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Abstract. In this paper we consider a non-cooperative N players differential game affected by deter-
ministic uncertainties. Sufficient conditions for the existence of a robust feedback Nash equilibrium
are presented in a set of min-max forms of Hamilton—Jacobi-Bellman equations. Such conditions
are then used to find the robust Nash controls for a linear affine quadratic game affected by a square
integrable uncertainty, which is seen as a malicious fictitious player trying to maximize the cost
function of each player. The approach allows us to find robust strategies in the solution of a group of
coupled Riccati differential equation. The finite, as well as infinite, time horizon cases are solved for
this last game. As an illustration of the approach, the problem of the coordination of a two-echelon
supply chain with seasonal uncertain fluctuations in demand is developed.
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1. Introduction

Differential games stand as a suitable framework for modelling strategic interaction be-
tween different agents (known as players), where each of them is looking for the mini-
mization or, equivalently, the maximization of his individual criterion (Engwerda, 2005;
Basar and Olsder, 1999). In such a multi-player scenario, none of the players is allowed
to maximize his profits or objectives at the expense of the rest of the players. Therefore,
the solution of the game is given in a form of “equilibrium of forces”.

Among different types of solutions, the so called Nash equilibrium is the most exten-
sively used in the game theory literature. In this solution none of the players can improve
their criteria by unilaterally deviating from their Nash strategy; therefore, no player has
an incentive to change his decision. When the full state information is available to all the
players to realize their decision strategy in each point of time, this is called a feedback
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Nash equilibrium (Engwerda, 2005; Basar and Olsder, 1999; Friedman, 1971). In order to
find such feedback strategies, the optimal control tools are applied, specifically an equiva-
lent N players form of the Hamilton—Jacobi—Bellman equation is required to be solved for
each of the players. In the case of the non-cooperative Nash equilibrium solution frame-
work, each player deals with a single criterion optimization problem (the standard optimal
control problem), with the actions of the remaining players taking fixed equilibrium val-
ues.

Although the notion of robustness is such an important feature in the control theory,
there are not many studies of dynamic games that are affected by some sort of uncertain-
ties or disturbances. Some recent developments on this topic can be mentioned. Jiménez-
Lizarraga and Poznyak (2007) presented a notion of open loop Nash equilibrium (OLNE)
where the parameters of the game are within a finite set and the solution is given in terms
of the worst-case scenario, that is, the result of the application of certain control input
(in terms of the cost function value) is associated with the worst or least favourable value
of the unknown parameter. The article of Jank and Kun (2002) shows also an OLNE
and derives conditions for the existence and uniqueness of a worst case Nash equilib-
rium (WCNE); however, in this case they considered that the uncertainty belongs to a
Hilbert functional space and enters adding up into the time derivative of the state vari-
ables. A similar problem is considered in a quite recent work (Engwerda, 2017), where
the author shows that the WCNE can be derived by finding an ONLE of an associated
differential game with 2N initial state constraints, the author derives necessary and suf-
ficient conditions for the solution of the finite time problem. The work of Jungers et al.
(2008) deals with a game with polytopic uncertainties that reformulated the problem as a
nonconvex coupling between semi-definite programming to find the Nash type controls.
Other related approaches include: using the Nash strategy to design robust controls for
linear systems (Chen and Zhou, 2001). Another way to deal with uncertainties is to view
them as an exogenous input (a fictitious player) (Chen et al., 1997). In the work of van
den Broek et al. (2003) the definition of equilibria is extended to deal with two cases:
a soft-constrained formulation whose basis is given by Jank and Kun (2002), where the
fictitious player is introduced in the criteria via a weighting matrix.

In this work, inspired in the works of Jank and Kun (2002) and Engwerda (2005, 2017),
we analyse a deterministic N-player non-zero sum Differential Game case, considering
finite, as well as infinite, time horizon in the performance index and a L? perturbation
which is considered as a fictitious player trying to maximize the cost of each i-th player.

Assuming the player has access to the full state information, we are interested in find-
ing a type of robust feedback Nash strategies, that guarantee a robust equilibrium when
the players consider the worst case of the perturbation with respect to their own point of
view. To that end, a set of robust form of the HIB equations are introduced; each of these
equations compute not only the minimum of the i-th player control; but the maximum or
worst case uncertainty from his point of view; resulting in a min-max form of the known
HJB equations for a N players game. To the best of the authors’ knowledge, using such a
robust HIB equation has not been considered before to find a robust feedback Nash equi-
librium in linear quadratic deterministic games, which stand as an important case to study.
To summarize, the contributions of this work are as follows:
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1. Presentation of the general conditions of robust worst case feedback Nash equilibrium
by means of a robust form of the HIB equation for N players non-zero sum games.

2. Based on such a formulation, it gives the solution for the finite time horizon for the
linear affine quadratic uncertain game.

3. It gives the solution of the infinite horizon for the linear affine dynamics.

4. Itillustrates the result solving a problem of coordination of a two-echelon supply chain
with seasonal uncertain fluctuations in demand. Such a case has not been treated before.

The development of this paper is as follows. In Section 2 we state, formally, the general
problem of a differential game and the conditions for the Robust Nash Equilibrium to
exist. Then, in Section 3 we define the dynamics of the problem analysed and the type
of functional cost we have to minimize for a finite time horizon problem, we also state
a theorem based on dynamic programming to find the robust controls for each player.
In Section 4 we analyse the case of infinite time horizon. Finally, Section 5 follows with a
numerical example. The purpose of this last section is to show how to apply the formulas
obtained in Sections 3—4 and then compare our results against a finite time differential
game which does not consider perturbation in the solution of the problem, which is the
common problem treated, but the system itself is affected by some sort of perturbation.

2. Problem Statement

In this section we exploit the principle of dynamic programming in order to find all the
robust feedback Nash equilibrium strategies for each player of a Non-zero sum uncer-
tain differential game. We begin by presenting the general sufficient conditions for such a
robust equilibrium to exist. Towards that end, consider the following N-person uncertain
differential game with initial pair (s, y) € [0, T] x R"*! described by the following initial
value problem

2(0) = f(x(@). (ui(0),ua(0), ... oun (), w(e). 1), x(s) =y, "
ae re(s, T], T < +oo,

where x (1) € R"*! is the state column vector of the game and u; (t) € R%*! is the control
strategy at time 7 for each player i that may run over a given control region U; c R4 >,
i represents the number of player for i € {1, ..., N}, u; is the vector of strategies for the
rest of the players, 7 is the counter-coalition of players counteracting the player with index
i and w(t) € R?*! is a finite unknown disturbance in the sense that Sg |w()|*ds < +oo,
that is, w is square integrable or, stated another way, w € L?[0, T']. The cost function as
individual aim performance

T
Ji(s, y,ui, up, w) = J gi (x(t), ui (), up (1), w(r), t)dt + h; (X(T)), 2

which contains the integral term as well as a terminal state is given in the standard Bolza
form.
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Throughout the article we shall use the next notations:

AB is the set of functions from the set A to the set B.

Al is the transpose of the matrix A.
Iyi:={keN:1<k<Nandk #i}.

%aim[so, s1] = {u; € [sosily; + u; s measurable}.

UL, =2 [0, T]is the set of all admissible control strategies.

I i—1 i+1 N
%dm = %g]m Xore X %adm X %dm KXo X %adm'
Uadm 1= X ;| Uy
If u € %am, for t € [0, T], u(t) := (ui(t), ua(t), ..., un(t)).
D; f denotes the partial derivative of f with respect to the i-th component.

1 4 denotes the indicator function of a set A.

Hypothesis 1. The control region U; is a subset of Rli*!. The maps f, gi and h; are
such that for all (u;,u;, w) € %L x % x L*[0, T, equation (1) admits an a.e.
unique solution and the function J; given in (2) is well defined; in general we assume the

conditions given by Yong and Zhou (1999, p. 159).

RemARrk 1. We assume that the integrand g; given in Equation (2) is positive definite,
then the cost function J; could not take negative values.

2.1. Robust Feedback Nash Equilibrium

Next, we introduce the worst case uncertainty from the point of view of the i-th player
according to the complete set of controls u ;, with j € {1, ..., N} (Jank and Kun, 2002;
Engwerda, 2017):

Ji (s, v, ui, uz, w;‘fui’uf) = max Ji(s,y, u;, u;, w). 3)
weL?[s,T]

In this paper we want to extend the robust Nash equilibrium notion, previously in-
troduced by Jank and Kun (2002) for an open loop information structure, to a full state
feedback information for an N players game.

DeriniTion 1. The control strategies ul", u5?, . .., u'y, are said to be robust feedback Nash
equilibrium, where (u", )IN= | € %aqm, if for any vector of admissible strategies

x UL fori e {l,...,N},

adm>

(ui, u;) € wl

adm

assuming the existence of the corresponding maximizing uncertainty function w®,  m €
LRt ) i

L?[0, T from the point of view of the i-th player. Then, we have the next set of inequali-
ties:
Ji(S, }H”fn, [,{?n, w* m {ﬂ) < Ji(sa y’ I/li, u;n’ w* ) (4)

H m
INZAN A INTTNA
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In those conditions, we say also that (urI“ usy', ..., ug\'}) is a vector of robust feedback Nash
strategies for the whole set of players.

Hypothesis 2. There is a unique vector of robust feedback Nash strategies for the whole
set of players.

Now in order to find the robust feedback Nash equilibrium control strategies for the
problem given by (2) subject to (1), we consider the following definition.

DeriniTiON 2. Consider the N-tuples of strategies (u1, uz, ..., uy) and the robust value
function for the i-th player as:

Vi(s,y) := H‘IEIIIJI Ji(s, y, ui,ulfn, w;’juiyulgn), fori e {1,2,..., N}, )

for any particular initial pair (s, y) € [0, T) x R"*!. The function V; is also called the
robust Bellman function.

RemARrk 2. Notice that the minimization operation over u; considers that the rest of the
players are fixed in their Robust strategies (4) and each wl?" u e Satisfies (3).

2.2. Robust Dynamic Programming Equation

Let us explore the Bellman principle of optimality (Poznyak, 2008) for the robust value
function V; associated with the min-max posed problem for the i-th player, considering
the rest of the participants as well as the signal function w fixed.

For u; € %a’;lm, let us take v; = L[, syu; + L[5 7yu;" and note that v; € %al;lm. Using
the Bellman principle of optimality for the functional J; (s, y, v;, u?“, -), where J; is given

in equation (2), and using also equation (5) given in Definition 2 we have:

*
Vi(s,y) < Ji (s, y, vi, u™, wi,v;,uli") = weanzztiT] Ji (s, y, v, ul™, w)

welL[s,T] | Js

=  max {fg,'(x(t),u,-(t),ul{“(t),w(t),t)dt
T
+ﬁ i (x (), ul™(r), ut" (1), w(t),t)dt+h;(x(T))}

=  max {JS gi (x(t), ui(t), u(t), w(t), t)dt +V (§, x(§)) }, 6)

weL? [S, T] Ky

where the control strategies u " are robust Nash controls defined in (4) and x(§) is such
that x fulfills (1) when u; = u;“ for j # iand w = wl?"u, . that is described in the
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Definition 1. Hence, taking the minimum in the right part of (6) over u;, the inequality
yields to

rlVi(s,y) < min max {f g (x(t), ui(t), ui" (1), w(t), t)dt
wi ek [s, T]weLl?[s,T] | Js

adm

+ Vi(§,x(§))}. @)

On the other hand, beside for any § > 0, there is a control u; 5 € ?/ai(]m,

with the property:

Vi(s,y) +6 > max {f 8i(xs (1), uis (1), uf (1), w(r), 1)dr + Vi(f,m(f))},
wel?[s,T] [ Js
®

where x5 is the solution of (1) under the application of the control u; s keeping the rest of
the players fixed. Indeed, if there is a § > 0 such that for any u; € %", we have

adm

wel?[s,T] | Js

Vi(s,y)+8 < max {fs i (x(2), ui(r), uf™ (1), w(t), r)dr + V,(fx(f))}

then, taking u; = u}" and using the Bellman principle of optimality, we would obtain

weL?[s,T]

Vi(s,y) +8 < max {f gi (x(t), ul™(2), u™ (1), w(r), t)dt + Vi(§,x(§))}

weL[s,T]

< max {fg,»(x(t),ulr,n(z),ul{n(z),w(t),t)dt

[

T
+ J i (x(2), u (1), uf™(£), w e e (1), £)dt + b (x(T))}
= Vi(s, y),

arriving to a contradiction. So, from the inequality (8) we get

weL?[s,T] ( Js

Vi(s,y) +8 > max {JS i (x5 (), uis(t), ul™ (1), w(r), r)dr + Vi(§,x5(§))}

ui el [s, 7] wel?[s,T] | Js

“adm

= min max {JS gi (x(t), wi (1), uf (1), w(t), t)dt

+ %(5,x(§))}. )
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Now, as in the inequality (9), the value of § is positive, but arbitrary, we have

Vi(s,y) > min max {JY gi (x(0), wi (1), ul™(¢), w(t), t)dr

wi €U [5. TY weL?[s,T]
e x(§))} (10)

(Fattorini, 1999; Poznyak, 2008).
From the inequalities (7) and (10), we have arrived to the next theorem that is a robust
form of the dynamic programming equation, for the problem in consideration.

Theorem 1. Let the basic assumption of Section 2 hold, then for any initial pair (s, y) €
[0, T) x R"™ ! the following relationship holds:

wi €%l [s,T] weL?[s,T]

adm

Vi(s,y) = min max {JS i (x (), ui (), ul™(t), w(t), t)dt
+ V,(fx(§))} (1D

foralls e [s, T].

The development of the principle of optimality to equation (11), leads immediately to
the following result:

Theorem 2. Let’s consider the uncertain affine N-players differential game given by
(1)—=(2), where T is finite and the full state information is known. In this case the vec-
tor of control strategies (uj", ul") provides a robust feedback equilibrium if there exists
a continuously differentiable function V; : [0, T] x R**! — R satisfying the following

partial differential equation:
—DiVi(t,x(t)) = min  max {DaVi(r, x(r))" f(x(2), & (1), w(t), 1)
ui €U}, weL?[s,T]
+ g (x(t),ui(t),uffl(t),w(t),t)}; (12)
Vi(T,x(T)) = hi(x(T)), forie{l,...,N},

where 1i;(t) = (ui"(t), ..., ui™  (t), ui(t), ui"y (1), ..., uly(t)), and the corresponding

min-max cost for each player is

J*=Vi(s, y). (13)

1

Remark 3. The partial differential equation (12) of Theorem 2 is called the robust
Hamilton—Jacobi—-Bellman (RHJB) equation. In previous important works dealing with
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the design of robust Hy, controllers using a dynamic game approach (Basar and Bern-
hard, 2008; Aliyu, 2011) the min-max version of the value function was already found.
It was also found that actually when all the players are fixed in their robust Nash controls
the game became a zero-sum game, played out between the i-th player and the uncertainty.
Equation (12) is an extension to the N players non-zero sum game; however, to the best
of our knowledge, this case has not been introduced yet.

3. Finite Time Horizon N Players Linear Affine Quadratic Differential Game

Once the general conditions for the existence of a robust feedback Nash equilibrium in an
uncertain differential game are established, we turn now to the special case of the linear
affine quadratic differential games (LAQDG). In this section we consider the case where
the time horizon is finite, thatis, 7 < +00. The game is played by N participants which are
trying to minimize certain loss inflicted by a disturbance, besides, the functional cost of
the game is restricted by the corresponding differential equation. Therefore, in this section
we assume that:

N
Fx(),u(t), w(t), 1) := A(t)x(r) + Z Bj(t)uj(t) + E(t)w(t) + (1),

= (14)
x(t)eR™L, x(0)=x0, uj(r)eRI 0<r<T < 4w

the functions for the cost of each player are given by the following quadratic functions:

gi (x(t), wi (1), up (1), w(r), t) = x(1)'Q;(t)x(t)
N
+ > ()
Jj=1
i (+(T)) = x(T) Qi (T),

t
R,-’j(t)uj(t) — w(l)tWi (t)w(t), (15)

where j represents the number of the player, A(f) € R"*", and B;(t) € R"*!, for
Jj € {l,..., N}, are the known system and controls matrices; x(¢) is the state vector
of the game and u ; is the control strategy for the j-th player; c(r) € R"* 1'is an exogenous
and known signal. In this case w is the same as in (1), that is, a finite disturbance entering
the system through the matrix E(#) € R"*4. The performance index for each i-th player is
given again in standard Bolza form, the strategy for the player i is u#; while u; are the strate-
gies of the rest of the players. The term w(z)'W; (¢)w(z) is the unknown uncertainty, which
is trying to maximize the cost J; from the point of view of the i-th player. The cost matri-
ces are assumed to satisfy: Q; (1) = Q;(1)' = 0, Qir = Q}; = 0and W;(¢) = W;(r)' > 0
(symmetric and semipositive/positive definite matrices); R; ;(t) = R;;(t)' > 0 and
R; j(t) = R; j(t)' = 0, where inequalities mean inequalities component by component.
Assume also that the players have access to the full state information pattern, that is, they
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measure x(t), for all ¢ € [0, T]. All the involved squared matrices are assumed to be
non-singular.
For the linear affine dynamics given in (14), equation (12) can be rewritten as follows:

—D1Vi(1,x(1)) = Hi}ﬁ weIanaEg,T]{DZVi(t’x(t»t(A(t)x(t) + B;(t)u;(t)

adm

+ > B 1)+ E(f)w ()—I—C(t))

/GINt

x(t)tQ,-(t)x(t) + u,'(l‘)tRi,,‘(t)u,‘(t)
+ > W) Ry (Ou (1) —w(t)tWi(t)u)(t)} (16)

JEIN,i
with terminal condition as V; (T, x(T)) = x(T)'Q;x(T). With this condition and if the

assumptions mentioned above are satisfied, the Robust Feedback Nash Equilibrium can
be directly obtained as

u = arg min {DgVi(-,x(-))t<Ax + Bju; + Z Bjuj + Ew, ,m+ c)
ME@/’ jelyi T

“adm

t t nt m
+x Qix +u; R ju; + Z u; Rl-,juj — wl i W w u;n}, (17
JEIN.i

and worst case uncertainty from the point of view of the i-th player is obtained as

N
w?ju,-,u, arg  max ]{DZVi(',x('))t<Ax + 2 Bjuj + Ew + c>

2
weL?[0,T o

N
+x'0ix + Z uth,',juj — thiw}. (18)
j=1

RemARKk 4. Notice that the value of w;"ui .. given in (18) does not depend of (u;, u;). So,
in this particular case, we shall denote such value just by w*.

Theorem 3. The robust feedback Nash strategies for the uncertain LQ affine game
(14)—(15), has the next linear form:

u™ = —R;;'B{(P;ix + m;) (19)
and the worst case uncertainty from the point of view of the i-th player is:

= W ENPix +my), (20)
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where the set of N Riccati type coupled equations P; satisfy the following boundary value
problem:

— P = AP, + PA+ Q— PSP+ PM;Pi+ ). PiS;iP;

JEIN,i
Pi(T) = Qif,
. N
A::A—ZS,-P,-, (21)
j=1
where S; = B;iR;'Bl, Sji := BjR; [RijR; B}, M; := EW'E', fori,j e {1,

..., N}; and the m; are the “shifting vectors” governed by the following coupled linear
differential equations:

7n.’Li=Atm,‘7PiSim,'7 Z P,‘Sjmjf Z Pijm,'

JEIN i JEIN i
+ PiM;m; + P;c + 2 PiSjimj; mi(T) =0, (22)
JEIN,i

and the value of the robust Nash cost is:

T
J* = x(0)'P;x(0) + 2m; (0)'x(0) + f

(m;Sl- m; —2 Z mESj m;j +m}Mim,'
0

JEIN,i

+ > miP;S; ij.,'+2m§c>, (23)

JEIN i
where J is the optimum value of (2).

The proof of this theorem is presented in Appendix A.

4. Infinite Time Horizon Case

In this section we consider the same linear affine quadratic game when the time horizon is
infinite. As the case analysed in the last section, the players are trying to minimize certain
loss inflicted by a disturbance, besides, the functional cost of the game is restricted by a
differential equation which considers an affine term. In this type of game the functional
cost is given by:

0

+00 N
Ji(t,x, uj, up, w) =J x'Qix + Zuthj,iuj—thiw , (24)

J=1
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and the constraint has the following form:

N
X(1) = Ax(t) + Y] Bjuj(t) + Ew(t) + c(t). (25)
j=1

The involved matrices are constant with corresponding dimension and involved matrices
in (24), satisfy equivalent restriction of the finite time counterpart. Following Engwerda

(2005), we assume that ¢ € Lgxp’ loc» that is, locally square integrable and converging to

zero exponentially. In this case, the system of algebraic Riccati equations takes on the
form:

A'Pi+ PA+ Q- PSP+ PMPi+ ) P;S;iPj=0, (26)

JEIN.i

where A 1= A — Z?jzl S; P;.
To find the solution to this problem the completion of the square method is developed
in Poznyak (2008) and the following theorem is stated.

Theorem 4. For the differential game problem given by the equations (24)—(25), if the al-
gebraic Riccati equations (26) possess symmetric stabilizing solutions P;, then the infinite
time horizon Robust Nash Equilibrium strategies are given by

u;(t) = —R;ilBit(Pix(t) + m,-(t)), 27
and the worst case will be given by

wi(t) = T, EY(Pix(r) + mi(1)), (28)
where each m; fulfills the equation

N

+00
mi(t) — f (e*(Ai*Zj;ei (Pjsj,i*PiSj))(f*S)Pl,c(s))ds’ (29)
1
and
N N
Ai=A"= Y PiSi+ > PiSji+ PM;.
j=1 j=1
Moreover, the optimal value J* is given by

J¥ = x(0)'Px(0) + 2m;(0)'x(0) + n;(0) (30)

1

and the closed loop states equation has the form

N N
x(t) = (A -] BjRL}B;Pj>x(z) — Y BiRj 1 Bim(1) + Ew(t) +c(1). (31)
j=1 j=1
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The proof of this theorem is found in Appendix A.

5. Numerical Example: A Differential Game Model for a Vertical Marketing
System with Demand Fluctuation and Seasonal Prices

Consider a noncooperative game in a two-echelon supply chain established between two
chain agents (Dockner et al., 2000; Jgrgensen, 1986); a single supplier (called the manu-
facturer) and a single distributor (called the retailer). The manufacturer is in charge of sell-
ing a product type to a single retailer over a period of time T at the price p; (¢). The retailer
is in charge of distributing and marketing that product, at a price p2(¢) = pi(t) + r2(t),
where r,(#) represents the profit margin gained by the retailer at time ¢ per each unit sold.
In this case, let us set o = 0.2p;.

The dynamic of the game is established by both players searching for a Nash equilib-
rium in their coordination contract, and furthermore facing some source of uncertainties.
For this particular case assume that the retailer deals with a demand that evolves exoge-
nously over time, with the quantity sold per time unit, d, depending not only on price pi,
but also on the time ¢ elapsed, d = d(p, t). The exogenous change in demand presented
here is due to seasonal fluctuations. Under such enviroment, the profit equations for each
players are J; and J, with the following quadratic structure:

26

Ji = Fipx3(26) +JO (Clz(t)uﬁt) + h—zle(r)> dr, (32)
26

Jy = Fypx3(26) +J0 (—pzwz(l) + (%020))“%(” + h—zzxg(f))dh (33)

subject to the following dynamic

X1 =uy —u,
X2 =upy—d—ew, (34)

where J; indicates the operating cost faced by the manufacturer given by the holding cost
and the production cost, plus a small penalization of the inventories at the final time of
the horizon. On the other hand, J, indicates the operating cost incurred in by the retailer
obtained by the holding cost, the production cost (including the price paid to the manufac-
turer for the products), and the perturbation signal w seen as a malicious fictitious player,
and a small penalization of the inventories at the final time of the horizon. This game in-
volves the dynamic changes of the inventory for each player (x;, x3), with the production
rate (11, up) as decision variables. Moreover, the retailer’s dynamic faces an uncertain de-
mand represented by two terms, the deterministic demand d plus the uncertain factor ew.
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p1L+c LI}
Ry = N )
2 T ] ( 0 0
where
cl = 0.85]71, P2 = 2p1, Cc) = 2, h] = 15, h2 = 10.5,
L6t +90) for0<t<S5,
—3t + 39 for5 <t <6,
pi(t) =< 3t —6 for6 <1 <8,
—15t + 150 for8 <r <9,
Br 45  for9<r<l12,
—5Sp1(t) +135  for0<t <5,
—12p1( )+303 for5 <t <6,
d(t) = pi(t) + 1% for6 <t <8,
—Ep() 1485 for8 <t <9,
—5p1(t) + 135 for9 <t < 12.

781

(35)

(36)

According to the game equations (1) and (2), N = 2. We used the Matlab software to
solve numerically backward in time (21), thus obtaining the corresponding robust Nash
equilibrium strategies for each player. The results of such numerical solution are shown in
figures (Figs. 2, 3). In Fig. 1 are depicted the perturbed demand and the manufacturer price.
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Fig. 4. Comparison between manufacturer produced units (#1), units demanded by the retailer (), and units
left in the manufacturer stock x7.

Figure 4 shows the behaviour of decision variables from each player, and the state equation
from the manufacturer (#; production manufacturer’s rate, uy purchasing retailer’s rate,
and manufacturer’s inventory). Through this figure we can compare the different outputs,
for instance, we observe that products left in the manufacturer’s stock basically are close to
zero. In fact, this figure shows the advantages of better coordination between the different
chain agents, in order to reduce bullwip effect. Since, the manufacturer and the retailer
share information about customer demand, the produced goods from the manufacturer
and the purchased goods from the retailer are deriving in similar behaviour.



Robust Dynamic Programming in N Players Uncertain Differential Games 783

70
60 - 1
50 1
40 |- 1

S TS ;

Flow of goods
n
o

0 5 10 15 20 25 30
Time, sec

Fig. 5. Comparison between retailer bought units («#>), units demanded by the final consumer (D), and units left
in the retailer stock (x7).

Also, since there are no restrictions for the states of a given stage in the chain we can
see that, at times, we are going to have negative values for this variable. For example,
between t = 8 and t = 16, the units left in stock get a negative value, this only means
that the manufacturer has backlogged units. However, we can appreciate that the amount
of this backlogged units is minimum. Also for the closing of the season, between ¢t = 20
and ¢ = 25 it is better for the manufacturer only to have backlogged units. Once we get
a Nash equilibrium, any deviation from the output policies would result in a loss for the
manufacturer or the retailer.

On the other hand, Fig. 5 shows the behaviour of the retailer’s dynamics through the
time horizon. We can appreciate that the strategy followed by the retailer differs from the
manufacturer in that the retailer uses inventory to face demand uncertainties. The retailer
is considering the worst case of any perturbation on demand, but stock units are kept up to
the minimum. The decisions at the end of the planning horizon are perturbed by the finite
time horizon condition. For that reason the planning horizon was extended to two years
in order to avoid such perturbations in the first year.

6. Conclusions

We found the Nash equilibrium control function of an N players differential game affected
by an L? uncertainty function for a linear quadratic affine performance function in two
cases:

1. When we have a finite time horizon. In this case we assume the matrices involved in
the performance function are time dependent.

2. When we have an infinite time horizon. In this case we assume the matrices involved
in the performance function are constant with respect to the time, and there are only
temporal dependence of the uncertainty function, the state function, and an affine term
of the constraint given by the linear differential equation.

Both problems are solved in this work using different methods.
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A. Appendix

Proof. Proof of Theorem 3. To start the proof we find u;" by means of (17) and the fact
that

Dy V; (1, x(2)) (Bi(t)) + 2ui(t)'Ri i (t) = 0
1

B t t (37)
= u;(t) = SR (t)Bi (1) (D2 Vi (1, x(2)))",
and we find w;", given in Remark 4 by means of (18) and the fact that
DoV (1, x(1)) (E (1)) + 2w(t)'W(r) = 0
1 ¢ ) (38)
= w(t) = EWi (H)E(r) (Dg%(t,x)) .
Substituting (37) and (38) back in (16) we get
| -
—DiVi(-x) = D2V,-(~,x)<Ax - ERi,ilBit(DZVi(':x))t
t
__ZBJ // j(D2V; (-, %))
JEIN,j
— EW'E'(DaVi( x)' + c)
N
+x'0ix + = Z D,V (- )B]R“R R Bt LDaV;( x))'
] 1
1 _
+ 5 (DaVi(, X)) EW, LEYDyV; (-, x))" (39)

Now we have to solve the first order partial differential equation (39); to do that we propose
the solution

Vi (2, x(t)) = x(t) Py (£)x(r) + 2m; (1)'x(¢) + ni(1). (40)
So

DyV;(r,x(t)) = 2x(t)' P;(t) + 2m;(t)' and (41)
D1V; (1, x(t)) = x(2)" P (t)x (¢) + 2ri; (¢)'x (¢) + i (¢). (42)
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Substituting (41) and (42) into (39), expanding, and grouping terms of the form x'(¥ )x
and x'(Z), yields

t
xt< < ZBRlBt >P+P< ZIBR“Bt >+Q
J

— PiBiR'BP; + PEW; EP+2PBR Rj,iR,,}B}Pj>x
j=1

N N
+xt (m,- + A'm; — PiBiR'Bim; — Y PiBjR; Bim;— ) P;B;jR; | B}m;
j=1 j=1

N
+ PEW, 'E'm; + Pic+ ). P.,'BjRj’jl,Rj,iRj’}B;mj>
j=1

N
- (m +miBiR; Bjmi —2 ) m{B;R; | Bim; +mEW; ' E'm,
j=1

N
+ >, m PiB;R; IR iR BjPimj+ 2m§c> =0. (43)
j=1

Last equation is only satisfied when (21) and (22) have solution; for the terminal conditions
we have

Vi(T,x) = x(T) ' Pi(T)x(T) + 2m; (T)'x(T) + n;(T) = x(T)' Qisx(T),

implying the terminal conditions of (21) and (22). The value of the optimal functional cost
is

7 = x(0)' Pi(0)x(0) + 2m;(0)'x +ns(0). (44)

so the theorem is proven. O

Proof. Proof of Theorem 4. To develop the proof of this theorem let us suppose there
exists an “energetic function” V; : [0, +00) x R"*! — R with the form

Vi(t, x) = x! Pix; + 2m;(t)'x; + n; (1),
where m; is defined in (29) and n; is given by
o0 N N
ni(t) = J (mESi m; — 22 m;Sj mj + m}Mim,- —|—Z mtij SiiPimj+ 2m}c>.
t

j=1 j=1
(45)
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Let V; : [0, +00) — R the function given by

We start by taking the derivative of Vi, obtaining
V! = 2x'Pix + 2mix + 2mix + ;. (46)

Now the fundamental calculus theorem tells us

A~ A T A
Du(T) - I-(O):L D/()dr. @7)

+
[\
=
—~
~
S
)
o
=
+
[\
E
=
Xﬁ
—~
~
S~—
+
[\
3
<
~—=
S
=
—~
~
S~—"

+ (2x (1) P Ew(r) + 2m; (1) Ew(t) — u)(t)tWiw(t))>dt

T
— J (x (1) Qix(r) + ui (1) Rijui (1) — w(t) Wiw(r))ds. (49)

0
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The second brace can be expressed as a difference of squares as follows:

2(xtPiE + mEE)w —w'Ww
—2(x'PEWT T + m§EW*%)Wﬁw - Hwtwﬁ &
= e REWTE mEW Y - wtw |
+ | PEWT + mEWT | (50)

Now, dealing with the first brace after the equal sign in the right side of (49), we do as
follows:

2(x"P;Bi + m}Bi)uj + u}Ri ju;

_1 1 1 1
=2(x'PB;R; > + mitB;R, *) R ui + |uj R}, |

1
s

_1 _1 1
= |«'PiBiR;;* + m!B;R;; + u}Rfl.Hz

I°. (51)

1 1
— |x'P;BiR; ;> + m{BiR,

i i,

Inserting (50) and (51) into (49), defining S; := B; R;ilB; and M; := EWi_lE‘, we get

T
Vi(T) — Vi (0) = J() ((Xt(PiA + A'P; + Qi — P;S; P; + PiMiml-)x

+ 2x" (rhi + A'm; — P;Sim; + PiMim; + P,-c)
+ (fz +miMim; — mSim; + 2m}c)
+2xtPl~ Z Bju; +2m§ Z Bjuj>
JEIN,i JEIN,i

. O T
+ X' PBiR; * +miBiR; 7 +ui R |

t 1 t _1 t 1.2
— |x'"PEWTY + mEW T2 —w'W1|

T
— J (xtQ,'x + u}Ri,iui — thiw). (52)
0

In (52) since u; is minimizing at the same time u; does, then we know that the form
of the control for u is

uj = —Rj 1B'(Pjx +mj). (53)
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Substitution of (53) into (52) gives

\Z(T)\Z(O):JT<()C‘<P,~<A > Sij>+<A > Sij>tP,~

0 JEln. JEIN,i
+ Qi — PiS;Pi + P M;m; + Z Pij,in>x
JEIN,i
+ 2x* (m,- + A'm; — P;Sim; + PiM;m;
+ Y, PiSjimj— Y, PiSimi— Y PiSjmj+ Pic)
JEIN,i JEIN,i JEIN i
+ <ﬁ + miMim; — m:Sim;
+ Z m.thj,imj —2m! Z Sim +2m§c>
JEIN.i JEIN.i
_1 _1 IS
+ [« PiBiR; P+ miBiR; P + uiRE|

1 1 1

— | REWZ miEW, - w' W

t —1 % t —1 % t % ?
— | >, PiBjR; R}, + > m\B;R; R} +ulR}, )

JEIN i JEIN i

T
—J (xtQ,'x—Fu}R,-,iu,-+ut/~Rj,iuj—th,-w). 54)

o .

According to (54) we have to find the solution to the N equation. This solution is found
by solving simultaneously the differential equations system

mi Aq PS> —P1Sy -+ PySn1— PiSy mi
my P1S12 — P25 A <+« PnSna — PoSh my
my PiSiyn — PnS1 PySov — PyS> -+ Ay my
Pic
Py
+ . ,
PNC

where the result for m; are the N equation stated in (29) of Theorem 4.
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From the assumptions of equations (24)—(30), this is P;, m;, n; are solutions to the
equations (26), (29), (45) respectively, and substituting these equations into (54) we find
that

A . T _1 _1 1
Vi(T) - Vi(0) = .[0 ((}xtPiBiRi,iz +mEBiRi,i2 + MERiz,i Hz)

e PEWT £ mEW T~ wtw P

1 1 1

et p.p—1lp2 Z tp p—1p2 t p2
Y PiBjR; ;R;; + miBjR; jRj; +ujRj,;
JEIN,i JEIN,i

)

T
—J (xtQ,'x—l—uER,-,iu,- —|—Mt/~Rj,iuj —th,-w).
o .

Now, since m; converges exponentially to zero, because the matrix A; — Z?’:l (PjSji—
PSS j) is stable, then n; also converges, because it depends on the m; terms and ¢, which
is a locally square integrable function that converges to zero exponentially. Also since
x(T) — 0as T — 400, then limy_, 4 oo Vi(T) = 0, obtaining

A 0 1 _1 1
—V;(0) =J <|x’Pl-Bl-R 2+ miB;R, > +uiR}|

i,i i,i
0

— |x"PEW,

1
2+ mlEW,

i i i

1 1 1
t n.p—lp2 tp. p—lp2 t p2
— | Y] PiBiR R} 4+ Y myBiR R +uiR},

2
)-Ji,

(55)

JEIN i JEIN i

where
+00
Ji = J;) (xtQ,-x + MER,",'MI' + uthj,,‘Mj — thiw).

This means that the control that minimizes J; has the form of equation (27) and the term
that maximizes J; has the form of equation (28). In that case, when we substitute u; and
w; in (55) we find that the optimal control has the value given in (30). O
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