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Abstract. A possible interpretation, in terms offuzzy classification models 
(fuzzy classifiers), of one of the general principles of choosing a scientific theory 
- a consistency principle - is considered. A concept of a stability measure of 
unsupervised fuzzy classifiers is introduced. A general scheme of computing the 
above measure is proposed. A concrete algorithm for implementing the general 
scheme and examples of its application are given. 
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Introd uction. In this paper a problem of the interpretation 
of one of the general principles of the selection of a scientific the­
ory - the consistency principle - is analyzed. More concretely, we 
consider this principle in the context of unsupervised fuzzy classifi­
cation models (which we will also call fuzzy cluster-analysis models 
or fuzzy automatic classification models). 

It has been previously noted (Vatlin, 1992), that the conse­
quence of the primary character of the classification models with 
respect to other forms of a theoretical knowledge is necessity of the 
interpretation of the above mentioned principle as a self-consistency 
principle. However, peculiarity of the unsupervised classification 
models doesn't allow formulating the .self-consistency principle in 
terms of a self-guessing property, on the analogy of what has been 
done in the case of supervised fuzzy classifiers (Vatlin, 1992). 

The reason of the latter circumstance is stipulated by the ab­
sence of some learnjng informat~on of extrapolation type in prob­
lems of (fuzzy) automatic claSsification. As a result the (fuzzy) 
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cluster-analysis models cannot be compared according to the ex­
tent of recognizing by them one part of a learning set after training 
it on the other part of this set. 

Practically the one possibility to evalu:ate the degree of self­
consistency of a (fuzzy) classification model is related with the 
analysis of the results of using this model under analogous con­
ditions. In problems of (fuzzy) cluster analysis such conditions are 
given by so-called admissible modifications of the initial sample X, 
that is, by such samples of experimental observations which are 
"similar" (in a predefined sense) to the initial sample (Moreau, 
Jain, 1987; Krasnoproshin, Vatlin, 1989). 

It is reasonable to consider, as the most valid classification 
model, that one which has the maximum stability on all the set 
of admissible variations of the sample X. Really, random classi­
fications of experimental observation will be, as a rule, unstable 
since they reflect the results of only one separate experiment. At 
the same time, if the classification model "catches" real regulari­
ties, present in the data being analyzed, it must repeat itself in a 
majority of experiments. As a result, the stability of such classifi­
cation (on a set of admissible modifications of the initia.l sample) 
will always be higher than that in inadequate classifications. 

The samples representing the admissible modifications of X 

may be formed in different ways. If a required additional informa­
tion is available these samples may even "go beyond the limits" 
of the initial set of observations (Forsyth, 1980). However, in sit­
uations when it is difficult to obtain such additional information, 
s~me conclusions on the validity of one or another classification 
model of the initial sample can be reached by moving not outside 
thf' X set but "inside" it. Really, if some classification reflects 
1I·a.1 regularities of the experimental data. X then this 'Classification 
//lust also "work'" on (representative) subsets from X. Similarly, 
the classifications "working" on the (representative) subsets from 
X ,must differ slightly from (restrictions on these subsets) the valid 
classification of the whole set X. Stability of the valid classification 
model should be observed. 
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The stability of classifications, reflecting the objective regu­
larities of the physical world represents one of the fundamental 
peculiarities of the human way of thinking. So, for example, it is 
impossible to imagine that the structure of the classification scheme 
in a sense of the number of classes of the Hubble extragalactic neb­
ulas or Mendeleev Table structure prove to be unstable, dependent 
on the peculiarities of a concrete experiment. 

As a consequence, while revealing the valid classification mod­
els, it is important to analyze the stability of cla,ssification proper­
ties expressed by some heuristic criterion with respect to "internal" 
admissible modifications of the initial sample X, rather than to es­
timate the degree of implementing such criterion on this sample. 

In order to describe the general scheme of stability analysis of 
unsupervised fuzzy classification models, basic notions and defini­
tions in Section 1 of the paper are given. In Section 2 an original 
algorithm for stability analysis of fuzzy classification model realiz­
ing the above scheme is considered. 

1. Basic concepts and definitions. A general scheme of 
stability analysis of unsupervised fuzzy classification mod­
els. Let X be a protocol of experimental observations of a concrete 
object Z, such that X = {xm}, mE M, xm = {zr,xr, ... ,z~}, 

m (m 'm m) m Rl . -1 - . -1 - M 
Xi = Xil,Zi2"",Xip, Zi; E , a= ,n, J= ,p, mE . 

Further, if we deal with a fixed experiment with the above ob­
ject we shall omit the superscript and write merely X = {Xl, Z2, ... , 

Zn}, Xi = (Xil, Zi2, ••• , Zip), i = 1, n. 
Let us denote by VnL - the set of matrices of dimension n x 

L (n, LEN, 1 ~ 2, n > L), the elements of which are arbitrary 
real-valued numbers Pi;. A set 

V/L ={ v E VnLlpi; E [0,1], Vi = l,n, Vj = 1,L; 

L 

LPij = 1, Vi = 1, H, 
j=1 

n 

0< LPij < 1, 
i=1 

will be called a fuzzy L-partitions space of the sample X. 

(1) 
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The values I'ij will be interpreted as a measure of belonging the 
i-th object of the initial sample X to the j-th fuzzy class Fj, j = 1, L. 

The unsupervised fuzzy classifier is sllch a (finite) family of 
(admissible) mappings G = {gd, L E [Lo, L1] that 

gL: X - V/L, L E [Lo, L1], 

where Lo and L1 denote lower and upper bounds of a possible vari­
ation of classes in X (in the most general case Lo = 2, Ll = n - 1). 

Let {X, A, U, G,~,~} be an ordered tuple, in which X is an 
initial samplej A, CardA = D is such a set of indices that {XQ}, a E 

A is a parametrical family of admissible modifications of sample X 
(without loss of generality we assume that X O = X)j U = U V/i" 

lI<eA 
where V/L is a set, the elements of which are all possible fuzzy 
partitions of XII< into L classes, a EA. 

A family of mappings G.. = {gZlLE[Lo,L1], gZ: XII< - V/l will 
be called an extension of the unsupervised fuzzy classifier G = 
{9dLE[Lo,L 1], gL: X - V/L, and the mappings g'l - will be called 
a-cutoffs of the admissible mappings gL, a E A. 

Nonnegative real-valued functions f'l: VIi - Rl constituting 
set <I1 = {/f}II<EA, L E [Lo, L1] will be defined as a heuristic validation 
criterion of a-cutoffs gfJ. 

The numbers 

will be called relative stability indices of mappings gL. 

The value 

1L = 'II (p1,pl,··· ,pf) 
will be called an absolute stability index for gL, L E [Lo, L1], where 
'II - is a nonnegative real-valued function, determined from the 
Cartesian product RD, 'II: RD _ RI. 

The admissible mapping gL will be considered as a g-stable 
(or merely stable) according to the system of heuristic validation 
criteria {In, a E A, L E [Lo, L1] and according to the family of 
admissible modifications of the initial sample - {XII<}, a E A, iff. 
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Let X be a fixed initial sample, and G = {9dLE[Lo,L1J is an 
unsupervised fuzzy classifier such, that gL: X -+ V/L. Let us 
denote by We a set of all stable admissible mappings reali:zed by 
the classifier G. If CardWe = 1 then the problem of analyzing the 
stability of the unsupervised fuzzy classification model is solved 
uniquely. In situations, when CardWe > 1 we have a partial solution 
of the above problem consisting in the possibility of ordering the 
admissible stable mappings by the va,lues of their absolute criteria 

gLl < gL2 < gL3' •• < 9Lm. '¢::::;> I'Ll ~ "'(L2 ~ •.• :s;; ILmc' 

me = CardWc • 

If CardWc = 0 the problem has no solution. In this case further 
actions of stability analysis methods of the unsupervised classifica­
tion models should be directed to the verification and refinement 
of a priori representation of the initial sample structure and of the 
character of heuristic validation criteria for a-eu toffs DI.' 

2. Algorithm for fuzzy classifier analysis. Let, as a family 
of admissible modifications of the initial sample X, a set of its 

. pseudo copies S = {Xl, X 2, ••• ,XD} be specified. We shaH define 
the structure of the S set so that in any X a , a = 1, D a small part 
of objects from X is missing. The choice of these objects is made 
in a random manner and it doesn't depend on the way of forming 
the other elements of the S set. 

We'll denote by VJL = IIpijll, i = l,n, j :;:: I,L a matrix of 
an arbitrary fuzzy partition of X into L classes. Let. Pi} IXa be 
restrictions of the functions Pij on sets X a , and VaL be matrjceo 
of a fuzzy partition corresponding to the a.bove restrictions. We'll 
also denote by vI. the matrix,formed as a result of an arbitrary 
"immediate" partition of the X into L fuzzy classes, a == I,D, L E 

[Lo, L1]. 

On elements of sets Kl = VaL UVl, a:;:: 1, D, L E [Lo, Ld, where 
VaL and Vl are spaces of all possible matrices VaL and vI respec­
tively, we shan define a. function of distance (Mirkin a.nd Tcherny, 
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1970) 
1 Mo: 

P(VaL' vL) = 2 E lrtu - Stu/' 
t,9=1 

(2) 

where by means of ttg and Std we denote elements - indicators R 
and S of ma.trices VLa and vl, Ma = CardXCt, a == I,D, L E [Lo,L1]. 

(If V, ltV E 1('1, are such tha.t W, V E VLa or W, V E Vl then relation 
(1) is vaH d as before). 

Let us choose as heuristic estimate of validation of restrictions 
I'ij Ixa the va.lues of the function p associated with them, Le., we 
put 

Taking into account the,:way of constructing the pseudocopies 
XCI, a = 1,15, the value of f3l may be considered as a value of 
random variable Ih 

Then, a,t the fixed unsupervised classifier G = {gdLE[Lo,L 11, there 
will be D individual values of the random variable (h, L E [Lo, Ld, 
corresponding to each admissible mapping fL' 

Let us consider as stable only those admissible mappings YL 

for which "'f = 'IIf(Pl.PI, ... ,PP.) == !E~=1Pl ~ t. As a result, 
the sequence of operations, implementing the general scheme of 
stability analysis of the unsupervised fuzzy classification models 
may he structured as follows. . 

V - Algorithm 
Step 1. By means of admissible mappings gL E 0-, L E [Lo, L1] 

classify the initial sample X into L fuzzy classes. Con­
struc! the matrices of fuzzy classification . 
VJL = lll'iill, i = f,fi, j::: I,L, L E [Lo, Ld. 

Step 2. Form the matrices VaL, corresponding to the restric­
tions of functions I'ij on subsets X a , 0' = 1, D, L E 
[Lo,L1]. 



420 Stable fuzzy clas.qifiers 

Step 3. Classify each of the pseudocopies of the initial sample 
X into L fuzzy classes with the help of a-cutoffs of ad­
missible mappings UL - g~. Construct matrices offuzzy 
partitions v'l, 0' = 1,D, L E [Lo,L1]. 

Step 4. Calculate the values of relative stability indic.es of ad­
missible mappings gL, 

f3Z=p(va L,viJ, a=l,D, LE[Lo,Ld. 
Step 5. Calculate the values of the absolute stability indices for 

1 "D {JOt 9L, 1L = 75 L."a=1 L' 
Step 6. Verify the stability of the admissible mappings 9L by 

the system of heuristic validation criteria - un, L E 

[Lo, L1J. 
1£ ~ t:. 

Step 7. IfCardW, > lor CardW, = 1, then form either complete 
or partial solution of the problem of validjty analysis 
of the unsupervised (fuzzy) classification (model G = 
{gd L E [Lo, Lt}. 

Else, (CardW, = 0) go to the revision of the a priori 
representation of the character of the heuristic crite­
ria of validation un, 0' = 1, D, L E [Lo, L1] and the 
structure of the initial sample X. 

Conclusion. The study carried out on experimental and 
model problems confirm the efficiency of the V algorithm. So, fof' 
example, while revealing, by means of the family of SEMI-FUZZY 
algorithms (Selim, Ismail, 1983), the most valid number of classes 
in the Fisher sample, the admlssible mapping with L* = 3 has been 
identified unconditionally. This corresponds to the true structur.e of 
the set being analyzed (Bezdek, 1975). At the same time, the appli­
cation of conventional algorithms for validation analysis of various 
classifications of this sample, results in a wrong model with L· = 2 
as the most "preferable" {Bezdek, 1975}.· Thus, the application of 
the V algorithm allows us to cope with the situations in which the 
classical algorithm doesn't work. 

The V algorithm shows a good ability for revealing the true 
number of classes in solving problems, associated with the iden-
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tification of non-spherical and linearly-unseparable classes (Zahn, 
1971). 

In essence, the proposed algorithm takes on an intermediate 
position between bootstrap and "geometrical" algorithms, which 
have already been tested while solving a. number of practical prob­
lems (Krasnoprshin, Vatlin, 1989; Vatlin, Moroz, 1988). The stable 
classification models formed within the framework of the V algo­
rithm are a suitable tool for generalizing an experimental informa­
tion and a means of analyzing and forecasting processes in complex 
engineering systems. 
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