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Abstract. It is a challenging task to prevent the staircase effect and simultaneously preserve sharp
edges in image inpainting. For this purpose, we present a novel nonconvex extension model that
closely incorporates the advantages of total generalized variation and edge-enhancing nonconvex
penalties. This improvement contributes to achieve the more natural restoration that exhibits smooth
transitions without penalizing fine details. To efficiently seek the optimal solution of the resulting
variational model, we develop a fast primal-dual method by combining the iteratively reweighted
algorithm. Several experimental results, with respect to visual effects and restoration accuracy, show
the excellent image inpainting performance of our proposed strategy over the existing powerful
competitors.
Key words: image inpainting, nonconvex function, total generalized variation, primal-dual
method.

1. Introduction

The research of image inpainting is an important and challenging topic in image process-
ing and computer vision. As is well known to all, it has played a very significant role in
the fields of artwork restoration, redundant target removal, image segmentation and video
processing.

The objective of image inpainting is to reconstruct the missing or damaged portions of
image. For solving this inverse problem, there have emerged numerous models based on
the variational, partial differential equation (PDE), wavelet, as well as Bayesian methods.
Notice that the terminology of digital inpainting was initially introduced by Bertalmio
et al. (2000), who proposed the typical third-order nonlinear PDE inpainting approach.
Subsequently, Chan and Shen (2001) developed a novel PDE model based on curvature
driven diffusion, and the total variation (TV) model (Chan and Shen, 2002). The authors
in Masnou and Morel (1998), Chan et al. (2002) investigated the Euler’s elastica and
curvature based variational inpainting models. Moreover, considering inpainting in the
transformed domain, the works (Chan et al., 2006, 2009) discussed the TV minimization
wavelet domain models for image inpainting. Among these models, one of the remarkable
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variational solvers based on Rudin et al. (1992) is the TV inpainting model

min
u

{
TV(u) + λ

2

∫
�\D

(u − f )2 dx

}
, (1)

where � denotes the complete image domain, D is the missing or damaged region to
be inpainted, f and u are the degraded image and the unknown true data respectively,
TV(u) = ∫

�
|∇u| dx is the total variation function, and λ means a regulable parameter.

As demonstrated in various applications, TV framework (Rudin et al., 1992; Chan
and Shen, 2002; Prasath, 2017) can preserve the geometric features well, but the obtained
results often suffer from the piecewise constant in smooth regions. To eliminate the unex-
pected staircase effect, several powerful regularizer techniques, such as the higher-order
derivatives (Chan et al., 2000; Lysaker et al., 2003), nonlocal TV (Gilboa and Osher,
2008; Liu and Huang, 2014) and total generalized variation (TGV) (Bredies et al., 2010;
Knoll et al., 2011; Liu, 2018, 2019) based schemes have been widely researched with
great success. It is noteworthy that the concept of TGV regularizer was originally intro-
duced by Bredies et al. (2010). In practical applications, considering that images can be
well approximated by the affine functions, the second-order TGV models are particularly
favoured by numerous researchers. Applied to deal with the problem of image inpainting,
the TGV regularized model can be written as

min
u

{
TGV2

α(u) + λ

2

∫
�\D

(u − f )2 dx

}
, (2)

where the weight α = (α0, α1), with α0, α1 being two positive parameters. This technique
reduces the blocky artifacts efficiently, but it sometimes causes the edge blurring.

With the aim of maintaining the sharp and neat edges, the studies (Black and Rangara-
jan, 1996; Roth and Black, 2009) demonstrate that the introduction of nonconvex potential
functions is the right choice. Thus, on the basis of TV model, nonconvex TV regularizer
methods (Nikolova et al., 2010, 2013; Bauss et al., 2013) have attracted much attention
of authors and become a hot research issue. It is worth noting that this solver has the su-
periority in preserving sharp discontinuities, but it leads to the serious staircase artifacts
in smooth regions, even more than the TV based techniques. In view of the foregoing, the
preliminary articles stated in Ochs et al. (2013, 2015), Zhang et al. (2017), which provide
the combination of TGV regularizer and nonconvex prior, have achieved the reasonable
and smooth denoising results with sharp discontinuities.

As for image inpainting, this paper aims to overcome the shortcomings of existing in-
painting models, and constructs a novel nonconvex TGV (NTGV) regularization strategy.
By intimately combining the advantages of TGV regularizer and edge-preserving noncon-
vex function, the developed scheme is formulated as the following concise form

min
u

{
NTGV2

α(u) + λ

2

∫
�\D

(u − f )2 dx

}
. (3)

It is noteworthy that the concrete formulation will be detailed in the next section.
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The main contributions of the current article are listed as follows. First of all, we pro-
pose a novel nonconvex regularization model that closely integrates the superiorities of
TGV regularizer and nonconvex logarithmic function. The usage of nonconvex penalizers
in the TGV seminorm helps to obtain a more realistic image with sharp edges and no stair-
casing. Secondly, to optimize the resulting nonconvex model, this paper presents in detail
a modified primal-dual framework by combining the iteratively reweighted minimization
algorithm. All numerical simulations consistently illustrate the superiority of the intro-
duced method for image inpainting over the related efficient solvers, with respect to both
visual and measurable comparisons.

Finally, we give a briefly outline of the following sections. Section 2 is devoted to the
overview of some basic mathematical preliminaries, and the proposal of a new nonconvex
inpainting model. In Section 3, we minutely describe the process of deducing the designed
optimization algorithm: primal-dual method. Several experimental simulations and com-
parisons, which are detailed in Section 4, aim to demonstrate the outstanding performance
of the proposed strategy. In conclusion, we end this article with some summative remarks
in Section 5.

2. Proposed Model

In this section, we firstly give a brief overview of several necessary definitions and no-
tations, and then put forward a new nonconvex image inpainting model. For later conve-
nience, we begin with the definition of total variation as follows.

Let � ⊂ R
d denote a bounded open domain, and let u be a real valued function on �

such that u ∈ L1(�). Then the total variation of u is defined by

TV(u) = sup

{∫
�

udivϑdx

∣∣∣ϑ ∈ C1
c

(
�, R

d
)
, ‖ϑ‖∞ � 1

}
. (4)

As a generalization of TV, the second-order TGV takes the following form

TGV2
α(u) = sup

{∫
�

udiv2ϑ dx

∣∣∣ϑ ∈ C2
c

(
�, Sd×d

)
, ‖ϑ‖∞ � α0, ‖divϑ‖∞ � α1

}
,

(5)

where α = (α0, α1) > 0 stands for a positive weight, and Sd×d denotes the space of all
symmetric d×d tensors. The respective definitions of the divergence operators and infinity
norms can be formulated as (divϑ)i = ∑d

j=1
∂ϑij

∂xj
, 1 � i � d , div2ϑ = ∑d

i,j=1
∂2ϑij

∂xi∂xj
,

and

‖ϑ‖∞ = sup
x∈�

( d∑
i,j=1

∣∣ϑij (x)
∣∣2

)1/2

, ‖divϑ‖∞ = sup
x∈�

( d∑
i=1

∣∣(divϑ)i(x)
∣∣2

)1/2

.
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More details regarding the concept of TGV are reported in Bredies et al. (2010). Therefore,
the primal formulation of the second-order TGV can be defined as

TGV2
α(u) = min

v

{
α1

∫
�

|∇u − v| dx + α0

∫
�

∣∣ε(v)
∣∣ dx

}
, (6)

where v = (v1, v2)
T and ε(v) = 1

2 (∇v+∇vT) represents the symmetric derivative. More
explicitly, the operators ∇u and ε(v) have the following formations

∇u =
[

∂xu

∂yu

]
, ε(v) =

[
∂xv1

1
2 (∂yv1 + ∂xv2)

1
2 (∂yv1 + ∂xv2) ∂yv2

]
.

The regularizer (6), together with the fidelity term, leads to the TGV based image inpaint-
ing model as

min
u,v

{
α1

∫
�

|∇u − v| dx + α0

∫
�

∣∣ε(v)
∣∣ dx + λ

2

∫
�\D

(u − f )2 dx

}
. (7)

Furthermore, choosing a nonconvex potential function F(|t |) = log(1 + β|t |) and
acting on the above TGV regularizer, this results in our nonconvex TGV inpainting model
as follows:

min
u,v

{
α1

∫
�

log
(
1+β|∇u−v|) dx+α0

∫
�

log
(
1+β

∣∣ε(v)
∣∣) dx+λ

2

∫
�\D

(u−f )2 dx

}
(8)

with β being an adjustable weighting parameter.

3. Optimization Algorithm

This section is devoted to the proposal of our resulting numerical algorithm in detail,
which is tailed for solving the optimization problem (8), by artfully combining the classical
iteratively reweighted 	1 algorithm and primal-dual technique.

It is common knowledge that, for tackling the nonconvex functions, the so-called iter-
atively reweighted 	1 algorithm (Candès et al., 2008; Ochs et al., 2015) has been demon-
strated to be a standard solver. By this method, solving our nonconvex model amounts to
minimizing the following surrogate convex optimization problem

min
u,v

{
α1w

k
1‖∇u − v‖1 + α0w

k
0

∥∥ε(v)
∥∥

1 + λ

2

∑
i,j∈�\D

(ui,j − fi,j )
2
}
, (9)
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where two weights wk
1 and wk

0 are calculated in the latest k-th iteration, and endowed with
the following concise formulas

wk
1 = β

1 + β|∇uk| , wk
0 = β

1 + β|ε(vk)| . (10)

To obtain a fast and global optimal solution of (9), we resort to the popular primal-dual
method, as proposed in Chambolle and Pock (2011), Esser et al. (2010). This technique
has shown the superior capability of solving large-scale convex optimization problems in
image processing and computer vision. Thanks to the Legendre-Fenchel transform, the
nonsmooth problem (9) can be transformed into a convex-concave saddle-point formula-
tion as follows

min
u,v

max
p∈P,q∈Q

{
〈∇u − v, p〉 + 〈

ε(v), q
〉 + λ

2

∑
i,j∈�\D

(ui,j − fi,j )
2
}
, (11)

with the introduced two dual variables p and q. Their feasible sets related with two vari-
ables are characterized by

P = {
p = (p1, p2)

T∣∣ ‖p‖∞ � α1w
k
1

}
, (12)

Q =
{
q =

(
q11 q12

q21 q22

) ∣∣∣ ‖q‖∞ � α0w
k
0

}
, (13)

where the induced infinity norm of p is defined as ‖p‖∞ = maxi,j |pi,j | with |pi,j | =√
(p1i,j

)2 + (p2i,j
)2, and the similar manipulation applies to the infinity norm of q.

First of all, the solutions with respect to the dual variables p and q are formulated as

pk+1 = PP

(
pk + δ

(∇ũk − ṽk
))

, qk+1 = PQ

(
qk + δε

(
ṽk

))
, (14)

where PP (t) is the Euclidean projection of t onto the convex set P . For numerical com-
putation, the projection operators PP and PQ for p and q are equipped with the forms of

PP

(
p̃k

) = p̃k

max(1, |p̃k|/α1w
k
1)

, PQ

(
q̃k

) = q̃k

max(1, |q̃k|/α0w
k
0)

. (15)

Subsequently, we turn our attention to the solution of the primal variable u. Notice that
the resolvent operator relating with the fidelity term has a simple quadratic framework, we
have

uk+1 =

⎧⎪⎨
⎪⎩

uk + τ(div(pk+1) + λf )

1 + τλ
, if (i, j) ∈ �\D,

uk + τdiv(pk+1), if (i, j) ∈ D.

(16)

Likewise, the solution to the primal variable v is trivially given by

vk+1 = vk + τ
(
divh(qk+1) + pk+1), (17)
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where div and divh denote two divergence operators, subject to div = −∇∗ and divh =
−ε∗ with A∗ being the adjoint of A. This, together with the definition of divergence, leads
to

div(p) = ∂xp1 + ∂yp2, divh(q) =
(

∂xq11 + ∂yq12

∂xq21 + ∂yq22

)
. (18)

Finally, given the relaxation parameter θ ∈ [0, 1], the updates for ũk+1 and ṽk+1 read
as

ũk+1 = uk+1 + θ
(
uk+1 − ũk

)
, (19)

ṽk+1 = vk+1 + θ
(
vk+1 − ṽk

)
. (20)

Putting the above pieces together, we achieve a highly efficient primal-dual method,
which is designed to deal with the resulting objective function. More precisely, starting
with the initial setups u0, ũ0, v0, ṽ0, p0, q0, δ, τ and θ , the optimization problem (9) is
calculated according to the following framework

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk+1 = PP

(
pk + δ

(∇ũk − ṽk
))

,

qk+1 = PQ

(
qk + δε

(
ṽk

))
,

uk+1 = uk + τ(div(pk+1) + λf )

1 + τλ

∣∣∣
�\D + (

uk + τdiv
(
pk+1))∣∣

D
,

vk+1 = vk + τ
(
divh(qk+1

) + pk+1
)
,

ũk+1 = uk+1 + θ
(
uk+1 − ũk

)
,

ṽk+1 = vk+1 + θ
(
vk+1 − ṽk

)
.

(21)

It is noteworthy that, as for the computational complexity, the computation costs for the
dual variables p, q and the primal variables u, v are all linear, namely they need O(mn)

operations for an m × n image. Furthermore, similarly to the discussions (Chambolle and
Pock, 2011), the convergence properties of the proposed algorithm are also guaranteed.

4. Numerical Results

Our purpose in this section is to show the visual and quantitative evaluations of the de-
veloped nonconvex strategy for image inpainting. We also evaluate the inpainting perfor-
mance compared to several state-of-the-art convex counterparts, in terms of both visual
quality and restoration accuracy. It is worth noticing that the compared models are per-
formed by using the primal-dual algorithm. All experimental simulations are implemented
in MATLAB R2011b running on a PC with an Intel(R) Core(TM) i5 CPU at 3.20 GHz
and 4 GB of memory under Windows 7.
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The steps δ, τ and the parameter θ used in our numerical experiments are chosen
as L = √

12, δ = 10/L, τ = 0.1/L and θ = 1, this setting usually results in good
convergence. The iterations of all tested methods are terminated when the condition
‖uk+1 − uk‖2/‖uk‖2 < 3 × 10−4 is met. After recovering the image, the commonly used
peak signal-to-noise ratio (PSNR) index is employed as a measure of image restoration
quality. The criterion can be defined as

PSNR = 10 log10

(
2552mn

‖u − ũ‖2
2

)
, (22)

with u and ũ representing the clean and recovered images respectively, and m × n being
the size of an image. Meanwhile, we use the Pratt’s figure of merit (FOM) criterion (Pratt,
2001), which is borrowed to evaluate the edge-preserving ability of different approaches.
Besides, the structural similarity (SSIM) (Wang et al., 2004) and feature similarity (FSIM)
(Zhang et al., 2011) indexes are also employed for image structure information assessment.
Generally speaking, the larger the PSNR, FOM, SSIM and FSIM values, the better the
performance.

Figure 1 illustrates the efficiency of our model for image inpainting compared to two
recently developed methods, i.e. the TV and TGV based convex models. The original
Peppers image is 256 × 256 pixels wide with 8-bit gray levels. Figures 1(b1) and 1(b2)
represent the damaged images with 30% and 50% missing lines, where the lost lines have
been chosen randomly. Subsequently, the second row of Fig. 1 indicates the restorations of
30% lost lines by three different models, while the last row corresponds to the outcomes
of 50% missing lines. We remark that two damaged images are processed by our strategy
with the equivalent parameters λ = 180, α0 = 1 and β = 0.8. The different values of
parameter α1 are set as α1 = 0.6 and 0.8 for two degraded images. Moreover, we present
in Table 1 the quantitative comparisons coming from three different methods.

To further show the superiority, we take Lena image sized by 256 × 256 pixels as an
example for image inpainting. The original image is corrupted by an imposed text, and
noisy because of Gaussian noise with standard deviation σ = 10. This results in the de-
graded version shown in Fig. 2(b). As we already have mentioned, the inpainted results
obtained by our proposed strategy are compared to the ones by the TV, TGV based meth-
ods. The intuitive comparison and measurable evaluation are provided in detail in Fig. 2
and Table 2, respectively. It is worthwhile to point out that our strategy is implemented by
setting the parameters λ = 19 and α1 = 0.8. The values of other unmentioned parameters
are exactly the same as in the previous experiment.

As far as the inpainting of high resolution image is concerned, here we select Man
image of size 1024 × 1024 as an instance. The damaged image, which is presented in
Fig. 3(b), is deteriorated by an imposed mask, and noisy because of Gaussian noise with
standard deviation 15. Regarding this degeneration, the performance of our nonconvex
model is demonstrated by comparing with those of the TV and TGV methods. This re-
sults in the visual inpainted outcomes, which are shown in the second row of Fig. 3 in
turn. Meanwhile, the quantitative evaluations of different approaches are also detailed in
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Fig. 1. Inpainting results obtained by using three different models. (a) original image, (b1)–(b2) damaged images
with 30%, 50% missing lines, (c1)–(c2) TV model, (d1)–(d2) TGV model, (e1)–(e2) our scheme.

Table 1
Comparison of the recovered results obtained using three different methods on Peppers image.

Missing lines Method Iter Time (s) FOM SSIM FSIM

30% TV 85 1.1608 0.9572 0.9459 0.9580
TGV 142 4.2526 0.9509 0.9513 0.9668
Ours 179 5.6633 0.9587 0.9575 0.9701

50% TV 130 1.6496 0.9020 0.8985 0.9119
TGV 243 7.4789 0.8899 0.9137 0.9353
Ours 255 7.9073 0.9036 0.9165 0.9371
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Fig. 2. Inpainting results obtained by using three different models. (a) original image, (b) damaged noisy image
with Gaussian noise (σ = 10), (c) TV model, (d) TGV model, (e) our scheme.

Table 2
Comparison of the recovered results obtained using three different methods.

Figure Method Iter Time (s) PSNR FOM SSIM FSIM

Lena TV 77 1.0410 28.7380 0.8943 0.8509 0.8851
TGV 130 4.2595 28.9033 0.8982 0.8603 0.9062
Ours 141 4.4141 29.4132 0.9176 0.8742 0.9173

Table 3. A point worth emphasizing is that all parameters are valued equivalently just as
in the second simulation, except for the coefficient λ is changed to 16 in this situation.

Finally, we extend the application of our developed strategy for colour image inpaint-
ing. Here colour Turtle image has dimensions of 500 × 318 pixels. To generate two test
destroyed images, we add an imposed text to the clean image, and then corrupt it by Gaus-
sian noise with standard deviation 10 and 20, respectively. More specifically, Fig. 4 intu-
itively displays the inpainting performance of the TV, TGV based convex models and the
proposed scheme. We remark that, in the case of standard deviation 10, the introduced
new scheme is performed with the experimental setup as λ = 16, α1 = 0.6, α0 = 1 and
β = 1.3. As for the counterpart of standard deviation 20, we tune the parameter λ to be 7,
and leave other settings unchanged. Meanwhile, Table 4 shows the measurable compar-
ison between two efficient competitors and our novel strategy in terms of PSNR, FOM,
SSIM and FSIM values.
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Fig. 3. Inpainting results obtained by using three different models. (a) original image, (b) damaged noisy image
with Gaussian noise (σ = 15), (c) TV model, (d) TGV model, (e) our scheme.

Table 3
Comparison of the recovered results obtained using three different methods.

Figure Method Iter Time (s) PSNR FOM SSIM FSIM

Man TV 223 42.7678 27.1566 0.8149 0.7393 0.9410
TGV 437 217.4351 27.6535 0.8177 0.7595 0.9562
Ours 468 226.9293 27.7125 0.8430 0.7679 0.9580

To summarise, as can be observed from Figs. 1–4, TV solver preserves the edge details
well but it tends to yield the typical staircase artifacts. We have observed that although the
TGV model can suppress the blocky effect, it has the sometimes undesirable edge blurring.
As expected, our results exhibit no staircasing in homogeneous regions and simultaneously
possess sharp edges. Moreover, the quantitative comparisons listed in Tables 1–4, with
respect to the larger PSNR, FOM, SSIM and FSIM values, consistently demonstrate the
outstanding performance of our proposed model for image inpainting over other compared
methods.

5. Conclusion

By introducing a nonconvex potential function into the total generalized variation regu-
larizer, this paper constructs a novel nonconvex model for image inpainting. This aims
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Fig. 4. Inpainting results obtained by using three different models. (a) original image, (b1)–(b2) damaged noisy
images with Gaussian noise (σ = 10, 20), (c1)–(c2) TV model, (d1)–(d2) TGV model, (e1)–(e2) our scheme.

Table 4
Comparison of the recovered results obtained using three different methods on Turtle image.

Noise level Model Iter Time (s) PSNR FOM SSIM FSIM

σ = 10 TV 42 2.8932 34.1190 0.8753 0.9096 0.9058
TGV 71 10.8608 35.2567 0.9073 0.9280 0.9326
Ours 97 15.1365 35.5373 0.9196 0.9315 0.9376

σ = 20 TV 43 3.1285 32.4641 0.8368 0.8772 0.8821
TGV 77 11.9358 32.6675 0.8416 0.8793 0.8927
Ours 101 15.8561 32.9568 0.8736 0.8807 0.9039

to capture the small features and prevent the distortion phenomenon. To optimize the re-
sulting variational model, we develop in detail an extremely efficient primal-dual method
by integrating the classical iteratively reweighted 	1 algorithm. Note that the inclusion of
nonconvex constraint increases the amount of calculation, this yields little additional com-
putation cost to handling the minimization. However, in terms of overcoming the staircase
effect, maintaining edges, and improving restoration accuracy, extensive numerical exper-
iments consistently illustrate the competitive superiority of the newly developed model for
image inpainting.
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