzy weighted geometric operator, Fermatean fuzzy weighted power average op-
erator, Fermatean fuzzy weighted power geometric operator. Senapati and Yager (2019a)
introduced some operations over FFS, then developed a weighted product model based
on Fermatean fuzzy information to solve the MCDM problem. Based on Dombi opera-
tions, Aydemir and Gunduz (2020) presented a series of aggregation operators for FFS.
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They then extended TOPSIS with the proposed Fermatean fuzzy Dombi operators. Al-
though some researches are conducted on MCDM methods in the FFS context, there still
remain some drawbacks to be handled. The weights of criteria are given by experts in
advance. Besides, most of existing decision-making methods for FFSs are aggregation
operator-based methods and compromising methods rather than outranking methods. The
outranking methods may lead to compensation effect.

Outranking methods are treated as the suitable means for making a successful assess-
ment on the competing criteria. The most widely used outranking method is ELECTRE
(elimination and choice translating reality) method, which was proposed by Roy (1991).
Since then, numerous studies have been conducted to extend ELECTRE method under
fuzzy decision environments, such as triangular fuzzy numbers (Zandi and Roghanian,
2013; Kabak et al., 2012), trapezoidal fuzzy numbers (Hatami and Tavana, 2011), FS
(Ferreira et al., 2016), IFS (Shen et al., 2016; Wu and Chen, 2011; Çalı and Balaman,
2019; Mishra et al., 2020; Kilic et al., 2020), interval-valued intuitionistic fuzzy set (Chen,
2014a; Hashemi et al., 2016; Xu and Shen, 2014), hesitant fuzzy set (Chen and Xu, 2015;
Mousavi et al., 2017), PFS (Akram et al., 2019, 2021, Chen, 2020) neutrosophic set (Peng
et al., 2014; Karasan and Kahraman, 2020; Zhang et al., 2015), etc. However, to the best
of our knowledge, no research on ELECTRE method within the context of FFS has yet
been conducted.

Recently, many researchers have focused on the construction of outranking relation
by using different indices, e.g. the value of score function (Wu and Chen, 2011; Xu and
Shen, 2014; Liao et al., 2018), distance measure (Zhang and Yao, 2017; Chen, 2014b),
possibility measure (Chen, 2014b, 2015). In general, outranking relation can be sorted
as strong dominance and weak dominance. In essence, these two dominance relations
are insufficient to describe the degree of superiority and demonstrate superior relation
among alternatives. Furthermore, the weights of concordance and discordance sets play
an important role in the solution of a MCDM problem with ELECTRE method, which may
eventually affect the ranking or selection of alternatives. However, most current ELECTRE
methods (Wu and Chen, 2011; Kilic et al., 2020; Chen and Xu, 2015; Akram et al., 2019;
Razi, 2015) directly give the weights of concordance and discordance sets on the basis of
the subjective judgments of DMs, which lacks the basis of scientific theory and may be
unreasonable.

Previous studies on FFS and ELECTRE methods have achieved fruitful research re-
sults, some challenging gaps can be identified as follows: Firstly, some methods (Senapati
and Yager, 2019a, 2019b, 2019c) under FFSs environment were developed to solve the
single expert MCDM problems, which is not suitable for solving group decision-making
problems. Literature (Senapati and Yager, 2019a, 2019b, 2019c; Aydemir and Gunduz,
2020) failed to consider the determination of criteria weights, which may lead to unrea-
sonable and unreliable decision-making results. Secondly, distance measure of FFSs in
(Senapati and Yager, 2019c) might generate the counter-intuitive results in some cases
(see Example 2 in Section 3). Thirdly, there is no research on ELECTRE method with
FFS. In addition, due to the computational complexity, many ELECTRE methods (Wu
and Chen, 2011; Kilic et al., 2020; Chen and Xu, 2015; Akram et al., 2019; Razi, 2015)
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provide a priori weights of concordance and discordance sets, which can be easily influ-
enced by DMs’ subjective randomness.

To achieve the aforementioned main objective and fill outlined research gaps, this paper
proposes a Fermatean fuzzy ELECTRE method for MCGDM problems. The main contri-
butions and innovations of this paper are outlined below. Firstly, a new distance measure
between FFSs is designed by making use of the Jensen–Shannon divergence. The objec-
tive weights of concordance and discordance sets are generated by applying the weighted
distance measure based on the proposed new distance measure, which is subjectively given
by experts in a majority of the studies related to ELECTRE literature (Wu and Chen, 2011;
Kilic et al., 2020; Chen and Xu, 2015). Secondly, the weights of DMs are dynamic with
respect to each alternative over different criteria, which are generated using the credibil-
ity degrees of each DM. As for the DMs’ weights, previous studies usually give them in
advance (Wang et al., 2020) or views them as unchangeable for different criteria over dif-
ferent alternatives. Thirdly, the grey relational coefficient and grey relational degree of
the FFSs are defined and applied to compute the weights of criteria. Fourthly, in order
to show the dominance degree between the pairwise FFNs more exactly, this paper uses
membership degree, non-membership degree and indeterminacy degree to compare the
outranking relationship for each pair of FFNs. Based on this, the outranking relationship
for FFNs can be extended into three situations: strong dominance, medium dominance
and weak dominance.

The remainder of this paper is organized as follows: Section 2 introduces some ba-
sic concepts associated with FFSs. In Section 3, some information measures for FFSs,
including distance measure, cross entropy measure, and grey relational degree, are de-
fined. Outranking relationships for FFSs are introduced in this section, where the related
properties of outranking relationships are discussed. An ELECTRE method for MCGDM
problems with FFNs is proposed in Section 5. Section 6 illustrates the concrete implemen-
tation of the proposed ELECTRE method using a case study on site selection of fangcang
shelter hospitals (FSHs), and demonstrates the superiority and effectiveness of the pro-
posed ELECTRE method by comparative analyses. Section 7 gives some conclusions and
future research directions

2. Preliminaries

This section reviews some concepts, operational rules, comparative methods and aggrega-
tion operator of FFSs. The existing Euclidean distance measure of FFNs is also reviewed.

2.1. Fermatean Fuzzy Sets

In this section, some basic concepts related to FFSs are briefly reviewed.

Definition 1 (Senapati and Yager, 2019c). Let X be a universe of discourse such that X =
(x1, x2, . . . , xn). An FFS F in X is an object having the form F = {〈xi, αF (xi), βF (xi)〉 |
xi ∈ X}, where αF (xi) : X → [0, 1] and βF (xi) : X → [0, 1], including the condition
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0 � α3
F
(xi) + β3

F
(xi) � 1, for all x ∈ X. The numbers αF (xi) and βF (xi) denote,

respectively, the degree of membership and the degree of non-membership of the element
xi ∈ X in the set F .

For any FFS F and x ∈ X, πF (xi) = 3
√

1 − α3
F (xi) − β3

F
(xi) is considered as the

degree of indeterminacy.
In addition, F = (αF (xi), βF (xi)) is called a Fermatean fuzzy number (FFN). For

convenience, an FFN is denoted as F = (αF , βF ).

Definition 2 (Senapati and Yager, 2019c). Let F = (αF , βF ), F1 = (αF1, βF1), F2 =
(αF2, βF2) be three FFNs and λ > 0, then their operations are defined as follows:

(1) F1 ∩ F2 = (
min{αF1 , αF2}, max{βF1, βF2}

)
;

(2) F1 ∪ F2 = (
max{αF1, αF2}, min{βF1, βF2}

)
;

(3) FC = (βF , αF );

(4) F1 ⊕ F2 =
(

3
√

α3
F1

+ α3
F2

− α3
F1

α3
F2

, β3
F1

β3
F2

)
;

(5) F1 ⊗ F2 =
(
α3

F1
α3

F2
, 3
√

β3
F1

+ β3
F2

− β3
F1

β3
F2

)
;

(6) λF =
(

3
√

1 − (
1 − α3

F

)λ
, βλ

F

)
;

(7) Fλ =
(
αλ

F ,
3
√

1 − (
1 − β3

F

)λ).

Definition 3 (Senapati and Yager, 2019c). Let F = (αF , βF ) be an FFN, then the score
function of F can be characterized as

S(F ) = α3
F − β3

F . (1)

Definition 4 (Senapati and Yager, 2019b). Let F = (αF , βF ) be an FFN, then the accu-
racy function of F can be narrated as

A(F) = α3
F + β3

F . (2)

Definition 5 (Senapati and Yager, 2019b). Let F1 = (αF1 , βF1) and F2 = (αF2 , βF2) be
two FFNs. The comparative methods of F1 and F2 can be defined as follows:

(1) If S(F1) > S(F2), then F1 is bigger than F2, denoted by F1 � F2;

(2) If S(F1) = S(F2), then
{

A(F1) > A(F2) ⇒ F1 � F2,

A(F1) = A(F2) ⇒ F1 = F2.

Definition 6 (Senapati and Yager, 2019b). Let Fi = (αF (xi), βF (xi)) (i = 1, 2, . . . , n)

be a number of FFNs and w = (w1, w2, . . . , wn)
T be a weight vector of Fi with∑n

i=1 wi = 1. Then, Fermatean fuzzy weighted average (FFWA) operator is defined as
follows:

FFWA(F1, F2, . . . , Fn) =
( n∑

i=1

wiαFi
,

n∑
i=1

wiβFi

)
. (3)
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2.2. Distance Measure

This section shortly reviews distance measure related to FFSs.

Definition 7 (Senapati and Yager, 2019c). Let F1 = (αF1 , βF1) and F2 = (αF2 , βF2) be
two FFSs. The Euclidean distance measure F1 and F2 is defined as follows:

dE(F1, F2) =
√

1

2

[(
α3

F1
− α3

F2

)2 + (
β3

F1
− β3

F2

)2 + (
π3

F1
− π3

F2

)2]
. (4)

3. Some New Fermatean Fuzzy Information Measures

In this section, we put forward some new information measures for FFSs, including dis-
tance measure, cross entropy measure, and grey relational degree. They will be used later.

3.1. A New Distance Measure for FFSs

In this section, we recall Jensen–Shannon divergence measure. Secondly, a distance mea-
sure between FFSs is defined based on Jensen–Shannon divergence. Then, some desirable
properties of the proposed new distance measure are inferred.

(1) Jensen–Shannon divergence measure

Definition 8 (Kullback and Leibler, 1951). Let X be a discrete random variable, and p1

and p2 be two probability distributions in X. The I directed divergence is defined as

I (p1, p2) =
∑
x∈X

p1(x) log
p1(x)

p2(x)
. (5)

It is worthy to note that I (p1, p2) is non-negative, additive, but not symmetric. Hence,
the symmetric measure is defined as

J (p1, p2) = I (p1, p2) + I (p2, p1) =
∑
x∈X

(
p1(x) − p2(x)

)
log

p1(x)

p2(x)
, (6)

which is known as J divergence (Jeffreys, 1946). Obviously, J (p1, p2) is undefined if
P2(x) = 0 and P1(x) = 0 for x ∈ X.

To solve this problem, Lin (1991) proposed a new directed divergence measure as

K(p1, p2) =
∑
x∈X

p1(x) log
2p1(x)

p1(x) + p2(x)
. (7)
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An obvious relation between K(p1, p2) and I (p1, p2) is that K(p1, p2) =
I (p1,

p1+p2
2 ). It can be observed that K(p1, p2) is not a symmetric measure. Accord-

ingly, a symmetric measure is defined as

L(p1, p2) = K(p1, p2) + K(p2, p1)

=
∑
x∈X

p1(x) log
2p1(x)

p1(x) + p2(x)
+
∑
x∈X

p2(x) log
2p2(x)

p1(x) + p2(x)
. (8)

Jensen–Shannon divergence measure can be derived from Eq. (8) as follows:

L(p1, p2) =
∑
x∈X

p1(x) log p1(x) −
∑
x∈X

p1(x) log
p1(x) + p2(x)

2

+
∑
x∈X

p2(x) log p2(x) −
∑
x∈X

p2(x) log
p1(x) + p2(x)

2

= 2�

(
p1 + p2

2

)
− �(p1) − �(p2), (9)

where �(p) = −p log p is the Shannon entropy function.
In this paper, we define Fermatean fuzzy distance based on Jensen–Shannon diver-

gence.

(2) A new distance measure for FFSs

Definition 9. Let X = (x1, x2, . . . , xn) be a universe of discourse, and G and H be two
FFSs in X, where G = {〈xi,Gα(xi),Gβ(xi)〉 | xi ∈ X} and H = {〈xi,Hα(xi),Hβ(xi)〉 |
xi ∈ X}. The Fermatean fuzzy divergence between G and H is defined as

�(G,H) = �

(
G + H

2

)
− 1

2
�(G) − 1

2
�(H)

= 1

2

{∑
η

G3
η(x) log

2G3
η(x)

G3
η(x) + H 3

η (x)
+
∑
η

H 3
η (x) log

2H 3
η (x)

G3
η(x) + H 3

η (x)

}
,

(10)

where �(G) = −G3
η(x) log G3

η(x), η ∈ (α, β, π), is the Shannon entropy, G3
π (x) =

1 − G3
α(x) − G3

β(x).

In the line with Definition 9, a new distance measure for FFSs is given below.

Definition 10. Let X be a universe of discourse, and G and H be two FFSs. A new
distance measure for FFSs, denoted as d̄(G,H), is defined as
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d̄(G,H) = √
�(G,H)

=
√√√√1

2

{∑
η

G3
η(x) log

2G3
η(x)

G3
η(x) + H 3

η (x)
+
∑
η

H 3
η (x) log

2H 3
η (x)

G3
η(x) + H 3

η (x)

}
,

(11)

where, η ∈ (α, β, π), the base of log is 10.

Some desirable properties of d̄(G,H) can be inferred as follows:

Theorem 1. Let G, H and M be three arbitrary FFSs in a universe of discourse X, then
some properties hold:

(P1) d̄(G,H) = 0 iff G = H , for G,H ∈ X;
(P2) d̄(G,H) = d̄(H,G), for G,H ∈ X;
(P3) d̄(G,H) + d̄(H,M) � d̄(G,M), for G,H,M ∈ X;
(P4) 0 � d̄(G,H) � 1, for G,H ∈ X.

Proof. (P1) Let G and H be two FFSs in a universe of discourse X. For the ne-
cessity, If G = H , which means G3

η(x) = H 3
η (x), then d̄(G,H) = 0 can

be obtained based on Definition 9. For the sufficiency, if d̄(G,H) = 0, then√
1
2

{∑
η G3

η(x) log
2G3

η(x)

G3
η(x)+H 3

η (x)
+∑

η H 3
η (x) log

2H 3
η (x)

G3
η(x)+H 3

η (x)

} = 0. It is evident that

G3
η(x) = H 3

η (x). Thus, G = H . As a result, d̄(G,H) = 0 iff G = H .

(P2) Since

√√√√1

2

{∑
η

G3
η(x) log

2G3
η(x)

G3
η(x) + H 3

η (x)
+
∑
η

H 3
η (x) log

2H 3
η (x)

G3
η(x) + H 3

η (x)

}

=
√√√√1

2

{∑
η

H 3
η (x) log

2H 3
η (x)

G3
η(x) + H 3

η (x)
+
∑
η

G3
η(x) log

2G3
η(x)

G3
η(x) + H 3

η (x)

}
,

one has d̄(G,H) = d̄(H,G).

(P3) Four hypotheses are formulated as follows:

Hypothesis 1: G3
α(x) � H 3

α (x) � M3
α(x),

Hypothesis 2: M3
α(x) � H 3

α (x) � G3
α(x),

Hypothesis 3: H 3
α (x) � min{G3

α(x),M3
α(x)},

Hypothesis 4: H 3
α (x) � max{G3

α(x),M3
α(x)}.

According to Hypothesis 1 and Hypothesis 2, it holds that |G3
α(x) − M3

α(x)| �
|G3

α(x) − H 3
α (x)| + |H 3

α (x) − M3
α(x)|. Due to Hypothesis 3, it has G3

α(x) − H 3
α (x) � 0
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and M3
α(x) − H 3

α (x) � 0. Then, we can obtain

∣∣G3
α(x) − H 3

α (x)
∣∣+ ∣∣H 3

α (x) − M3
α(x)

∣∣− ∣∣G3
α(x) − M3

α(x)
∣∣

=
{

G3
α(x) − H 3

α (x) + M3
α(x) − H 3

α (x) − G3
α(x) + M3

α(x), if G3
α(x) � M3

α(x)

G3
α(x) − H 3

α (x) + M3
α(x) − H 3

α (x) + G3
α(x) − M3

α(x), if G3
α(x) � M3

α(x)

= 2
(
min

{
G3

α(x),M3
α(x)

}− H 3
α (x)

)
� 0.

In the same way, according to Hypothesis 4, we can get H 3
α (x) − G3

α(x) � 0 and
H 3

α (x) − M3
α(x) � 0. Therefore, it holds that

∣∣G3
α(x) − H 3

α (x)
∣∣+ ∣∣H 3

α (x) − M3
α(x)

∣∣− ∣∣G3
α(x) − M3

α(x)
∣∣

=
{

H 3
α (x) − G3

α(x) + H 3
α (x) − M3

α(x) − G3
α(x) + M3

α(x), if G3
α(x) � M3

α(x)

H 3
α (x) − G3

α(x) + H 3
α (x) − M3

α(x) + G3
α(x) − M3

α(x), if G3
α(x) � M3

α(x)

= 2
(
H 3

α (x) − max
{
G3

α(x),M3
α(x)

})
� 0.

As a result, |G3
α(x) − M3

α(x)| � |G3
α(x) − H 3

α (x)| + |H 3
α (x) − M3

α(x)| holds in the
contexts of Hypothesis 3 and Hypothesis 4.

Analogously, it follows that |G3
β(x)−M3

β(x)| � |G3
β(x)−H 3

β (x)|+|H 3
α (x)−M3

β(x)|
and |G3

π (x) − M3
π (x)| � |G3

π (x) − H 3
π (x)| + |H 3

π (x) − M3
π (x)|.

Hence, this completes the proof of d̄(G,H) + d̄(H,M) � d̄(G,M).

(P4) Consider two FFSs G and H in a universe of discourse X, one has

d̄2(G,H)

= 1

2

{∑
η

G3
η(x) log

2G3
η(x)

G3
η(x) + H 3

η (x)
+
∑
η

H 3
η (x) log

2H 3
η (x)

G3
η(x) + H 3

η (x)

}

= 1

2

(∑
η

(
G3

η(x) + H 3
η (x)

)){∑
η

G3
η(x)

G3
η(x) + H 3

η (x)
log

2G3
η(x)

G3
η(x) + H 3

η (x)

+
∑
η

2H 3
η (x)

G3
η(x) + H 3

η (x)
log

2H 3
η (x)

G3
η(x) + H 3

η (x)

}

= 1

2

(∑
η

(
G3

η(x) + H 3
η (x)

)){
1 − H

(
G3

η(x)

G3
η(x) + H 3

η (x)
,

H 3
η (x)

G3
η(x) + H 3

η (x)

)}
.

It has been proven in Gallager (1968) that, for and 0 � θ � 1, H(θ, 1 − θ) �
2 min(θ, 1 − θ). For min(θ, 1 − θ) = 1

2 (1 − |(θ − (1 − θ)|), it can be obtained that
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Fig. 2. The FFSs distance measure in Example 1.

1 − H(θ, 1 − θ) � |θ − (1 − θ)|. Then, we can get

d̄(G,H) �

√√√√1

2

(∑
η

(
G3

η(x) + H 3
η (x)

))∣∣∣∣ G3
η(x)

G3
η(x) + H 3

η (x)
− 2H 3

η (x)

G3
η(x) + H 3

η (x)

∣∣∣∣
=
√

1

2
V (G,H),

where V (G,H) is the variational divergence measure (Vajda, 1970). Since the value of
V (G,H) ranges from [0, 2], which is testified in Toussaint (1975). Therefore, we have
0 � d̄(G,H) � 1.

This completes the proof of Theorem 1.

Example 1. Let G and H be two FFSs in the universe of discourse X. These FFSs over
X are defined as G = 〈x, η, γ 〉, H = 〈x, γ, η〉.

The parameters η and γ are the membership and non-membership degrees, respec-
tively, which range from 0 to 1, meeting the condition η3 + γ 3 � 1.

Using Eq. (11), the distance for FFSs can be measured, as shown in Fig. 2.
In consideration of the distance measure results of Example 1, we can verify the non-

negativity, symmetry and boundedness properties of distance measure for FFSs.
It can be seen from Fig. 2 that the distance measure for FFSs is always greater than

or equal to zero when the parameters η and γ take different values within [0, 1]. The
non-negativity of distance measure for FFSs is verified.

As shown in Fig. 2, it is obvious that the distance measure for FFSs satisfies symmetry
property. Let us cite a concrete instance that η = 0.9 and γ = 0.3. Based on Eq. (11), the
values of d̄(G,H) and d̄(H,G) are 0.4207, thus d̄(G,H) = d̄(H,G).

From Fig. 2, we clearly know the values of distance measure are [0, 1]. Specifically,
when the parameters η = 1 and γ = 0, or when η = 0 and γ = 1, d̄(G,H) =
d̄(H,G) = 1. The boundedness of distance measure for FFSs is proved.

(3) Comparisons of distance measures for FFNs
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Table 1
Two FFNs Ai and Bi under different cases in Example 2.

FFNs Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Ai 〈[0.595, 0.690]〉 〈[0.840, 0.660]〉 〈[0.629, 0.834]〉 〈0.810, 0.673〉 〈[0.849, 0.609]〉 〈[0.827, 0.665]〉
Bi 〈[0.650, 0.779]〉 〈[0.726, 0.749]〉 〈[0.731, 0.755]〉 〈0.888, 0.601〉 〈[0.912, 0.510]〉 〈[0.894, 0.600]〉
FFNs Case 7 Case 8 Case 9 Case 10 Case 11 Case 12

Ai 〈[0.888, 0.601]〉 〈[0.679, 0.788]〉 〈[0.804, 0.606]〉 〈[0.637, 0.833]〉 〈[0.818, 0.622]〉 〈[0.755, 0.679]〉
Bi 〈[0.788, 0.678]〉 〈[0.606, 0.888]〉 〈[0.871, 0.607]〉 〈[0.731, 0.755]〉 〈[0.894, 0.600]〉 〈[0.650, 0.779]〉
FFNs Case 13 Case 14 Case 15 Case 16 Case 17 Case 18

Ai 〈[0.629, 0.834]〉 〈[0.637, 0.833]〉 〈[0.881, 0.606]〉 〈[0.815, 0.628]〉 〈[0.827, 0.665]〉 〈[0.818, 0.622]〉
Bi 〈[0.606, 0.888]〉 〈[0.606, 0.888]〉 〈[0.788, 0.678]〉 〈[0.726, 0.749]〉 〈0.728, 0.732〉 〈0.728, 0.732〉

Table 2
Comparisons of Euclidean distance measure and the proposed distance measure.

Methods Case1 Case 2 Case 3 Case 4 Case 5 Case 6

dE(A, B) 0.184 0.184 0.146 0.146 0.129 0.129
d̄(A, B) 0.1022 0.0987 0.0767 0.0841 0.0743 0.0764

Methods Case 7 Case 8 Case 9 Case 10 Case 11 Case 12

dE(A, B) 0.183 0.183 0.141 0.141 0.158 0.158
d̄(A, B) 0.1063 0.1081 0.0887 0.0733 0.1038 0.0855

Methods Case 13 Case 14 Case 15 Case 16 Case 17 Case 18

dE(A, B) 0.109 0.109 0.167 0.166 0.156 0.157
d̄(A, B) 0.0730 0.0707 0.0967 0.0890 0.0868 0.0808

In this section, in order to testify the superiority and reasonability of the proposed
distance measure, we compare the proposed distance measure with the existing Euclidean
distance measure (Senapati and Yager, 2019c) in Example 2.

Example 2. Let Ai = {A1, A2, . . . , A18} and Bi = {B1, B2, . . . , B18} be two sets of
FFNs under Case i (i = 1, 2, . . . , 18), which are shown in Table 1.

The distance measure results obtained by two methods are shown in Table 2. Carefully
observing Table 2, the main conclusions are described as follows.

(1) Compared with the Euclidean distance measure (Senapati and Yager, 2019c), the
proposed distance measure has satisfactory performances under Case 1–Case 14. The val-
ues of the Euclidean distance measure are equal under Case 1–Case 14. These results
seem counter-intuitive, which are highlighted in bold in Table 2. The proposed distance
can measure the difference under Case 1–Case 14, which demonstrates the feasibility of
the proposed distance.

(2) The discrimination degrees of the proposed distance measure are significantly
higher than those of the Euclidean distance measure under Case 15 and Case 16 or Case 17
and Case 18. It can be seen from Table 2 that the discrimination degrees of Euclidean dis-
tance measure under Case 15 and Case 16 or Case 17 and Case 18 are only 0.01, while the
discrimination degrees of the proposed distance measure under the corresponding cases
are over 0.06.
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3.2. Cross Entropy Measure for FFSs

As one of the most popular information measure, cross entropy is used to measure the di-
vergence information and extensively applied in current literature. However, cross entropy
measure for FFSs is rare. Inspired by Song et al. (2019), this paper gives a definition of
Fermatean fuzzy cross entropy.

Definition 11. Let X be a universe of discourse such that X = (x1, x2, . . . , xn), and
G and H be two FFSs in X, in which G = {〈xi,Gα(xi),Gβ(xi),Gπ(xi)〉 | xi ∈ X}
and H = {〈xi,Hα(xi),Hβ(xi),Hπ(xi)〉 | xi ∈ X}. The Fermatean fuzzy cross entropy
measure of G against H , denoted as CE(G,H), is defined as:

CE(G,H) =
n∑

i=1

(
1+G3

π (xi)
)

ln
1 + G3

π (xi)

1 + H 3
π (xi)

+(1+�G(xi)
)

ln
1 + �G(xi)

1 + �H(xi)
, (12)

where �G(xi) = |G3
α(xi) − G3

β(xi)| indicates the difference between membership cube
and non-membership cube.

Since CE(G,H) is not symmetric, a symmetric cross entropy measure can be given
as:

SCE(G,H) = CE(G,H) + CE(H,G)

=
n∑

i=1

(G3
π (xi) − H 3

π (xi)) ln
1 + G3

π (xi)

1 + H 3
π (xi)

+ (�G(xi) − �H(xi)) ln
1 + �G(xi)

1 + �H(xi)
. (13)

Definition 12. Let X be a universe of discourse such that X = (x1, x2, . . . , xn), and G

and H be two FFSs in X, in which G = {〈xi,Gα(xi),Gβ(xi),Gπ(xi)〉 | xi ∈ X} and
H = {〈xi,Hα(xi),Hβ(xi),Hπ(xi)〉 | xi ∈ X}. The normalized Fermatean fuzzy cross
entropy measure between G and H , denoted as NCE(G,H), is defined as:

NCE(G,H) = 1

2n ln 2

n∑
i=1

(
G3

π (xi) − H 3
π (xi)

)
ln

1 + G3
π (xi)

1 + H 3
π (xi)

+ (
�G(xi) − �H(xi)

)
ln

1 + �G(xi)

1 + �H(xi)
. (14)

Theorem 2. Let G, H and M be three arbitrary FFSs in a universe of discourse X, then
NCE(G,H) satisfies the following properties:

(P1) NCE(G,H) = NCE
(
GC,H

) = NCE
(
G,HC

) = NCE
(
GC,HC

)
;

(P2) 0 � NCE(G,H) � 1;
(P3) NCE(G,H) = 0 iff G = H or G = HC , for G,H ∈ X.
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Proof. (P1) For two FFSs in X defined as G = {〈x,Gα(x),Gβ(x)〉 | x ∈ X} and H =
{〈x,Hα(x),Hβ(x)〉 | x ∈ X}, we have GC = {〈x,Gβ(x),Gα(x)〉 | x ∈ X}, HC =
{〈x,Hβ(x),Hα(x)〉 | x ∈ X}.

Then, we can get that G3
π (x) = G3

πC (x) = 1 − G3
α(x) − G3

β(x), H 3
π (x) = H 3

πC (x) =
1 − H 3

α (x) − H 3
β (x), �G(x) = �GC(x), �H(x) = �HC(x), ∀x ∈ X.

Therefore, NCE(G,H) = NCE(GC,H) = NCE(G,HC) = NCE(GC,HC).

(P2) If G3
π (x) � H 3

π (x), then it has G3
π (x) − H 3

π (x) � 0, 1+G3
π (x)

1+H 3
π (x)

� 1,

(G3
π (x)−H 3

π (x)) ln 1+G3
π (x)

1+H 3
π (x)

� 0. If G3
π (x) > H 3

π (x), one gets that G3
π (x)−H 3

π (x) > 0,
1+G3

π (x)

1+H 3
π (x)

> 1, (G3
π (x)−H 3

π (x)) ln 1+G3
π (x)

1+H 3
π (x)

> 0. Hence, (G3
π (x)−H 3

π (x)) ln 1+G3
π (x)

1+H 3
π (x)

� 0

always holds for x ∈ X. Analogously, we can get (�G(xi) − �H(xi)) ln 1+�G(xi )
1+�H(xi)

� 0,
∀x ∈ X.

Since 0 � G3
π (x) � 1, 0 � H 3

π (x) � 1, 0 � �G(x) � 1, 0 � �H(x) � 1,
NCE(G,H) gets its maximum when G3

π (x) = 1, H 3
π (x) = 0, �G(x) = 0, �H(x) = 1

or G3
π (x) = 0, H 3

π (x) = 1, �G(x) = 1, �H(x) = 0, ∀x ∈ X. Hence, it holds that
0 � NCE(G,H) � 1.

(P3) In this case of G = H or G = HC , obviously, NCE(G,H) = 0. For the
sufficiency, if NCE(G,H) = 0, we have G = H or G = HC , due to (G3

π (x) −
H 3

π (x)) ln 1+G3
π (x)

1+H 3
π (x)

� 0 and (�G(xi) − �H(xi)) ln 1+�G(xi )
1+�H(xi )

� 0. So, NCE(G,H) = 0

iff G = H or G = HC , for G,H ∈ X.
Therefore, Theorem 2 is proved.

3.3. Grey Relation Analysis Between FFSs

In this section, grey relational theory is extended to FFSs environment, and the FFSs grey
relational coefficient and grey relational degree are defined for the first time.

(1) Grey relation analysis
The grey system theory first created by Deng (1982) is a useful method to study the

problems with insufficient, poor and uncertain information. As an indispensable part of
grey system theory, the basic idea of grey relational analysis (GRA) is to judge whether
the geometric shapes of sequence curves are closely related according to their similarity
degrees. The closer the curve is, the greater the correlation between the corresponding
sequences is, and vice versa. GRA has been widely applied in addressing different kinds
of MCMD problems (Li et al., 2020; Wu, 2009; Hamzaçebi and Pekkaya, 2011), due
to being computationally simple, robust and practical. In the following, GRA is intro-
duced.

Definition 13 (Deng, 1989). Let X0 = (x0(1), x0(2), . . . , x0(j)) and Xi = (xi(1), xi(2),

. . . , xi(j)) (i = 1, 2, . . . , m; j = 1, 2, . . . , k) be sets of the sequences. The grey relational



194 L.-P. Zhou et al.

coefficient is defined by

γ
(
x0(j), xi(j)

) = mini minj |x0(j) − xi(j)| + ρ maxi maxj |x0(j) − xi(j)|
|x0(j) − xi(j)| + ρ maxi maxj |x0(j) − xi(j)| ,

(15)

where ρ ∈ (0, 1) is the distinguished coefficient.
The grey relational degree is defined as:

γ (X0, Xi) = 1

k

k∑
j=1

γ
(
x0(j), xi(j)

)
. (16)

(2) Grey relational analysis between FFSs

Definition 14. Let X be a universe of discourse such that X = (x1, x2, . . . , xn), and G

and H be two FFSs in X, in which G = {〈xi,Gα(xi),Gβ(xi)〉 | xi ∈ X} and Hj =
{〈xi,Hαj

(xi),Hβj
(xi)〉 | xi ∈ X}, i = 1, 2, . . . , n, j = 1, 2, . . . , m. The grey relational

coefficient between G and H is defined as:

γ
(
G(xi),Hj (xi)

) = mini minj d̄(G,Hj ) + ρ maxi maxj d̄(G,Hj )

d̄(G,Hj ) + ρ maxi maxj d̄(G,Hj )
, (17)

where d̄(G,Hj ) is the distance between FFSs G and Hj , which is calculated by Eq. (11).
In view of grey relational coefficient between FFSs, the grey relational degree between

FFSs G and Hj is defined as:

γ (G,Hj ) = 1

n

n∑
i=1

γ
(
G(xi),Hj (xi)

)
. (18)

4. Outranking Relationships for FFSs

In this section, outranking relationships for FFSs are introduced on account of classic
outranking model. In addition, the related properties of outranking relationships are dis-
cussed.

Although the current two kinds of outranking relationships are widely applied in
ELECTRE method, they are inadequate to differentiate between each Fermatean fuzzy
pair. In line with the concept of score function, accuracy function and degree of indeter-
minacy, it is obtained that a better alternative has larger score degree or larger accuracy
with the condition that score degrees of alternatives are the same. A larger score degree
alludes to a larger degree of membership or smaller degree of non-membership; a larger
accuracy degree alludes to a smaller degree of indeterminacy. In order to investigate a
proper outranking method under an FFSs environment, we propose three kinds of domi-
nance relationships for FFSs to show their interrelationships more comprehensively and
explain their dominance degrees more specifically.
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Definition 15. Let F1 = (αF1, βF1 , πF1) and F2 = (αF2 , βF2 , πF2) be two FFNs, their
outranking relationships can be represented as follows:

(1) Strong dominance: If αF1 � αF2, βF1 < βF2 and πF1 < πF2 , then F1 strongly
dominates F2 or F2 is strongly dominated by F1. This can be denoted as F1 >s F2 or
F2 <s F1.

(2) Medium dominance: If αF1 � αF2, βF1 < βF2 and πF1 � πF2 , then F1 moderately
dominates F2 or F2 is moderately dominated by F1. This can be denoted as F1 >m F2 or
F2 <m F1.

(3) Weak dominance: If αF1 � αF2 and βF1 � βF2 , then F1 weak dominates F2 or F2

is weakly dominated by F1. This can be denoted as F1 >w F2 or F2 <w F1.
(4) Indifference: If αF1 = αF2 and βF1 = βF2 , then F1 is indifferent to F2. This can

be denoted as F1 ∼ F2.

Theorem 3. Let F = (αF , βF , πF ), F1 = (αF1 , βF1 , πF1), F2 = (αF2 , βF2 , πF2) and
F3 = (αF3, βF3 , πF3) be four FFNs. We can obtain the following conclusions:

(1) There are the following properties for the strong dominance:
(i) Irreflexivity: F ≯s F , where ≯s shows non-strong dominance.

(ii) Asymmetry: F1 >s F2 � F2 >s F1.
(iii) Transitivity: F1 >s F2 and F2 >s F3 ⇒ F1 >s F3.

(2) There are the following properties for the medium dominance:
(i) Irreflexivity: F ≯m F , where ≯m shows non-medium dominance.

(ii) Asymmetry: F1 >m F2 � F2 >m F1.
(iii) Transitivity: F1 >m F2 and F2 >m F3 ⇒ F1 >m F3.

(3) There are the following properties for the weak dominance:
(i) Irreflexivity: F ≯w F , where ≯w shows non-weak dominance.

(ii) Asymmetry: F1 >w F2 � F2 >w F1.
(iii) Transitivity: F1 >w F2 and F2 >w F3 ⇒ F1 >w F3.

(4) There are the following properties for the indifference relationship:
(i) Reflexivity: F ∼ F .

(ii) Symmetry: F1 ∼ F2 ⇒ F2 ∼ F1.
(iii) Transitivity: F1 ∼ F2 and F2 ∼ F3 ⇒ F1 ∼ F3.

Proof. The transitivity property for strong dominance relationship can be testified as fol-
lows:

Let F1 = (αF1 , βF1 , πF1), F2 = (αF2 , βF2 , πF2) and F3 = (αF3 , βF3 , πF3) be three
FFNs. When F1 >s F2, we obtain αF1 � αF2, βF1 < βF2 and πF1 < πF2 according to
Definition 15(1). If F2 >s F3, we obtain αF2 � αF3, βF2 < βF3 and πF2 < πF3 according
to Definition 15(1). Thus, one gets αF1 � αF3 , βF1 < βF3 and πF1 < πF3 . It holds
that F1 >s F3. Therefore, if F1 >s F2 and F2 >s F3, then F1 >s F3. The transitivity
properties for medium dominance relationship and weak dominance relationship can be
demonstrated in the same manner.

The proof of other properties for strong dominance, medium dominance, and weak
dominance are straightforward.
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5. A Fermatean Fuzzy ELECTRE Method for MCGDM

This section develops a Fermatean fuzzy ELECTRE method for MCGDM.

5.1. Problem Description of MCGDM Using FFNs

Assuming there are m non-inferior alternatives Ai (i = 1, 2, . . . , m), each alternative is
evaluated on n criteria Cj (j = 1, 2, . . . , n) by t experts El (l = 1, 2, . . . , t). To be
specific, the set Cj is classified into two different types of sets, namely, CI and CII. Here,
CI and CII show a collection of benefit criteria and a collection of cost criteria, respec-
tively. Let λ = (λ1, λ2, . . . , λt )

T be the weight vector of DMs, in which λl ∈ [0, 1] and∑t
l=1 λt = 1; w = (w1, w2, . . . , wn)

T be the weight vector of criteria where wj ∈ [0, 1]
and

∑n
j=1 wj = 1. λ = (λ1, λ2, . . . , λt )

T , w = (w1, w2, . . . , wn)
T are completely un-

known and incomplete, respectively. The evaluation information for Ai (i = 1, 2, . . . , m)

with respect of Cj (j = 1, 2, . . . , n) is given by t experts in terms of linguistic assess-
ment. These linguistic assessments can be transformed into FFNs. Let Rl = (al

ij )m×n be
the Fermatean fuzzy decision matrix, where al

ij is the performance of alternative Ai with
respect to criterion Cj provided by DM El , and al

ij = (αl
ij , β

l
ij , π

l
ij ) is an FFN, where

αl
ij , βl

ij , πl
ij are membership degree, non-membership degree and indeterminacy degree,

respectively. The MCGDM considered in this paper is how to select the best alternative
according to Fermatean fuzzy decision matrices Rl = (al

ij )m×n (l = 1, 2, . . . , t).

5.2. Determine Dynamic Weights of DMs with Respect to Each Criterion over Different
Alternatives

Aggregating all individual decisions into a collective decision is regarded as a key part of
MCGDM process. Therefore, how to determine the weights of DMs is one of the main ac-
tivities for MCGDM problems, because different weights of DMs may generate different
collective decision matrices and then can have significant impact on the final result. Hence,
methods for determining the weights of DMs have received much attention by researchers,
however, most of existing methods usually assume that DMs’ weights for all alternatives
and criteria are changeless (Yue, 2012; Lin and Chen, 2020; Wan et al., 2013; Ju, 2014;
Wan et al., 2015). In the actual decision-making process, it is unlikely that each DM is
expected to be good at commenting on all alternatives and criteria due to differences in
educational background, knowledge, experience, preference, and title, the weights of each
DM may change with different criteria and different alternatives. Hence, distributing dif-
ferent weights to each DM with respect to different alternatives under different criteria
is more reasonable and in line with the actual decision-making situation. Therefore, the
study of dynamic DM weights is of some practical significance. According to Geng et al.
(2017), dynamic weights refer to assigning different weights to each DM with respect to
different criteria over different alternatives. DM’s weights will vary with different criteria
and different alternatives. However, to the best of our knowledge, there are only several
scholars (Geng et al., 2017; Wu et al., 2019) involving this issue up to now. In particular,
determining the objectively dynamic weights of DMs in the context of Fermatean fuzzy
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information remains an unexplored area. To fill the research gap, this paper proposes a new
method for determining dynamic weights of DMs. Inspired by Geng et al. (2017), based
on the proposed the cross entropy, dynamic weights of DMs are determined as follows:

(1) Determine the positive ideal decision matrix (PIDM) and the negative ideal deci-
sion matrix (NIDM)

Let R+ = (a+
ij )m×n and R− = (a−

ij )m×n be PIDM and NIDM for all individual deci-
sion matrices given by DMs, in which {a+

ij = (α+
ij , β

+
ij ), 1 � i � m, 1 � j � n} and

{a−
ij = (α−

ij , β
−
ij ), 1 � i � m, 1 � j � n} are positive ideal decision-making infor-

mation (PIDMI) and negative ideal decision-making information (NIDMI) with respect
to i-th alternative over j -th criterion. We construct the following optimization model to
determine (α+

ij , β+
ij ) and (α−

ij , β−
ij ), respectively.

min χij =
t∑

l=1

(∣∣α+
ij − αl

ij

∣∣+ ∣∣β+
ij − βl

ij

∣∣),

s.t.

⎧⎪⎨
⎪⎩

0 � α+
ij � 1,

0 � β+
ij � 1,

0 � (α+
ij )

3 + (β+
ij )3 � 1.

(19)

max ηij =
t∑

l=1

(∣∣α−
ij − αl

ij

∣∣+ ∣∣β−
ij − βl

ij

∣∣),

s.t.

⎧⎪⎨
⎪⎩

0 � α−
ij � 1,

0 � β−
ij � 1,

0 � (α−
ij )

3 + (β−
ij )3 � 1.

(20)

(2) Determine the credibility degree
The credibility degree is determined in line with cross entropy. If αl

ij has a larger
difference from α+

ij or a−
ij , it has more credibility. So, the credibility of αl

ij , denoted by
τ l
ij , is defined as

τ l
ij = ∣∣SCE

(
αl

ij , α
−
ij

)− SCE
(
αl

ij , α
+
ij

)∣∣. (21)

(3) Determine the dynamic weights of DMs
It is obvious that the DM El who gives decision-making information with respect to

different criteria with larger credibility should be allocated a bigger weight. Accordingly,
objective and dynamic weights of DMs, denoted by λl

ij , are determined as follows:

λl
ij = τ l

ij∑t
l=1 τ l

ij

. (22)

Using Eq. (3), Rl (l = 1, 2, . . . , t) can be integrated into a collective matrix R =
(aij )m×n, in which aij can be derived by
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aij =
( t∑

l=1

λl
ij α

l
ij ,

t∑
l=1

λl
ij β

l
ij

)
. (23)

5.3. Obtain Criteria Weights Based on the Proposed GRA

Criteria weights play a pivotal role in MCDM problems, because they have an important
and direct influence on ranking results. Due to the increasing complexity, time pressure
or lack of data in practical situations, the weights of criteria are usually unknown. There-
fore, it is an interesting research topic to deduce plausible weights for criteria by selecting
suitable methods in the real-life MCDM process, since plausible weights can ensure scien-
tific and plausible decision-making results. In the current literature, methods for deriving
criteria weights can be divided into two categories: the subjective weight-determining
methods, the objective weight-determining methods.

The subjective weight-determining methods, such as the Delphi method (Dalkey and
Helmer, 1963), the AHP method (Saaty, 1987; Kaya and Kahraman, 2011) and SRF
method (Figueira and Roy, 2002), determine the weights of criteria based on experiences
and subjective judgments. The subjective weight-determining methods are impacted by
subjective randomness of the DM’s preference. In addition, when there are a great num-
ber of assessment criteria, the subjective weight-determining methods are not suitable for
identification of weights of these criteria (Çalı and Balaman, 2019). Different from the
subjective methods, the objective methods are capable of eliminating man-made instabil-
ities and obtaining more realistic weights according to mathematical model. A majority
of them have focused on calculation of entropy value so as to derive the criteria weights.
Entropy weight method, which is a straightforward method for weight determination, has
been extensively applied to diverse decision-making fields (Zhang and Yao, 2017; Xu and
Shen, 2014; Ye, 2010; Liu and Zhang, 2011), however, it can deduce irrational weight
values in some cases (Das et al., 2015).

Since its inception in Deng (Wang, 1997), GRA method has been widely employed
for obtaining objective weights of criteria (Wei, 2011a, 2010; Luo et al., 2019; Meng et
al., 2015), because its greatest strength is that it is computationally simple, robust and
practical (Wei, 2011b). This is a discerning evidence that the GRA method is deemed to
be a more feasible method to obtain criteria weights in this study.

In the following, we utilize GRA method to determine the criteria weights with in-
complete information.

Firstly, the Fermatean Fuzzy Positive Ideal Point (FF-PIP) aj+ and the Fermatean
Fuzzy Negative Ideal Point (FF-NIP) aj− can be defined as:

aj+ = (αj+, βj+, πj+)

=

⎧⎪⎨
⎪⎩
(

max
1�i�m

αij , min
1�i�m

βij , min
1�i�m

πij

)
, for benefit criterion,(

min
1�i�m

αij , max
1�i�m

βij , max
1�i�m

πij

)
, for cost criterion,

(24)



A Fermatean Fuzzy ELECTRE Method for Multi-Criteria Group Decision-Making 199

aj− = (αj−, βj−, πj−)

=
⎧⎨
⎩
(

min
1�i�m

αij , max
1�i�m

βij , max
1�i�m

πij

)
, for benefit criterion,(

max
1�i�m

αij , min
1�i�m

βij , min
1�i�m

πij

)
, for cost criterion.

(25)

Then, based on the proposed distance measure for FFSs in Section 3.2, the distances
of the rating values aij to the FF-PIP aj+ and FF-NIP aj− can be computed respectively
by:

d̄+
ij = d̄(aij , aj+)

=
√√√√1

2

{∑
η

(
a

η
ij

)3 log
2(a

η
ij )

3

(a
η
ij )

3 + (a
η
j+)3

+
∑
η

(
a

η
j+
)3 log

2(a
η
j+)3

(a
η
ij )

3 + (a
η
j+)3

}
,

(26)
d̄−
ij = d̄(aij , aj−)

=
√√√√1

2

{∑
η

(
a

η
ij

)3 log
2(a

η
ij )

3

(a
η
ij )

3 + (a
η
j−)3

+
∑
η

(
a

η
j+
)3 log

2(a
η
j−)3

(a
η
ij )

3 + (a
η
j−)3

}
,

(27)

where η ∈ (α, β, π) in Eqs. (26) and (27).
Next, the grey relational coefficients of the rating values aij from PIP and NIP are

computed using the following equations, respectively:

ξ+
ij = mini minj d̄(αij , αj+) + δ maxi maxj d̄(αij , αj+)

d̄(αij , αj+) + δ maxi maxj d̄(αij , αj+)
, (28)

ξ−
ij = mini minj d̄(αij , αj−) + δ maxi maxj d̄(αij , αj−)

d̄(αij , αj−) + δ maxi maxj d̄(αij , αj−)
, (29)

where d̄(αij , αj+) and d̄(αij , αj−) are the distance of the rating values aij to the FF-
PIP aj+ and FF-NIP aj−, respectively, i = 1, 2 . . . , m, j = 1, 2, . . . , n; δ is con-
sidered as an identification coefficient to mitigate the effect of the maxj d̄(αij , αj+) or
maxj d̄(αij , αj−) on the relational coefficient, with a value ranging from 0 to 1. In this
paper, δ is equal to 0.5.

Subsequently, the degrees of grey relational coefficient of the alternative Ai from PIP
and NIP are computed using the following equations, respectively:

ϑ+
i =

n∑
j=1

wjξ
+
ij , i = 1, 2, . . . , m, (30)

ϑ−
i =

n∑
j=1

wjξ
−
ij , i = 1, 2, . . . , m, (31)

where wj (j = 1, 2, . . . , n) are the criteria weights.
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According to the GRA method, the optimal alternative should have the “largest degree
of grey relation” from the positive-ideal solution and the “smallest degree of grey relation”
from the negative-ideal solution. Based on this idea, a multiple objective optimization
model (M-1) is established to get criteria weights with incomplete weight information
with respect to alternative Ai .

max ϑ+
i =

n∑
j=1

wi
j ξ

+
ij ,

min ϑ−
i =

n∑
j=1

wi
j ξ

−
ij ,

s.t.

⎧⎪⎨
⎪⎩

wi = (wi
1, w

i
2, . . . , w

i
n)

T ∈ �,∑n

j=1
wi

j = 1,

wi
j � 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n,

(M-1)

where � is set of incomplete information about weight criteria given by DMs. Incomplete
information structures of criteria weights are constructed in the following five forms (Wan
et al., 2015; Xu, 2007; Xu and Da, 2008), for h = j :

Form 1. A weak ranking: wh � wj ;
Form 2. A strict ranking: wh − wj � εj , εj > 0;
Form 3. A ranking with multiples: wh � εjwj , 0 � εj � 1;
Form 4. An interval form: κh � wh � κh + ιh, 0 � κhw � κh + ιh;
Form 5. A ranking of differences: wh − wj � wk − wl � εj , j = k = l.

Since each alternative is non-inferior, there exists no preference relation on all alter-
natives. We may aggregate the above multiple objective optimization model with equal
weights into the following single-objective optimization model (M-2):

max �i =
n∑

j=1

wi
j ξ

+
ij −

n∑
j=1

wi
j ξ

−
ij ,

s.t.

⎧⎪⎨
⎪⎩

wi = (wi
1, w

i
2, . . . , w

i
n)

T ∈ �,∑n

j=1
wi

j = 1,

wi
j � 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

(M-2)

By solving the model (M-2), we obtain the optimal weight vector of criteria wi =
(wi

1, w
i
2, . . . , w

i
n) with respect to alternative Ai .

Then, we will substitute wk = (wk
1, wk

2, . . . , w
k
n) (k = 1, 2, . . . , m) into the objective

function �i in model (M-2). The value of objective function �i can be calculated as

�k
i =

n∑
j=1

wk
j ξ

+
ij −

n∑
j=1

wk
j ξ

−
ij . (32)
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Then, let �+
i = max{�k

i | k = 1, 2, . . . , m} and �−
i = min{�k

i | k = 1, 2, . . . , m} be
maximum and minimum values of �i , respectively. It is easy to know from model (M-2)
that �+

i = �i
i .

The weight vector wt (t = 1, 2, . . . , m) corresponding to the value �−
i is de-

fined as the worst weight vector for Ai and denoted by wi−. The weight vector ws

(s = 1, 2, . . . , m) corresponding to the value �+
i is defined as the optimal weight vector

for Ai and denoted by wi+.
In the following, an optimization model motivated by the ideal of TOPSIS method is

constructed to determine the weight of each criterion in incomplete weight information
context. The main steps are described as follows:

(1) Determine the Positive Ideal Weight Vector (PIWV) and Negative Ideal Weight
Vector (NIWV) of the criterion weight for each alternative.

According to the above analysis, PIWV and NIWV are defined as

wi+ = (
wi

1, w
i
2, . . . , w

i
n

)T
, (33)

wi− = (
wt

1, w
t
2, . . . , w

t
j

)T
. (34)

(2) Calculate the distance of each criterion weight from the PIWV and NIWV respec-
tively.

d+
i =

n∑
j=1

∣∣wj − wi
j

∣∣, (35)

d−
i =

n∑
j=1

∣∣wj − wt
j

∣∣, (36)

where wj is the j -th criterion weight. wi
j and wt

j are ij -th element of j -th criteria for i-th
alternative in PIWV and NIWV, respectively.

According to the ideal of TOPSIS method, a multiple objective optimization model
(M-3) is constructed to derive criteria weights with incomplete weight information,

max
m∑
i

d−
i =

m∑
i=1

n∑
j=1

∣∣wj − wt
j

∣∣,
min

m∑
i

d+
i =

m∑
i=1

n∑
j=1

∣∣wj − wi
j

∣∣,

s.t.

⎧⎪⎨
⎪⎩

w = (w1, w2, . . . , wn)
T ∈ �,∑n

j=1
wj = 1,

wj � 0, j = 1, 2, . . . , n.

(M-3)

The above multiple objective optimization model is equal to the following single ob-
jective optimization model (M-4) by using equal weight linear weighting method:
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min
m∑
i

(d+
i − d−

i ) =
m∑

i=1

n∑
j=1

∣∣wj − wi
j

∣∣− m∑
i=1

n∑
j=1

∣∣wj − wt
j

∣∣,

s.t.

⎧⎪⎨
⎪⎩

w = (w1, w2, . . . , wn)
T ∈ �,∑n

j=1
wj = 1,

wj � 0, j = 1, 2, . . . , n.

(M-4)

The optimal solution w = (w1, w2, . . . , wn) can be obtained by the model (M-4).

5.4. Construct the Concordance and Discordance Sets

For each Fermatern fuzzy pair of Af and Ag , the set of criteria is classified into two
distinct subsets: concordance set and discordance set. The concordance set consists of all
criteria for which Af is preferred to alternative Ag . The discordance set, the complement
set of concordance set, contains all criteria for which Af is worse than Ag . On account of
Definition 15, the concordance set for any two alternatives Af and Ag can be partitioned
into three categories.

(1) Strong concordance set is portrayed as:

JCfg
= {

j | Afj >s Agj

} = {
j | αfj � αgj , βfj < βgj , πfj < πgj

}
. (37)

(2) Medium concordance set is portrayed as:

JC′
fg

= {
j | Afj >m Agj

} = {
j | αfj � αgj , βfj < βgj , πfj � πgj

}
. (38)

(3) Weak concordance set is portrayed as:

JC′′
fg

= {
j | Afj >w Agj

} = {
j | αfj � αgj , βfj � βgj

}
. (39)

The discordance set JDfg
of Af and Ag consists of all criteria for which Af is not

superior to Ag . The discordance set JDfg
can also divided into three categories in the

same way.

(1) Strong discordance set is portrayed as:

JDfg
= {

j | Afj <s Agj

} = {
j | αfj < αgj , βfj � βgj , πfj � πgj

}
. (40)

(2) Medium discordance set is portrayed as:

JD′
fg

= {
j | Afj <m Agj

} = {
j | αfj < αgj , βfj � βgj , πfj < πgj

}
. (41)

(3) Weak discordance set is portrayed as:

JD′′
fg

= {
j | Afj <w Agj

} = {
j | αfj < αgj , βfj < βgj

}
. (42)
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5.5. Identify the Weights of Concordance and Discordane Sets

This paper applies objective weighting method based on the proposed distance measure to
identify the weights of concordance and discordance sets. The weights of strong, medium,
and weak concordance sets are computed by Eqs. (43), (44) and (45), respectively.

The weight of strong concordance set wC is computed with Eq. (43) as follows:

wC =
m∑

f,g=1
f =g

∑
j∈Cfg

wj × d̄(Afj , Agj ) ×
{ m∑

f,g=1
f =g

∑
j∈Cfg

wj × d̄(Afj , Agj )

+
m∑

f,g=1
f =g

∑
j∈C′

fg

wj × d̄(Afj , Agj ) +
m∑

f,g=1
f =g

∑
j∈C′′

fg

wj × d̄(Afj , Agj )

}−1

. (43)

The weight of medium concordance set wC′ is computed with Eq. (44) as follows:

wC′ =
m∑

f,g=1
f =g

∑
j∈C′

fg

wj × d̄(Afj , Agj ) ×
{ m∑

f,g=1
f =g

∑
j∈Cfg

wj × d̄(Afj , Agj )

+
m∑

f,g=1
f =g

∑
j∈C′

fg

wj × d̄(Afj , Agj ) +
m∑

f,g=1
f =g

∑
j∈C′′

fg

wj × d̄(Afj , Agj )

}−1

.

(44)

The weight of weak concordance set wC′′ is computed with Eq. (45) as follows:

wC′′ =
m∑

f,g=1
f =g

∑
j∈C′′

fg

wj × d̄(Afj , Agj ) ×
{ m∑

f,g=1
f =g

∑
j∈Cfg

wj × d̄(Afj , Agj )

+
m∑

f,g=1
f =g

∑
j∈C′

fg

wj × d̄(Afj , Agj ) +
m∑

f,g=1
f =g

∑
j∈C′′

fg

wj × d̄(Afj , Agj )

}−1

.

(45)

The weights of strong, medium, and weak discordance sets are computed by Eqs. (46),
(47) and (48), respectively.

The weight of strong discordance set wD is computed with Eq. (46) as follows:

wD =
m∑

f,g=1
f =g

∑
j∈Dfg

wj × d̄(Afj , Agj ) ×
{ m∑

f,g=1
f =g

∑
j∈Dfg

wj × d̄(Afj , Agj )

+
m∑

f,g=1
f =g

∑
j∈D′

fg

wj × d̄(Afj , Agj ) +
m∑

f,g=1
f =g

∑
j∈D′′

fg

wj × d̄(Afj , Agj )

}−1

.

(46)
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The weight of strong discordance set wD′ is computed with Eq. (47) as follows:

wD′ =
m∑

f,g=1
f =g

∑
j∈D′

fg

wj × d̄(Afj , Agj ) ×
{ m∑

f,g=1
f =g

∑
j∈Dfg

wj × d̄(Afj , Agj )

+
m∑

f,g=1
f =g

∑
j∈D′

fg

wj × d̄(Afj , Agj ) +
m∑

f,g=1
f =g

∑
j∈D′′

fg

wj × d̄(Afj , Agj )

}−1

.

(47)

The weight of strong discordance set wD′′ is computed with Eq. (48) as follows:

wD′′ =
m∑

f,g=1
f =g

∑
j∈D′′

fg

wj × d̄(Afj , Agj ) ×
{ m∑

f,g=1
f =g

∑
j∈Dfg

wj × d̄(Afj , Agj )

+
m∑

f,g=1
f =g

∑
j∈D′

fg

wj × d̄(Afj , Agj ) +
m∑

f,g=1
f =g

∑
j∈D′′

fg

wj × d̄(Afj , Agj )

}−1

.

(48)

In Eqs. (43)–(48), d̄(Afj , Agj ) is the distance between αf and αg under Cj , wj is the
weight of Cj .

5.6. Construction of Fermatern Fuzzy Concordance Matrix and Discordance Matrix

The concordance matrix and discordance matrix are constructed based on the concor-
dance and discordance index, respectively. In order to specify an outranking relationship
between Af and Ag , it is essential to compute two main indices called concordance in-
dex and discordance index. The concordance index for a pair of alternative Af and Ag ,
which shows the degree of superiority of alternative Af to alternative Ag , is related to the
weights of the concordance sets and the corresponding criteria weights. Therefore, the
concordance index Vfg between two alternatives Af and Ag is defined as

Vfg = wC ×
∑

j∈Cfg

wj + wC′ ×
∑

j∈C′
fg

wj + wC′′ ×
∑

j∈C′′
fg

wj , (49)

where wC , wC′ and wC′′ are the weights of strong concordance set, medium concordance
set and weak discordance set, respectively; wj is the weight of the corresponding criterion.

After determination of all concordance indices, the concordance matrix V is generated
as follows:

V =

⎡
⎢⎢⎢⎢⎢⎣

− V12 · · · · · · V1n

V21 − V23 · · · V2n

· · · · · · − · · · · · ·
V(n−1)1 · · · · · · − V(n−1)n

Vn1 Vn2 · · · Vn(n−1) −

⎤
⎥⎥⎥⎥⎥⎦ .
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The discordance index for a pair of alternative Af and Ag shows the degree of inferio-
rity of alternative Af to alternative Ag according to criteria in the discordance sets. The
discordance index Dfg between Af and Ag is represented as

Dfg = max
{
wD × max

{
d̄j∈JDfg

(Afj , Agj )
}
, wD′ × max

{
d̄j∈JD′

fg

(Afj , Agj )
}
,

wD′′ × max
{
d̄j∈JD′′

fg

(Afj , Agj )
}}×

{
max
j∈J

d̄(Afj , Agj )
}−1

, (50)

where wD , wD′ and wD′′ are the weights of three kinds of Fermatern fuzzy discordance
sets, and d̄(Afj , Agj ) stands for the distance measure between alternative Af and Ag with
reference to criterion Cj .

Based on the discordance index, the discordance matrix D is defined as follows:

D =

⎡
⎢⎢⎢⎢⎢⎣

− D12 · · · · · · D1n

D21 − · · · · · · D2n

· · · · · · − · · · · · ·
D(n−1)1 · · · · · · − D(n−1)n

Dn1 · · · · · · Dn(n−1) −

⎤
⎥⎥⎥⎥⎥⎦ .

5.7. Computation of the Net Superiority Index and the Net Inferiority Index

As mentioned above, the concordance index Vfg reveals the degree of superiority of al-
ternative Af to alternative Ag , the bigger the value of Vfg , the more superior Af is to Ag .
Likewise, the discordance index Dfg shows the degree to which alternative Af is inferior
to alternative Ag , the bigger the value of Dfg , the more inferior Af is to Ag . That is to
say, Vfg , to some degree, represents the inferiority degree of alternative Ag to alternative
Af , and Dfg , shows superiority degree of alternative Ag to alternative Af . Hence, both
Vfg and Dgf display the superiority degree of Af to Ag , and both Vgf and Dfg display
the inferiority degree of Af to Ag . Therefore, the net superiority index of alternative Af

can be computed as

NSf =
n∑

f =1,f =g

Vfg +
n∑

f =1,f =g

Dgf . (51)

Thus, it may be known that the net superiority index NSf shows the relative superiority
degree of alternative Af over all the other alternatives.

Furthermore, the net inferiority index of alternative Af can be computed as

NIf =
n∑

f =1,f =g

Vgf +
n∑

f =1,f =g

Dfg. (52)

The net inferiority index NIf shows the relative inferiority degree of alternative Af to
all the other alternatives.
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To rank alternatives an overall evaluation index is defined as

Zf = NSf − NIf . (53)

The overall evaluation index Zf stands for the overall superiority degree of alternative
Af over all the other alternatives. If an alternative has the biggest value of the net superi-
ority index and the smallest value of the net inferiority index, it is the optimal alternative.

On the basis of the overall evaluation index, the optimal alternative can be selected as
follows:

A∗ = max
1�f�n

{Zf }. (54)

5.8. A Fermatean Fuzzy ELECTRE Method

On the basis of the above analyses, the steps of the proposed Fermatean fuzzy ELECTRE
method are summarized as follows:

Step 1. Form the group decision matrices. DMs give their evaluations of all alternatives
regarding to each criterion with linguistic terms. Then, these linguistic assess-
ments can be transformed into FFNs, and thus build up the group decision ma-
trices.

Step 2. Determine dynamic weights of DMs using Eqs. (19)–(22).
Step 3. Aggregate all individual decision matrices into a collective one using Eq. (23).
Step 4. Obtain criteria weights using Eqs. (24)–(36) and models (M-1)–(M-4).
Step 5. Construct strong, medium and weak concordance sets and discordance sets

based on Eqs. (37)–(39) and Eqs. (40)–(42), respectively.
Step 6. Identify the weights of strong, medium and weak concordance and discordance

sets by using Eqs. (43)–(45) and Eqs. (46)–(48), respectively.
Step 7. Construct concordance matrix and discordance matrix using Eq. (49) and

Eq. (50), respectively.
Step 8. Compute the net superiority index and the net inferiority index using Eq. (51)

and Eq. (52), respectively.
Step 9. Compute the overall evaluation indices for all alternatives by Eq. (53).

Step 10. Choose the optimal alternative based on Eq. (54).

6. Case Study Concerning Site Selection of FSHs for COVID-19 Patients in Wuhan

In this section, a practical case concerning site selection of FSHs for COVID-19 in Wuhan
is provided to show the implementation process of the proposed ELECTRE method. Then,
some comparisons are carried out to verify the superiority and effectiveness of the pro-
posed ELECTRE method.
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6.1. Description of Site Selection of FSHs

Nevertheless the spread of the COVID-19 around the world, it was unfortunately detected
at the end of 2019 in Wuhan, the capital city of Hubei Province, China. By February 26,
2020, there have been 47824 confirmed cases in Wuhan, accounting for 60.9% of the total
confirmed cases in China. Owing to the lack of medical resources, especially the number
of beds for patients with confirmed COVID-19 is seriously insufficient, a large number
of confirmed patients failed to be isolated and treated in time, causing cross infection in
the community and accelerating the spread of the epidemic. In order to collect and treat
patients with mild COVID-19, the Chinese government launched an emergency construc-
tion of FSHs. The rapid establishment and operation of FSHs have played an irreplaceable
role in COVID-19 prevention and control.

Site selection is the first and most critical step in the construction of FSHs. Without loss
of generality, this paper only considers the site selection for the first FSHs in Wuhan. Site
selection takes three aspects into consideration: first, it should be far away from residential
areas and densely populated places, and be in the downwind position of this area; second,
it should be convenient for transportation of patients and medical staff; third, the internal
structure of the site is convenient for rapid transformation and has certain functionality.

There exist five candidate buildings (alternatives) suitable for being reconstructed
to FSHs in Wuhan. They are Wuhan Sports Center (A1), Hongshan Gymnasium (A2),
Wuhan International Conference and Exhibition Center (A3), Wuhan Gymnasium (A4),
and China (Wuhan) Cultural Exhibition Center (A5). A1 is located in the southwest of
Wuhan and situated in Wuhan economic and technological development zone. A2 is lo-
cated in Hongshan Square, the centre of Wuchang District. A3 is located in Jianghan
District, which is the most prosperous business center in Wuhan. A4 is located at No. 612,
Jiefang Avenue in downtown Hankou. A5 is located in Jinyintan, Dongxihu District.

The experts (or DMs) panel consists of five experts. They were selected from the areas
of disease control and prevention, scientific research institution, public health education,
architectural design and research institute, etc. They had more than ten-year working ex-
perience and high-level academic titles.

In light of technical requirements for design and reconstruction of FSHs issued by
Department of Housing and Urban-Rural Development of Hubei Province (see http:
//zjt.hubei.gov.cn/), eight main technical requirements (i.e., criteria) for candidate build-
ings (alternatives) are extracted as follows: traffic convenience (C1), environmental protec-
tion (C2), geographical position (C3), infrastructure (C4), regional communication con-
venience (C5), capacity (C6), reconstruction difficulty (C7) and reconstruction cost (C8).
Here, C1, C2, C3, C4, C5 and C6 are benefit criteria, but C7 and C8 are cost criteria. After
further discussion and negotiation, the information regarding to criteria weights given by
the group of DMs is incomplete as follows:

� =

⎧⎪⎪⎨
⎪⎪⎩w ∈ �0

∣∣∣∣∣∣∣∣
0.07 � w8 � 0.1, w8 − w7 � 0.02, 0.15 � w1 � 0.15,

0.1 � w4 � 0.12, w4 − w3 � 0.02, w3 � 0.1,

0.12 � w5 � 0.15, w5 − w4 � 0.03, w1 � 1.5w2,

0.13 � w6 � 0.16, w1 − w6 � 0.03, w2 − w8 � 0.02

⎫⎪⎪⎬
⎪⎪⎭ .

http://zjt.hubei.gov.cn/
http://zjt.hubei.gov.cn/
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Fig. 3. Hierarchical structure of case study.

The hierarchical structure of this group decision-making problem is shown in Fig. 3.

6.2. Application of the Proposed Fermatean Fuzzy ELECTRE Method

The main steps of the proposed ELECTRE method can be described as follows:

Step 1: Form Fermatean fuzzy group decision matrices.
Each DM is required to present his/her evaluations of alternative Ai (i = 1, 2, 3, 4, 5)

with respect to criterion Cj (j = 1, 2, . . . , 8). Five DMs evaluate five alternatives un-
der the given criteria using the linguistic variables defined in Table 3. Table 4 describes
the linguistic values for alternatives over different criteria given by five DMs. The lin-
guistic evaluations shown in Table 4 are transformed into FFNs by using the mapping
relations given by in Table 3. Consequently, Fermatean fuzzy group decision matrices
Rl = (al

ij )m×n are constructed and shown in Table 5.

Step 2: Normalize the decision matrix.
Since criteria are classified into cost criteria and benefit criteria in this paper, it is

necessary to convert raw data into comparable value by a normalization procedure. During
the normalization, cost criteria must be converted into benefit criteria. The mathematical
expression of the decision matrix Rl = (al

ij )m×n normalized into R̃l = (ãl
ij )m×n is given

below:
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Table 3
Performance ratings of alternatives as linguistic values.

Linguistic variables FFNs IFNs PFNs

Absolutely Good (AG) F(0.98, 0.02) I(1.0, 0.0) P(0.98, 0.1)
Very Good (VG) F(0.9, 0.6) I(0.90, 0.05) P(0.87, 0.35)
Good (G) F(0.8, 0.65) I(0.75, 0.2) P(0.7, 0.4)
Medium Good (MG) F(0.75, 0.6) I(0.65, 0.3) P(0.65, 0.45)
Average (A) F(0.5, 0.5) I(0.55, 0.4) P(0.5, 0.55)
Medium Bad (MB) F(0.6, 0.7) I(0.4, 0.5) P(0.4, 0.7)
Bad (B) F(0.7, 0.8) I(0.36, 0.6) P(0.36, 0.8)
Very Bad (VB) F(0.6, 0.9) I(0.2, 0.7) P(0.25, 0.87)
Absolutely Bad (AB) F(0.02, 0.98) I(0.1, 0.8) P(0.1, 0.98)

Table 4
Evaluation values described as linguistic variables by five DMs.

DM Alternative C1 C2 C3 C4 C5 C6 C7 C8

E1 A1 MG VB A VG G A MG G
A2 MB VG A MG A MG VG MG
A3 VG VG MB MG VG VG VB G
A4 MB VG MG A MG MB MG MB
A5 VG VG MB MG AG G G MG

E2 A1 VG MG MB MG MB MG A G
A2 MG G MB VB MB G MG A
A3 G MG VG VB VB VG VG B
A4 MG VG VG B MG MG A VB
A5 AG B MG MB VB G VB A

E3 A1 MG VG A B MB MG A B
A2 VG VG MB VB VB VG MB MB
A3 VG MB G B B VG VB VB
A4 VB MG B VB VB VG VB VB
A5 VG VG MB VB B MB MG MB

E4 A1 G VG A VB MB G B MB
A2 VG G MB VB B VG VB VB
A3 VG VG B MG VB B VB VB
A4 MG G MB VB VB VG B VB
A5 VG B B B VG B VG B

E5 A1 VG MG MB B B VG VB B
A2 VG VG MB VB MB VG B VB
A3 MG VG VB B VB VG VB B
A4 G VG MB B B B VB MB
A5 VG MG VB VB B VG B VB

ãl
ij = (

α̃l
ij , β̃

l
ij

) =
{

(αl
ij , β

l
ij ), for benefit criteria Cj ,

(βl
ij , α

l
ij ), for cost criteria Cj ,

l = 1, 2, . . . , t. (55)

The normalized decision matrix is presented in Tables 6.

Step 3: Compute the dynamic DMs’ weights for different alternatives and different crite-
ria.
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Table 5
Evaluation values described as FFNs by five DMs.

DM Alternative C1 C2 C3 C4 C5 C6 C7 C8

E1 A1 (0.75, 0.6) (0.6, 0.9) (0.5, 0.5) (0.9, 0.6) (0.8, 0.65) (0.5, 0.5) (0.75, 0.6) (0.8, 0.65)

A2 (0.6, 0.7) (0.9, 0.6) (0.5, 0.5) (0.75, 0.6) (0.5, 0.5) (0.75, 0.6) (0.9, 0.6) (0.75, 0.6)

A3 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.75, 0.6) (0.9, 0.6) (0.9, 0.6) (0.6, 0.9) (0.8, 0.65)

A4 (0.6, 0.7) (0.9, 0.6) (0.75, 0.6) (0.5, 0.5) (0.75, 0.6) (0.6, 0.7) (0.75, 0.6) (0.6, 0.7)

A5 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.75, 0.6) (0.98, 0.02) (0.8, 0.65) (0.8, 0.65) (0.75, 0.6)

E2 A1 (0.9, 0.6) (0.75, 0.6) (0.6, 0.7) (0.75, 0.6) (0.6, 0.7) (0.75, 0.6) (0.5, 0.5) (0.8, 0.65)

A2 (0.75, 0.6) (0.8, 0.65) (0.6, 0.7) (0.6, 0.9) (0.6, 0.7) (0.8, 0.65) (0.75, 0.6) (0.5, 0.5)

A3 (0.8, 0.65) (0.75, 0.6) (0.9, 0.6) (0.6, 0.9) (0.6, 0.9) (0.9, 0.6) (0.9, 0.6) (0.7, 0.8)

A4 (0.75, 0.6) (0.9, 0.6) (0.9, 0.6) (0.7, 0.8) (0.75, 0.6) (0.75, 0.6) (0.5, 0.5) (0.6, 0.9)

A5 (0.98, 0.02) (0.7, 0.8) (0.75, 0.6) (0.6, 0.7) (0.6, 0.9) (0.8, 0.65) (0.6, 0.9) (0.5, 0.5)

E3 A1 (0.75, 0.6) (0.9, 0.6) (0.5, 0.5) (0.7, 0.8) (0.6, 0.7) (0.75, 0.6) (0.5, 0.5) (0.7, 0.8)

A2 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.6, 0.9) (0.6, 0.9) (0.9, 0.6) (0.6, 0.7) (0.6, 0.7)

A3 (0.9, 0.6) (0.6, 0.7) (0.8, 0.65) (0.7, 0.8) (0.7, 0.8) (0.9, 0.6) (0.6, 0.9) (0.6, 0.9)

A4 (0.6, 0.9) (0.75, 0.6) (0.7, 0.8) (0.6, 0.9) (0.6, 0.9) (0.9, 0.6) (0.6, 0.9) (0.6, 0.9)

A5 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.6, 0.9) (0.7, 0.8) (0.6, 0.7) (0.75, 0.6) (0.6, 0.7)

E4 A1 (0.8, 0.65) (0.9, 0.6) (0.5, 0.5) (0.6, 0.9) (0.6, 0.7) (0.8, 0.65) (0.7, 0.8) (0.6, 0.7)

A2 (0.9, 0.6) (0.8, 0.65) (0.6, 0.7) (0.6, 0.9) (0.7, 0.8) (0.9, 0.6) (0.6, 0.9) (0.6, 0.9)

A3 (0.9, 0.6) (0.9, 0.6) (0.7, 0.8) (0.75, 0.6) (0.6, 0.9) (0.7, 0.8) (0.6, 0.9) (0.6, 0.9)

A4 (0.75, 0.6) (0.8, 0.65) (0.6, 0.7) (0.6, 0.9) (0.6, 0.9) (0.9, 0.6) (0.7, 0.8) (0.6, 0.9)

A5 (0.9, 0.6) (0.7, 0.8) (0.7, 0.8) (0.7, 0.8) (0.9, 0.6) (0.7, 0.8) (0.9, 0.6) (0.7, 0.8)

E5 A1 (0.9, 0.6) (0.75, 0.6) (0.6, 0.7) (0.7, 0.8) (0.7, 0.8) (0.9, 0.6) (0.6, 0.9) (0.7, 0.8)

A2 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.6, 0.9) (0.6, 0.7) (0.9, 0.6) (0.7, 0.8) (0.6, 0.9)

A3 (0.75, 0.6) (0.9, 0.6) (0.6, 0.9) (0.7, 0.8) (0.6, 0.9) (0.9, 0.6) (0.6, 0.9) (0.7, 0.8)

A4 (0.8, 0.65) (0.9, 0.6) (0.6, 0.7) (0.7, 0.8) (0.7, 0.8) (0.7, 0.8) (0.6, 0.9) (0.6, 0.7)

A5 (0.9, 0.6) (0.75, 0.6) (0.6, 0.9) (0.6, 0.9) (0.7, 0.8) (0.9, 0.6) (0.7, 0.8) (0.6, 0.9)

(i) Determine PIDM and NIDM by using Models (19)–(20), respectively. For example,
PIDM is presented in Table 7.

(ii) Calculate credibility degree for DM El based on Eq. (21), which are shown in
Table 8.

(iii) Calculate the dynamic weights of DMs using Eq. (22). The obtained dynamic
DMs’ weights for different alternatives and criteria are shown in Table 9.

Step 4: Aggregate all individual normalized Fermatean Fuzzy decision matrices R̃l =
(ãl

ij )5×8 (l = 1, 2, 3, 4, 5) into a collective one R̂l = (âl
ij )5×8 by Eq. (23), which is

shown in Table 10.

Step 5: Compute the optimal weights of criteria.
(1) Determine the FF-PIP âj+ and the FF-NIP âj− using Eqs. (24) and (25), where

j = 1, 2, . . . , 8. We have

â1+ = (0.9124, 0.5103), â2+ = (0.8882, 0.6014), â3+ = (0.7550, 0.6422),

â4+ = (0.7313, 0.7551), â5+ = (0.7926, 0.5815), â6+ = (0.8778, 0.6063),

â7+ = (0.8400, 0.6600), â8+ = (0.8944, 0.6000), â1− = (0.6924, 0.7303),

â2− = (0.7884, 0.6784), â3− = (0.5711, 0.7786), â4− = (0.6060, 0.8881),
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Table 6
Normalized evaluation values described as FFNs from five DMs.

DM Alternative C1 C2 C3 C4 C5 C6 C7 C8

E1 A1 (0.75, 0.6) (0.6, 0.9) (0.5, 0.5) (0.9, 0.6) (0.8, 0.65) (0.5, 0.5) (0.6, 0.75) (0.65, 0.8)

A2 (0.6, 0.7) (0.9, 0.6) (0.5, 0.5) (0.75, 0.6) (0.5, 0.5) (0.75, 0.6) (0.6, 0.9) (0.6, 0.75)

A3 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.75, 0.6) (0.9, 0.6) (0.9, 0.6) (0.9, 0.6) (0.65, 0.8)

A4 (0.6, 0.7) (0.9, 0.6) (0.75, 0.6) (0.5, 0.5) (0.75, 0.6) (0.6, 0.7) (0.6, 0.75) (0.7, 0.6)

A5 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.75, 0.6) (0.98, 0.02) (0.8, 0.65) (0.65, 0.8) (0.6, 0.75)

E2 A1 (0.9, 0.6) (0.75, 0.6) (0.6, 0.7) (0.75, 0.6) (0.6, 0.7) (0.75, 0.6) (0.5, 0.5) (0.65, 0.8)

A2 (0.75, 0.6) (0.8, 0.65) (0.6, 0.7) (0.6, 0.9) (0.6, 0.7) (0.8, 0.65) (0.6, 0.75) (0.5, 0.5)

A3 (0.8, 0.65) (0.75, 0.6) (0.9, 0.6) (0.6, 0.9) (0.6, 0.9) (0.9, 0.6) (0.6, 0.9) (0.8, 0.7)

A4 (0.75, 0.6) (0.9, 0.6) (0.9, 0.6) (0.7, 0.8) (0.75, 0.6) (0.75, 0.6) (0.5, 0.5) (0.9, 0.6)

A5 (0.98, 0.02) (0.7, 0.8) (0.75, 0.6) (0.6, 0.7) (0.6, 0.9) (0.8, 0.65) (0.9, 0.6) (0.5, 0.5)

E3 A1 (0.75, 0.6) (0.9, 0.6) (0.5, 0.5) (0.7, 0.8) (0.6, 0.7) (0.75, 0.6) (0.5, 0.5) (0.8, 0.7)

A2 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.6, 0.9) (0.6, 0.9) (0.9, 0.6) (0.7, 0.6) (0.7, 0.6)

A3 (0.9, 0.6) (0.6, 0.7) (0.8, 0.65) (0.7, 0.8) (0.7, 0.8) (0.9, 0.6) (0.9, 0.6) (0.9, 0.6)

A4 (0.6, 0.9) (0.75, 0.6) (0.7, 0.8) (0.6, 0.9) (0.6, 0.9) (0.9, 0.6) (0.9, 0.6) (0.9, 0.6)

A5 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.6, 0.9) (0.7, 0.8) (0.6, 0.7) (0.6, 0.75) (0.7, 0.6)

E4 A1 (0.8, 0.65) (0.9, 0.6) (0.5, 0.5) (0.6, 0.9) (0.6, 0.7) (0.8, 0.65) (0.8, 0.7) (0.7, 0.6)

A2 (0.9, 0.6) (0.8, 0.65) (0.6, 0.7) (0.6, 0.9) (0.7, 0.8) (0.9, 0.6) (0.9, 0.6) (0.9, 0.6)

A3 (0.9, 0.6) (0.9, 0.6) (0.7, 0.8) (0.75, 0.6) (0.6, 0.9) (0.7, 0.8) (0.9, 0.6) (0.9, 0.6)

A4 (0.75, 0.6) (0.8, 0.65) (0.6, 0.7) (0.6, 0.9) (0.6, 0.9) (0.9, 0.6) (0.8, 0.7) (0.9, 0.6)

A5 (0.9, 0.6) (0.7, 0.8) (0.7, 0.8) (0.7, 0.8) (0.9, 0.6) (0.7, 0.8) (0.6, 0.9) (0.8, 0.7)

E5 A1 (0.9, 0.6) (0.75, 0.6) (0.6, 0.7) (0.7, 0.8) (0.7, 0.8) (0.9, 0.6) (0.9, 0.6) (0.8, 0.7)

A2 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.6, 0.9) (0.6, 0.7) (0.9, 0.6) (0.8, 0.7) (0.9, 0.6)

A3 (0.75, 0.6) (0.9, 0.6) (0.6, 0.9) (0.7, 0.8) (0.6, 0.9) (0.9, 0.6) (0.9, 0.6) (0.8, 0.7)

A4 (0.8, 0.65) (0.9, 0.6) (0.6, 0.7) (0.7, 0.8) (0.7, 0.8) (0.7, 0.8) (0.9, 0.6) (0.7, 0.6)

A5 (0.9, 0.6) (0.75, 0.6) (0.6, 0.9) (0.6, 0.9) (0.7, 0.8) (0.9, 0.6) (0.8, 0.7) (0.9, 0.6)

Table 7
PIDM.

Alternative C1 C2 C3 C4 C5 C6 C7 C8

A1 (0.8, 0.6) (0.75, 0.6) (0.5, 0.5) (0.7, 0.8) (0.6, 0.7) (0.75, 0.6) (0.6, 0.6) (0.7, 0.7)

A2 (0.9, 0.6) (0.9, 0.6) (0.6, 0.7) (0.6, 0.9) (0.6, 0.7) (0.8, 0.6) (0.7, 0.7) (0.7, 0.6)

A3 (0.9, 0.6) (0.9, 0.6) (0.7, 0.7) (0.7, 0.8) (0.6, 0.9) (0.9, 0.6) (0.9, 0.6) (0.8, 0.7)

A4 (0.75.0.65) (0.9, 0.6) (0.7, 0.7) (0.6, 0.8) (0.7, 0.8) (0.75, 0.6) (0.8, 0.6) (0.9, 0.6)

A5 (0.9, 0.6) (0.75, 0.6) (0.6, 0.7) (0.6, 0.8) (0.7, 0.8) (0.8, 0.65) (0.65, 0.75) (0.7, 0.6)

â5− = (0.6269, 0.8222), â6− = (0.7976, 0.6697), â7− = (0.7259, 0.7490),

â8− = (0.7282, 0.7324).

(2) Compute the distances between âij and FF-PIP âj+ as well as FF-NIP âj− by
Eqs. (26) and (27), respectively. The computation results are represented in Tables 11–12.

(3) The grey relation coefficients with reference to âj+ and âj− can be computed using
Eqs. (28) and (29), respectively. The computation results are represented in Tables 13–14.

(3) Calculate PIWV and NIWV by model (M-2) and Eq. (32). Alternative A1 is pro-
vided as a presentative example, and the results are shown as w1+ = (0.20, 0.13, 0.10,

0.12, 0.15, 0.16, 0.06, 0.08)T , w1− = (0.20, 0.13, 0.10, 0.12, 0.15, 0.16, 0.04, 0.10)T .
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Table 8
Credibility degree for El .

DM Alternative C1 C2 C3 C4 C5 C6 C7 C8

E1 A1 0.1954 0.4824 0.0241 0.5199 0.3817 0.0738 0.1558 0.2778
A2 0.0257 0.5892 0.0302 0.0977 0.0302 0.1954 0.3950 0.1975
A3 0.5892 0.5892 0.1237 0.1765 0.5892 0.5892 0.5892 0.3144
A4 0.1329 0.5892 0.1755 0.1413 0.1765 0.1361 0.1954 0.0257
A5 0.1002 0.4824 0.1431 0.1954 0.5948 0.3200 0.3105 0.1975

E2 A1 0.5357 0.2045 0.0889 0.1765 0.1431 0.2045 0.0097 0.2778
A2 0.0977 0.2641 0.1431 0.5892 0.1431 0.3161 0.1755 0.0302
A3 0.2641 0.0977 0.3950 0.5199 0.5892 0.5892 0.5892 0.3630
A4 0.2006 0.5892 0.3950 0.3439 0.1765 0.2045 0.1413 0.5892
A5 0.0733 0.3350 0.1975 0.1109 0.5199 0.3200 0.4783 0.0302

E3 A1 0.1954 0.4824 0.0241 0.3630 0.1431 0.2045 0.0097 0.3272
A2 0.5892 0.5892 0.1431 0.5892 0.4204 0.5357 0.1237 0.1431
A3 0.5892 0.0257 0.2778 0.3630 0.2937 0.5892 0.5892 0.5199
A4 0.4783 0.0977 0.3272 0.5357 0.5199 0.4824 0.5357 0.5892
A5 0.1002 0.4824 0.1431 0.5357 0.3630 0.1075 0.2006 0.1431

E4 A1 0.3161 0.4732 0.0241 0.5199 0.1431 0.3070 0.2481 0.1237
A2 0.5892 0.2641 0.1431 0.5892 0.3128 0.5357 0.3950 0.4204
A3 0.5892 0.5892 0.3272 0.1765 0.5892 0.2937 0.5892 0.5199
A4 0.2006 0.2641 0.1237 0.5357 0.5199 0.4824 0.3439 0.5892
A5 0.1002 0.3350 0.3128 0.3439 0.5199 0.3574 0.4783 0.3128

E5 A1 0.5357 0.2045 0.0889 0.3630 0.3128 0.4824 0.2894 0.3272
A2 0.5892 0.5892 0.1431 0.5892 0.1431 0.5357 0.3272 0.4204
A3 0.0977 0.5892 0.3950 0.3630 0.5892 0.5892 0.5892 0.3630
A4 0.3105 0.5892 0.1237 0.3439 0.3630 0.3350 0.5357 0.0257
A5 0.1002 0.2045 0.4204 0.5357 0.3630 0.5333 0.3479 0.4204

(4) Obtain optimal criteria weights by model (M-4). We get the following optimal
criteria weights:

w1 = 0.20, w2 = 0.13, w3 = 0.10, w4 = 0.12, w5 = 0.15,

w6 = 0.14, w7 = 0.07, w8 = 0.09.

Step 6: Construct the concordance and discordance sets.
The outranking relationships of all binary alternatives with respect to different cri-

teria can be obtained based on Definition 15. Combining the outranking relationships
and Eqs. (37)–(42), the concordance and discordance sets can be determined. The strong,
medium and weak concordance sets are determined using Eqs. (37), (38) and (39), respec-
tively. The strong, medium and weak discordance sets are determined using Eqs. (40), (41)
and (42), respectively. The results are shown as follows:

[C12 = {7}, C′
12 = {4, 5}, C′′

12 = {φ},D12 = {1, 2, 8},D′
12 = {φ},D′′

12 = {3, 6}],
[C13 = {4}, C′

13 = {5}, C′′
13 = {φ},D13 = {1, 2, 7, 8},D′

13 = {φ},D′′
13 = {3, 6}],

[C14 = {1}, C′
14 = {4, 5}, C′′

14 = {φ},D14 = {2, 7, 8},D′
14 = {φ},D′′

14 = {3, 6}],
[C15 = {φ}, C′

15 = {4, 6, 7}, C′′
15 = {φ},D15 = {1, 2, 5},D′

15 = {8},D′′
15 = {3}],

[C21 = {1, 2, 8}, C′
21 = {φ}, C′′

21 = {3, 6},D21 = {7},D′
21 = {4, 5},D′′

21 = {φ}],
[C23 = {1}, C′

23 = {φ}, C′′
23 = {φ},D23 = {2, 7},D′

23 = {4},D′′
23 = {3, 5, 6, 8}],
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Table 9
Dynamic weights for El .

DM Alternative C1 C2 C3 C4 C5 C6 C7 C8

E1 A1 0.1099 0.2612 0.0963 0.2677 0.3396 0.0580 0.2187 0.2083
A2 0.0136 0.2567 0.0501 0.0398 0.0287 0.0922 0.2789 0.1630
A3 0.2767 0.3116 0.0815 0.1104 0.2223 0.2223 0.2000 0.1511
A4 0.1005 0.2767 0.1532 0.0743 0.1005 0.0830 0.1115 0.0141
A5 0.2113 0.2623 0.1176 0.1135 0.2520 0.1954 0.1710 0.1789

E2 A1 0.3013 0.1107 0.3555 0.0909 0.1274 0.1608 0.0136 0.2083
A2 0.0516 0.1150 0.2375 0.2401 0.1364 0.1492 0.1239 0.0249
A3 0.1240 0.0516 0.2601 0.3252 0.2223 0.2223 0.2000 0.1745
A4 0.1516 0.2767 0.3449 0.1810 0.1005 0.1247 0.0806 0.3239
A5 0.1547 0.1821 0.1623 0.0644 0.2202 0.1954 0.2635 0.0273

E3 A1 0.1099 0.2612 0.0963 0.1869 0.1274 0.1608 0.0136 0.2453
A2 0.3116 0.2567 0.2375 0.2401 0.4005 0.2529 0.0874 0.1181
A3 0.2767 0.0136 0.1829 0.2270 0.1108 0.2223 0.2000 0.2499
A4 0.3616 0.0459 0.2857 0.2819 0.2961 0.2941 0.3058 0.3239
A5 0.2113 0.2623 0.1176 0.3112 0.1538 0.0656 0.1105 0.1296

E4 A1 0.1777 0.2562 0.0963 0.2677 0.1274 0.2413 0.3481 0.0928
A2 0.3116 0.1150 0.2375 0.2401 0.2980 0.2529 0.2789 0.3470
A3 0.2767 0.3116 0.2155 0.1104 0.2223 0.1108 0.2000 0.2499
A4 0.1516 0.1240 0.1080 0.2819 0.2961 0.2941 0.1963 0.3239
A5 0.2113 0.1821 0.2570 0.1998 0.2202 0.2181 0.2635 0.2833

E5 A1 0.3013 0.1107 0.3555 0.1869 0.2783 0.3791 0.4061 0.2453
A2 0.3116 0.2567 0.2375 0.2401 0.1364 0.2529 0.2310 0.3470
A3 0.0459 0.3116 0.2601 0.2270 0.2223 0.2223 0.2000 0.1745
A4 0.2347 0.2767 0.1080 0.1810 0.2067 0.2042 0.3058 0.0141
A5 0.2113 0.1112 0.3455 0.3112 0.1538 0.3255 0.1916 0.3808

Table 10
Collective Fermatean Fuzzy decision matrix.

Criteria A1 A2 A3 A4 A5

C1 (0.8493, 0.6089) (0.8882, 0.6014) (0.8807, 0.6062) (0.6924, 0.7303) (0.9124, 0.5103)

C2 (0.7884, 0.6784) (0.8770, 0.6115) (0.8882, 0.6014) (0.8807, 0.6062) (0.8105, 0.6729)

C3 (0.5711, 0.6422) (0.5950, 0.6900) (0.7362, 0.7384) (0.7550, 0.6788) (0.6500, 0.7786)

C4 (0.7313, 0.7551) (0.6060, 0.8881) (0.6785, 0.7884) (0.6288, 0.8341) (0.6370, 0.8831)

C5 (0.6958, 0.6981) (0.6269, 0.8042) (0.6778, 0.8222) (0.6508, 0.8190) (0.7926, 0.5815)

C6 (0.8044, 0.6063) (0.8712, 0.6075) (0.8778, 0.6222) (0.8156, 0.6491) (0.7976, 0.6697)

C7 (0.7887, 0.6649) (0.7386, 0.7253) (0.8400, 0.6600) (0.8147, 0.6283) (0.7259, 0.7490)

C8 (0.7282, 0.7324) (0.8175, 0.6220) (0.8273, 0.6651) (0.8944, 0.6000) (0.7811, 0.6524)

Table 11
Distance between âij and âj+.

Alternatives C1 C2 C3 C4 C5 C6 C7 C8

A1 0.0609 0.1063 0.1359 0.0000 0.0876 0.0992 0.0637 0.1603
A2 0.0537 0.0149 0.1121 0.1290 0.1640 0.0107 0.0917 0.1052
A3 0.0550 0.0000 0.0755 0.0385 0.1780 0.0164 0.0000 0.0767
A4 0.2037 0.0112 0.0296 0.0769 0.1726 0.0696 0.0579 0.0000
A5 0.0000 0.0840 0.1034 0.0734 0.0000 0.0839 0.0988 0.1326
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Table 12
Distance between âij and âj−.

Alternatives C1 C2 C3 C4 C5 C6 C7 C8

A1 0.1319 0.0000 0.1081 0.1290 0.1025 0.0477 0.0537 0.0000
A2 0.1797 0.0918 0.0700 0.0000 0.0212 0.0746 0.0110 0.0838
A3 0.1698 0.1063 0.1156 0.1080 0.0471 0.0906 0.1022 0.0853
A4 0.0000 0.0958 0.1250 0.0732 0.0183 0.0169 0.0797 0.1603
A5 0.2037 0.0238 0.0573 0.0707 0.1770 0.0000 0.0212 0.0577

Table 13
Grey relation coefficients with reference to âj+.

Alternative C1 C2 C3 C4 C5 C6 C7 C8

A1 0.6258 0.4893 0.4284 1.0000 0.5376 0.5376 0.6152 0.3885
A2 0.6548 0.8724 0.4760 0.4412 0.3831 0.5066 0.5262 0.4919
A3 0.6493 1.0000 0.5743 0.7257 0.3639 0.9049 1.0000 0.5704
A4 0.3333 0.9009 0.7748 0.5698 0.3711 0.8613 0.6376 1.0000
A5 1.0000 0.5480 0.4962 0.5812 1.0000 0.5941 0.5076 0.4344

Table 14
Grey relation coefficients with reference to âj−.

Alternative C1 C2 C3 C4 C5 C6 C7 C8

A1 0.4357 1.0000 0.4851 0.4412 0.4984 0.6810 0.6548 1.0000
A2 0.3617 0.5259 0.5927 1.0000 0.8277 0.5772 0.9025 0.5486
A3 0.3749 0.4893 0.4684 0.4853 0.6838 0.5292 0.4991 0.5442
A4 1.0000 0.5153 0.4490 0.5818 0.8477 0.8577 0.5610 0.3885
A5 0.3333 0.8106 0.6400 0.5903 0.3653 1.0000 0.8277 0.6384

[C24 = {1, 6}, C′
24 = {φ}, C′′

24 = {φ},D24 = {2, 3, 7, 8},D′
24 = {4},D′′

24 = {5}],
[C25 = {2, 6, 8}, C′

25 = {7}, C′′
25 = {φ},D25 = {φ},D′

25 = {1, 4, 5},D′′
25 = {3}],

[C31 = {1, 2, 7, 8}, C′
31 = {φ}, C′′

31 = {3, 6},D31 = {4},D′
31 = {5},D′′

31 = {φ}],
[C32 = {2, 7}, C′

32 = {4}, C′′
32 = {3, 5, 6, 8},D32 = {1},D′

32 = {φ},D′′
32 = {φ}],

[C34 = {1, 2, 6}, C′
34 = {4}, C′′

34 = {5, 7},D34 = {8},D′
34 = {3},D′′

34 = {φ}],
[C35 = {2, 3, 6, 7}, C′

35 = {4}, C′′
35 = {8},D35 = {φ},D′

35 = {1, 5},D′′
35 = {φ}],

[C41 = {2, 7, 8}, C′
41 = {φ}, C′′

41 = {3, 6},D41 = {1},D′
41 = {4, 5},D′′

41 = {φ}],
[C42 = {2, 3, 7, 8}, C′

42 = {4}, C′′
42 = {5},D42 = {1, 6},D′

42 = {φ},D′′
42 = {φ}],

[C43 = {8}, C′
43 = {3}, C′′

43 = {φ},D43 = {1, 2, 6},D′
43 = {4},D′′

43 = {5, 7}],
[C45 = {2, 6, 8}, C′

45 = {3, 7}, C′′
45 = {φ},D45 = {1, 4},D′

45 = {5},D′′
45 = {φ}],

[C51 = {1, 2, 5}, C′
51 = {8}, C′′

51 = {3},D51 = {φ},D′
51 = {4, 6, 7},D′′

51 = {φ}],
[C52 = {φ}, C′

52 = {1, 4, 5}, C′′
52 = {3},D52 = {2, 6, 8},D′

52 = {7},D′′
52 = {φ}],

[C53 = {φ}, C′
53 = {1, 5}, C′′

53 = {φ},D53 = {2, 3, 6, 7},D′
53 = {4},D′′

53 = {8}],
[C54 = {1, 4}, C′

54 = {5}, C′′
54 = {φ},D54 = {2, 6, 8},D′

54 = {3, 7},D′′
54 = {φ}],

here, φ is an empty set.
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Step 7: Compute the weights of the concordance sets and the discordance sets.
The weights of the strong, medium, and weak concordance sets are computed using

Eqs. (43), (44), and (45), respectively. The results are wC = 0.5377, wC′ = 0.3228,
and wC′′ = 0.1395. The weights of the strong, medium, and weak discordance sets are
computed by Eqs. (46), (47), and (48), respectively. The results are wD = 0.5187, wD′ =
0.3114, and wD′′ = 0.1699.

Step 8: Establish the concordance and discordance matrices.
The concordance indices and the discordance indices can be computed based on

Eqs. (49) and (50), respectively. Afterwards, the concordance matrix and the discordance
matrix are generated as follows, respectively.

V =

⎡
⎢⎢⎢⎢⎢⎣

− 0.1248 0.1129 0.1947 0.1065
0.2593 − 0.1075 0.1828 0.2162
0.2970 0.2132 − 0.3221 0.2879
0.1894 0.2694 0.0807 − 0.2484
0.3011 0.1657 0.1130 0.2205 −

⎤
⎥⎥⎥⎥⎥⎦ ,

D =

⎡
⎢⎢⎢⎢⎢⎣

− 0.3691 0.3169 0.5187 0.3184
0.3114 − 0.3459 0.3507 0.3114
0.2169 0.0423 − 0.2343 0.2725
0.4268 0.5187 0.5187 − 0.5187
0.2870 0.2359 0.5187 0.3377 −

⎤
⎥⎥⎥⎥⎥⎦ .

Step 9: Compute the net superiority index and the net inferiority index.
Using Eqs. (51) and (52), the net superiority index and the net inferiority index are

obtained as follows: NS1 = 1.7810, NS2 = 1.9319, NS3 = 2.8204, NS4 = 2.2293, NS5 =
2.2213; NI1 = 2.5699, NI2 = 2.0925, NI3 = 1.1801, NI4 = 2.9030, NI5 = 2.2383.

Step 10: Compute the overall evaluation indices for all alternatives.
The overall evaluation indices for all alternatives can be computed based on Eq. (53).

The results are Z1 = −0.7889, Z2 = −0.1606, Z3 = 1.6403, Z4 = −0.6738, Z5 =
−0.0170.

Step 11: Get the ranking order of all alternatives and choose the optimal one.
The ranking order of the five alternatives is A3 � A5 � A2 � A4 � A1. Thus, the

optimal alternative is A3 in accordance with Eq. (54).

6.3. Comparative Analysis and Discussion

In this section, comparisons are conducted to further demonstrate the superiority and ef-
fectiveness of the proposed ELECTRE method.

6.3.1. Comparison with IFS and PFS Environments Using the Proposed ELECTRE
Method

The decision-making results of the proposed FFS ELECTRE method are compared with
those obtained by the IFS ELECTRE method and PFS ELECTRE method with the iden-
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Table 15
Ranking order of alternatives under different decision environments.

Decision
information

Ranking order of alternatives Dominance

IFS A5(1.8780) � A1(0.7190) � A3(−0.1380) � A2(−0.5066) � A4(−1.9524) 0.3026
PFS A5(1.5627) � A3(0.6484) � A2(−0.3323) � A1(−0.6740) � A4(−1.2048) 0.3304
FFS A3(1.6403) � A5(−0.0170) � A2(−0.1606) � A4(−0.6738) � A1(−0.7889) 0.6822

Fig. 4. Alternatives ranking orders under different ELECTRE methods.

tical original assessment data of the criteria in Table 4. The performance ratings of each
alternative on each criterion given by DMs in terms of linguistic variables under IFS and
PFS environments and mapping relations transformed linguistic terms into IFNs and PFNs
are shown in Table 3. The decision-making results derived by the proposed ELECTRE
method under different decision environments are shown in Table 15, in which the num-
bers in brackets are comprehensive evaluation indices for alternatives. Moreover, Fig. 4
presents the ranking orders of alternatives under different decision context.

As shown in Table 15 and Fig. 4, the final ranking orders of alternatives have dis-
tinct differences between the three methods. For example, A5 ranks first under the IFS
ELECTRE method and PFS ELECTRE method, while A3 ranking first with the proposed
FFS ELECTRE method. This is in line with the actual situation. In addition, A3, A5 and
A2 rank in the top three among all of site selections using the proposed FFS ELEC-
TRE method, and are the site of the first three FSHs (see http://www.xinhuanet.com/
local/2020-02/05/c_1125536024.htm?baike), indicating the effectiveness of the proposed
ELECTRE method. Compared with IFS ELECTRE method and PFS ELECTRE method,
the prominent characteristics of the proposed FFS ELECTRE method are as follows.

(1) The proposed method can obtain decision-making result according with the actual
situation. The optimal alternative obtained by the proposed ELECTRE method is A3.
Jianghan FSH, which is the first FSH in Wuhan to use and treat patients, is exactly located
in Wuhan International Conference and Exhibition Center A3 (see http://www.xinhuanet.
com/local/2020-02/05/c_1125536024.htm?baike).

(2) The proposed method can easily discriminate the best alternative. The dominance
of the ranking first alternative is the difference between the normalized comprehensive

http://www.xinhuanet.com/local/2020-02/05/c_1125536024.htm?baike
http://www.xinhuanet.com/local/2020-02/05/c_1125536024.htm?baike
http://www.xinhuanet.com/local/2020-02/05/c_1125536024.htm?baike
http://www.xinhuanet.com/local/2020-02/05/c_1125536024.htm?baike
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Fig. 5. Ranking orders of alternatives obtained by using different ELECTRE methods.

evaluation scores of ranking first and ranking second alternatives. In order to get the
dominance of the ranking first alternative, the comprehensive evaluation score of each
alternative is standardized by Z̄i = (Zi − mini Zi)/(maxi Zi − mini Zi). Take the pro-
posed ELECTRE method as an example, the comprehensive evaluation scores of A3 and
A5 are standardized as Z̄3 = (1.6403 − (−0.7889))/(1.6403 − (−0.7889)) = 1 and
Z̄5 = ((−0.0170)−(−0.7889))/(1.6403−(−0.7889)) = 0.3178. The dominance degree
of the ranking first alternative over second alternative is computed as |Z̄3 −Z̄5| = 0.6822.
Analogously, the dominance degrees of the ranking first alternative under other fuzzy envi-
ronments are computed and shown in the third column of Table 15. As shown in Table 15,
the dominance degree of the ranking first alternative using the FFS ELECTRE method is
significantly higher than those obtained by IFS ELECTRE method and PFS ELECTRE
method. Thus, the FFS ELECTRE method outperforms the IFS ELECTRE method and
PFS method in discriminating the best alternative.

(3) The proposed method allows the DMs to express their opinions more freely. Com-
pared with IFS and PFS, FFS provides a broader scope for preference elicitation.

6.3.2. Comparison with Other Existing Methods
To certificate the superiority and effectiveness of the proposed ELECTRE method, a com-
parative analysis is conducted with some existing methods, including the Fermatean fuzzy
TOPSIS method (Senapati and Yager, 2019c) and Fermatean fuzzy MABAC method
(Wang et al., 2020). The ranking orders obtained by two comparative methods and the
proposed ELECTRE method are revealed in Fig. 5.
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Table 16
Number of times an alternative is assigned

to different ranks (Pik).

Alternatives Rank
1 2 3 4 5

A1 0 0 1 1 1
A2 0 0 2 1 0
A3 3 0 0 0 0
A4 0 0 0 1 2
A5 0 3 0 0 0

The proposed method is superior to other two comparative methods in the following
aspects:

(1) Superiority in obtaining more convincing and reasonable ranking orders of alterna-
tives. As can been seen from Fig. 5, A3 is the optimal site selection based on the proposed
ELECTRE method and the two comparative methods. Therefore, it justifies the effective-
ness of the proposed ELECTRE method for FSHs site selection. As shown in Fig. 5, the
primary difference in the ranking sequences is between A1 and A4. In the proposed ELEC-
TRE method, A4 is better than A1, while A1 is better than A4 based on the TOPSIS method
and the MABAC method. These different rank results can illustrate the superiority of the
proposed method in this paper. The TOPSIS method and the MABAC method assume that
the final ranking will be completely compensated among different criteria, that is, a very
good value on a criterion can be balanced by bad values on other criteria. Therefore, this
unavoidably brings about information loss. But the proposed ELECTRE method based on
non-compensation principle among criteria can overcome the aforementioned drawbacks,
because it determines the ranking order of alternatives by comparing the advantages of
each two criteria values, which offsets the compensate effect among different criteria, thus
obtaining a reasonable ranking result. It can be seen from Table 10, A4 is much better than
A1 on the criteria C2, C3, C6, C7 and C8, but these advantages are balanced by other crite-
ria such that the final ranking is A1 � A4 in the TOPSIS method and the MABAC method
due to compensation problem. In fact, criteria may be non-compensatory in site selection
of FSHs. For example, low reconstruction cost cannot compensate for traffic inconve-
nience, poor environmental protection, poor geographical position, imperfect infrastruc-
ture, regional communication inconvenience, limited capacity, reconstruction difficulty.
Obviously, A4 � A1 obtained by the proposed ELECTRE method is more reasonable
than that given by the TOPSIS method and the MABAC method. Therefore, the ranking
order obtained by the proposed method is more convincing and reasonable.

(2) Superiority in obtaining the optimal ranking order. To validate the superiority of
the proposed ELECTRE method, we adopt an aggregation technique (Jahan et al., 2011)
to find out the optimal ranking order from the TOPSIS method, the MABAC method and
the proposed ELECTRE method. First, Pik is computed, which represents the number of
times alternative Ai is assigned to the kth ranking, shown in Table 16. For example, A2

has twice a ranking of 3 and once a ranking of 4. Then, the values of Tik are computed.
Tik is Pik + Ti,k−1i, k = 1, 2, . . . , m and Ti,0 = 0, shown in Table 17. Finally, to find the
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Table 17
Values of Tik .

Alternative Rank
1 2 3 4 5

A1 0 0 1 2 3
A2 0 0 2 3 3
A3 3 3 3 3 3
A4 0 0 0 1 3
A5 0 3 3 3 3

Fig. 6. Ranking results of different methods.

optimal ranking order, a linear programming model is constructed as follows:

Max E =
5∑

i=1

5∑
k=1

Tik ∗ 52

k
∗ Nik,

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑4

i=1
Nik = 1, i = 1, 2, 3, 4, 5,∑4

k=1
Nik = 1, k = 1, 2, 3, 4, 5,

Nik =
{

0
1

for all i and k,

(56)

where Nik = 1 if the kth rank assign to alternative Ai and Nik = 0 otherwise. MATLAB
software is used to solve this linear programming problem. By solving this linear program-
ming model, the optimal ranking order is derived as A3 � A5 � A2 � A4 � A1. For
illustration, all ranking orders obtained by the aggregation technique, TOPSIS method,
MABAC method and the proposed ELECTRE method are shown in Fig. 6. It is easy
to see that the optimal ranking order is identical with the ranking order of the proposed
ELECTRE method. This means the proposed ELECTRE method is better than other two
methods in dealing with the FSHs site selection problem.
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7. Conclusion

This paper proposed an ELECTRE method aimed to solve MCGDM problems with com-
pletely unknown DMs’ weights and incomplete criteria weights under Fermatean fuzzy
environment. These are advantages of the proposed method. First, the proposed method
can determine dynamic and objective DMs’ weights based on the credibility degrees of
each DM, which is measured by the proposed cross entropy. Second, the proposed method
not only determines the weights of the criteria, but also obtains the weights of the con-
cordance set and discordance set. As a result, the proposed ELECTRE method can make
the decision-making result more accurate compared with the existing ELECTRE meth-
ods which only give the weight of criteria and concordance set and discordance set in
advance. Third, the proposed method is suitable for complex MCGDM problem with non-
compensatory criteria.

Although the proposed method can effectively deal with Fermatean fuzzy MCGDM
problems, there still exist some limitations. Firstly, the main limitation of the pro-
posed method is inability to capture a discrete decision-making problem with non-
commensurable and conflicting criteria. Secondly, it determines the objective weights of
criteria, but it hardly obtains the weights when the interactions among the criteria exist.
Thirdly, only two information measures for FFSs are taken into consideration in this study.
The future work can be extended as follows. The VIKOR method is to be extended into
Fermatean fuzzy MCGDM problems, due to its advantage of treating decision-making
with non-commensurable and conflicting criteria. A new MCGDM method will be pro-
posed by integrating ELECTRE and Fermatean fuzzy DEMATEL technique which con-
siders the impacts of interactions among the criteria. Some information measures for FFSs
including similarity measure, entropy measure and correlation measure will be defined.
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