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Abstract. A (k, n)-threshold secret image sharing scheme is any method of distributing a secret
image amongst n participants in such a way that any k participants are able to use their shares
collectively to reconstruct the secret image, while fewer than k shares do not reveal any information
about the secret image. In this work, we propose a lossless linear algebraic (k, n)-threshold secret
image sharing scheme. The scheme associates a vector vi to the ith participant in the vector space
F

k
2α , where the vectors vi satisfy some admissibility conditions. The ith share is simply a linear

combination of the vectors vi with coefficients from the secret image. Simulation results demonstrate
the effectiveness and robustness of the proposed scheme compared to standard statistical attacks on
secret image sharing schemes. Furthermore, the proposed scheme has a high level of security, error-
resilient capability, and the size of each share is 1/k the size of the secret image. In comparison with
existing work, the scheme is shown to be very competitive.
Key words: secret sharing, secret image sharing, (k, n)-threshold scheme, admissible tracks,
chaos.

1. Introduction

A secret sharing scheme is any method of distributing a secret amongst a number of par-
ticipants in such a way that any authorized group of participants can recover the secret,
while unauthorized sets of participants are unable to obtain any information about the
secret using their shares. In a k-out-of-n secret sharing scheme, there are n participants
and every collection of k or more participants is authorized to recover the secret, while
fewer than k participants constitute an unauthorized set. The number k is referred to as the
threshold and the scheme is usually referred to as a (k, n)-threshold secret sharing scheme,
or a (k, n)-scheme for short. While there exist other approaches such as those where au-
thorized sets of participants are specified by properties other than merely the size of the
subset, in this work we focus on (k, n)-schemes.

The concept of secret sharing was introduced in 1979 independently by Shamir (1979)
and Blakley et al. (1979). Shamir’s method is based on polynomial interpolation in the
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field Fp of integers modulo p, whereas Blakley’s method is based on hyperplane geom-
etry. In the early eighties, Mignotte (1982) and Asmuth and Bloom (1983) proposed a
threshold secret sharing approach based on the Chinese remainder theorem. Secret shar-
ing schemes are important primitives in a number of cryptographic applications such as
threshold signature (authentication) schemes (Desmedt and Frankel, 1991), access con-
trol (Naor and Wool, 1998), electronic voting (Schoenmakers, 1999), distributed storage
systems (Wylie et al., 2000), etc.

Because of the widespread use of digital images, development of secret image shar-
ing schemes (SIS) where the secret is a digital image have attracted the attention of re-
searchers. In the context of an SIS, shares are often referred to as shadow images. We
refer to a (k, n)-threshold secret image sharing scheme as a (k, n)-SIS for short. There are
challenges specific to secret image sharing. For example, secret sharing was originally in-
troduced for sharing cryptographic keys, thus sizes of shares were not much of a concern.
On the other hand, since digital images are typically large, one is concerned with how
large each shadow image is in comparison to the original secret. While Shamir’s scheme
produces shares of the same size as the secret itself, Thien and Lin (2002) proposed a
(k, n)-SIS inspired by Shamir’s scheme whose shadow images are of size 1/k the size
of the secret. Lin and Tsai (2004) extended Shamir’s scheme in proposing a secret im-
age sharing scheme with the capabilities of steganography and authentication. Chang et
al. (2008) showed that this scheme suffers from weak authentication and low quality of
stego-images. In Bai (2006), Bai proposed a (k, n)-SIS based on matrix projection in con-
junction with Thien and Lin’s approach (Thien and Lin, 2002). del Rey (2008) proposed a
(2, n)-SIS using binary matrices. Rey’s scheme is shown to suffer from some drawbacks if
the matrices are not of low enough rank (Elsheh and Hamza, 2010). Many Shamir-based
SIS use arithmetic in the fields F251 or F257 to accommodate 8-bit intensity values of
digital images. This choice renders such schemes lossy since they involve truncation of
some values. Hu et al. (2012) proposed a lossless (k, n)-SIS over the Galois field F28 . In
El-Latif et al. (2013), Abd El-Latif et al. proposed a secret image sharing scheme based
on random grids and error diffusion and a chaotic cat map for the generation of meaning-
ful shadow images. Wu (2013) proposed a variant of Thien–Lin’s scheme (Thien and Lin,
2002) which uses prime number 257 as a replacement for 251 in Thien–Lin’s approach.
Wu’s scheme has a low distortion rate, and is more applicable for light images (Wu, 2013).
However, due the overflow caused in the generation phase of this scheme, reconstruction
of the secret image is more computationally intensive than in the case of Thien–Lin’s
scheme. In Zarepour-Ahmadabadi et al. (2016), Zarepour-Ahmadabadi et al. proposed an
SIS based on cellular automata. Deng et al. (2017) proposed a (2, n)-threshold SIS based
on basic vector operations and coherence superposition. Kanso and Ghebleh (2017) pro-
posed a variant of Thien and Lin’s scheme based on cyclic shifting to improve the quality
of the reconstructed secret image. Kabirirad and Eslami (2018) proposed a multi secret
SIS based on Boolean operations whose drawback is that each generated shadow image
has the same size as the secret image. Ghebleh and Kanso (2018) proposed a (k, n)-SIS
based on Shamir’s approach and arithmetic in a field Fp where p is a large prime, to fa-
cilitate the use of (concatenated) multiple intensity values of the secret image as a single
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coefficient. While still lossy, this method enhances the quality of the reconstructed secret.
Ding et al. (2018) proposed a scheme based on matrix theory and Shamir’s construction.
Recently, Kanso and Ghebleh (2018) proposed a (k, n)-threshold secret sharing scheme
for medical images based on Shamir’s approach and the high redundancy in medical im-
ages. Some secret image sharing schemes such as Chang and Hwang (1998), Chang et
al. (2006), Chen et al. (2009), Le et al. (2011) employ vector quantization (VQ) methods
(Gray, 1984; Gersho and Gray, 2012; Simić et al., 2018) to compress the secret image,
which results in further reduction in the sizes of the shadow images.

A majority of existing secret image sharing schemes in the literature are based on
one of Shamir’s (1979), Blakley’s et al., (1979), Mignotte’s, (1982) and Asmuth and
Bloom’s, (1983) approaches. Furthermore, many of the existing schemes are lossy and
restore the secret image with some distortion which may not be acceptable in certain ap-
plications. Moreover, some existing SIS suffer from weak authentication and security is-
sues. The aim of this research is to present a secret sharing scheme that has improved
performance over existing work.

In this paper, we propose a lossless linear algebraic (k, n)-SIS. As illustrated later, the
proposed scheme is a generalization of Shamir’s secret sharing scheme based on poly-
nomial interpolation. The scheme associates a vector vi to the ith participant in the k-
dimensional vector space F

k
q over the Galois field Fq , where q is a power of 2. The ith

share is then computed as a linear combination of the vectors vi with coefficients com-
puted from the secret. For the threshold property of secret sharing, and for security of
shares, some admissibility conditions (such as linear independence of certain sets) are en-
forced on the vectors vi . Empirical results presented in the paper illustrate the proposed
scheme’s performance. These include security of shadow images and the recovery pro-
cess. More specifically, it is shown that the produced shadow images satisfy randomness
properties which in turn means that the shadow images do not reveal any meaningful in-
formation about the secret image. Moreover, shadow images have little or no correlation.
It is also shown that any unauthorized collection of shadow images fails to produce any
information about the secret image. The proposed scheme is lossless, which means that it
can be used for sharing any type of digital data (as secret), including text and binary files
such as compressed images generated via vector quantization.

The paper is organized as follows: In Section 2, we present the necessary background
and notation. Section 3 provides a detailed description of the proposed scheme. Simula-
tions are presented in Section 4 to showcase the efficiency of the scheme, the properties
of the generated shadow images and security analysis. Section 5 presents a comparison of
the scheme with existing work. Finally, we end the paper with some concluding remarks.

2. Background and Notation

We propose a secret image sharing scheme based on Shamir’s approach (Shamir, 1979).
In this section we lay out the necessary background and notation, as well as differences
between the proposed scheme and Shamir’s scheme.
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Shamir’s (k, n)-scheme is based on polynomial interpolation in the field Fp where p

is a prime number. To share secret D ∈ {0, 1, . . . , p − 1}, a polynomial

f (x) = a0 + a1x + a2x
2 + · · · + ak−1x

k−1

is chosen at random with a0 = D. Then the values f (i) where i ∈ {1, 2, . . . , n} are
computed and distributed to the participants as shares. With the obvious conditions that
k � n < p, the polynomial interpolation theorem guarantees that every k shares suffice
to recover f (x), and in particular the secret D. Following the notation of Spiez et al.
(2009), Schinzel et al. (2010), this can be generalized by fixing pairwise distinct nonzero
values x1, x2, . . . , xn ∈ Fp and using yi = f (xi) as the ith share. With this notation,
computation of shares can be summarized as

⎛
⎜⎜⎜⎝

y1

y2
...

yn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 x1 x2
1 . . . xk−1

1

1 x2 x2
2 . . . xk−1

2
...

...
...

. . .
...

1 xn x2
n . . . xk−1

n

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a0

a1
...

ak−1

⎞
⎟⎟⎟⎠ .

Let a = (a0, a1, . . . , ak−1), y = (y1, y2, . . . , yn), and X be the n × k matrix in the above
equation. For convenience, we identify vectors such as a and y with their row or column
matrix representation. Then the above equation can be written as

y = Xa.

Simple linear algebra gives the following:

• For guaranteed recovery of the secret a0 from any k shares, all k × k submatrices of
X must be nonsingular. While in the field of real numbers this condition is satisfied by
the assumption that the components of the track x = (x1, x2, . . . , xn) are positive and
pairwise distinct, in a finite field F this is not necessarily the case. For example, the
matrices

(
1 32

1 42

)
and

⎛
⎝ 1 32 33

1 52 53

1 62 63

⎞
⎠

are singular over F7.
• If a (k − 1) × (k − 1) submatrix of X induced by the rows 2, 3, . . . , k and columns

j1, j2, . . . , jk−1 is singular, then the k − 1 shares yj1, yj2, . . . , yjk−1 suffice to recover
the secret a0. Thus for the threshold property of the secret sharing scheme to be satisfied,
we need all such (k − 1) × (k − 1) submatrices of X to be nonsingular.

The track x = (x1, x2, . . . , xn) is said to be admissible if it satisfies the nonsingularity
conditions discussed above. Admissible tracks are studied in Schinzel et al. (2010), Spież
et al. (2012).
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In this work, we consider a general matrix X for computation of the shares vector y. By
destroying the algebraic relations between columns of X, this idea allows more “random-
ness” in the shares, thus potentially making the scheme more secure. On the other hand,
the lack of algebraic relations in X renders the theoretical study admissibility impractical,
and each X must be verified directly. We propose to choose X randomly from the set of
all n × k matrices over the given field, then check its admissibility. If the field has large
enough cardinality, this process has a high probability of success.

Thien and Lin (2002) proposed a secret image sharing scheme (SIS) where all coeffi-
cients of the polynomial f (x), namely components of a, are chosen from the secret. As
long as the secret image is properly shuffled to eliminate correlations between entries of a,
this scheme works similarly to Shamir’s scheme with the following two advantages:

• While in Shamir’s scheme each share has the same size as the secret, shares of Thien
and Lin’s scheme have size 1/k of the size of the secret.

• A singular (k − 1)× (k − 1) submatrix of X would compromise the threshold property
only for one coefficient ai which is only part of the secret. So while admissibility of
X must be checked, if it is overlooked, it does not necessarily compromise the whole
secret.

We follow the same approach in this work and pick all components of the vector a
from the shuffled secret image. Since a digital image typically has a large size compared
to the parameters k and n of the scheme, elements of the secret are processed k at a time.
This can be utilized by allowing y and a to have more than one column. More specifically,
we write the proposed SIS as

Y = XS,

where S is a k ×m matrix obtained by padding, shuffling, and reshaping the secret image,
X is an admissible n × k transformation matrix, and the n × m matrix Y is the matrix of
shares, whose ith row constitutes the ith share.

The final difference between the proposed scheme, Shamir’s, and Thien and Lin’s
schemes is the use of the field Fq where q = 2α instead of Fp where p is a prime.
Since digital media typically contain values from a domain {0, 1, . . . , 2α − 1}, the use of
a field Fp involves truncation of some values which renders such secret sharing schemes
lossy. Depending on the application, this might be acceptable or not. While computations
in Fp are faster, the field Fq where q = 2α is the natural choice for a lossless scheme.
Since digital images typically consist of bytes of information, it is convenient for α to be
a multiple of 8. If α = 8β, the entries sij of the matrix S are each a concatenation of β

entries of the secret image.
It should be noted that as mentioned above, for the random selection of the transfor-

mation matrix X to have a high probability of admissibility, the field Fq must have a large
cardinality. In the empirical analysis presented in this work we choose α = 16 and carry
all computations in the field Fq where q = 216.
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3. The Proposed Scheme

Following the notation of the previous section, the proposed SIS is summarized as

Y = XS, (1)

where X is an admissible transformation matrix, S is the secret image (subjected to con-
catenation of entries, shuffling, padding and reshaping), and Y is the shares matrix. All
these matrices have entries from a field Fq where q = 2α = 28β for some chosen pa-
rameter β. In this section, we present in more detail the generation of the matrices X and
S, and the generation of shadow images using them. For added security, the secret image
may be divided into several blocks, where each block is processed separately (with an
independent transformation matrix X). In this case a parameter m specified by the user
defines the number of columns of the matrix S corresponding to each block.

The parameters of the proposed scheme which are kept constant throughout this sec-
tion are the number β of bytes in each entry of S, the number n of the participants, the
threshold k, and the block size m. With fixed β, we also fix an ordering of the elements of
the field Fq where q = 28β , say Fq = {f0, f1, f2, . . . , fq−1} where f0 = 0. Throughout
our discussions, we use the correspondence

i ←→ fi (2)

to move between the field Fq and the group Zq of integers modulo q.

3.1. The Cat Map

Arnold’s cat map (Arnol’d and Avez, 1968; Rong and Xiaoning, 1998) is a chaotic map
studied extensively in the literature. It is known to generate pseudo-random numbers which
are essential in cryptographic applications (Chen et al., 2004; Kanso and Ghebleh, 2012,
2013, 2015). Chen et al. (2004) proposed a 3-dimensional generalization of the cat map
defined by

xi = Axi−1 (mod 1), (3)

where xi is the state vector of the map whose entries are in the interval [0, 1), and

A =
(

1 + axazby az ay + axaz + axayazby

bz + axby + axazbybz azbz + 1 aybz + axayazbybz + axazbz + axayby + ax

axbxby + by bx axaybxby + axbx + ayby + 1

)

(4)

is defined using positive integer parameters ax , ay , az, bx , by , bz. It is known (Chen et al.,
2004; Kanso and Ghebleh, 2012) that iterated applications of this map generate a pseudo-
random sequence of values in the interval [0, 1) by taking components of the state vector.
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3.2. Generation of the Transformation Matrix X

An admissible transformation matrix must be generated for each block of the secret. To
avoid unnecessary complications, we refrain from including a block index in the notation
and refer to this matrix simply as X. Let vi denote the ith row of X where 1 � i � n. For
X to be admissible, the following conditions must be satisfied:

(A1) Every k × k submatrix of X is nonsingular.
(A2) Every (k − 1) × (k − 1) submatrix of X is nonsingular.

The condition (A1) means that every k of the vectors v1, . . . , vn must be linearly inde-
pendent in the vector space F

k
q . One would imagine that for this condition to be satisfied,

n cannot be too large. On the other hand, provided that Fq has large enough cardinality,
this does not pose a practical restrain on the proposed scheme. Indeed it is known (Maneri
and Silverman, 1966) that the maximum number of such vectors (the maximum possible
choice of n) is at least |Fq |+1 = 28β +1 which is much larger than practical requirements
of an SIS.

Algorithm 1: Generation of a transformation matrix
Data: Parameters β, k, n and m of the scheme
Data: Cat matrix A and initial state x0

Result: An admissible matrix X

1 t ← �nk
3 �

2 for j = 1 to t do
3 xj ← Axj−1 mod 1

4 x0 ← xt

5 Arrange entries of x1, x2, . . . , xt into a sequence R.
6 R′ ← 	(q − 1)R
 + 1, where q = 28β

7 Let � be the sequence of elements of Fq corresponding, according to Eq. (2), to
elements of R′.

8 Reshape the first nk elements of � into a n × k matrix X.
9 if X is admissible then

10 Return X

11 else
12 Goto line 2.

13 End.

Our approach for generation of an admissible transformation matrix X, as described
in Algorithm 1, is to populate a n×k matrix by randomly chosen nonzero elements of Fq ,
then to test whether this matrix is admissible. If not, the matrix at hand is simply dis-
carded and a new one is generated. The simple structure of the cat map used to generate
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Table 1
The ratio of admissible matrices X out of 10000 randomly generated

n × k matrices.

n k

2 3 4 5 6

2 0.9999 – – – –
3 0.9996 0.9997 – – –
4 1.0000 0.9998 0.9999 – –
5 1.0000 0.9989 0.9994 0.9996 –
6 0.9997 0.9991 0.9987 0.9988 0.9992

pseudo-random numbers accommodates fast generation of these matrices. On the other
hand, testing admissibility is more computation-intensive since it involves verifying non-
singularity of all k×k and (k−1)×(k−1) submatrices. Our experimental results presented
in Table 1, with β = 2 and small values of k and n, show that with high probability, the
first generated matrix is indeed admissible.

3.3. Generation of the Matrix S

The matrix S of Eq. (1) is generated from the plain secret image P . Since S is of size k×m,
it contains b = mkβ bytes of P . We assume P is padded in preprocessing so that its size
in bytes is a multiple of b. The plain secret image P is also shuffled in preprocessing.
The shuffling is performed according to the outputs of the cat map as follows. A pseudo-
random sequence R of length |P | is generated similarly to lines 1–5 of Algorithm 1 with
initial state x′

0, then a permutation π is found which sorts R. The shuffled image Q is
obtained by applying the permutation π on P .

For each block, a matrix S is generated using the next b bytes of Q. Algorithm 2
presents details of this process. Again we refrain from indicating a block index in the
naming of variables such as S to avoid cumbersome notation.

3.4. Generation of Shadow Images

For each block, with the matrices X and S in hand, the share matrix Y can be computed
according to Eq. (1). For each 1 � i � n, the ith row of the resulting matrix Y constitutes
a block of the ith share. The ith shadow image is generated from the collection of all
such rows by converting each element to an integer via the correspondence of Eq. (2),
then breaking each integer value to β bytes. For added security we shuffle the ith shadow
image according to a pseudo-random sequence R(i) of length 1

k
|P | generated similarly

to lines 1–5 of Algorithm 1 with initial state x(i)
0 . Let π(i) denote the permutation which

sorts R(i). We denote the shuffled shadow image that is obtained by applying π(i) to the
ith shadow image by Hi . The share (shadow image) Hi may be reshaped to a rectangular
array for presentation as an image.
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Algorithm 2: Generation of the matrix S

Data: The shuffled secret image Q

Data: Parameters β, k, n and m of the scheme
Result: The matrix S associated with the current block

1 q ← 28β

2 b ← mkβ

3 Acquire the next b bytes of Q and store them in a sequence B.
4 Arrange elements of B into groups of β bytes each, then concatenate binary

representations of each group to obtain a value in {0, 1, . . . , q − 1}. Store the
resulting values in a sequence B ′.

5 Let � be the sequence of elements of Fq corresponding, according to Eq. (2), to
elements of B ′.

6 Populate the k × m matrix S by elements of �.
7 Return S

8 End.

3.5. Secret Key

The secret key of the proposed scheme consists of the parameters ax , ay , az, bx , by , bz

of the cat matrix, as well as the initial states x0, x′
0 and x(i)

0 , where 1 � i � n. It should
be noted that for added security, different cat matrices may be used for the preprocessing
(shuffling) and the transformation matrices.

3.6. Recovery of the Secret Image

We assume that the secret key of the scheme is held at a central authority and is released
upon the presentation of shadow images by any authorized set of participants. Suppose that
k shadow images Hi1,Hi2, . . . , Hik are presented to the central authority. The recovery of
the secret image is carried out as follows.

• Apply the inverse of the shuffling permutation π(ij ) on each shadow image Hij , for
1 � j � k.

• Each shadow image is converted to a sequence of elements of Fq by grouping every
β bytes into a single integer, and via the correspondence in Eq. (2). The resulting se-
quences are then broken-up into blocks, using which a k×m submatrix Ỹ of the matrix Y

associated with each block are obtained. More specifically, each Ỹ consists of the rows
i1, i2, . . . , ik of the corresponding matrix Y .

• Using the secret key, the matrix X associated with each block is constructed. We then
let X̃ be the k × k submatrix of X induced by the rows i1, i2, . . . , ik .

• By Eq. (1), we have Ỹ = X̃S. On the other hand, by admissibility of X, the matrix X̃

is nonsingular. Thus we may compute S = (X̃)−1Ỹ .
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• By reversing the transformation of Algorithm 2, the shuffled secret image Q is recon-
structed block by block. The plain secret image P is now obtained by generating the
shuffling permutation π and applying its inverse on Q, then removing the padding.

3.7. Delivery of Shares

As outlined above, the secret image can be easily reconstructed upon the presence of the
secret key and at least k shadow images. Therefore, the security of the proposed scheme is
compromised if an unauthorized party gets hold of the shares. Therefore, the dealer must
securely transmit each shadow image Hi to its corresponding participant. Depending on
the application, this can be accomplished using a secure channel, a cryptographic scheme
through a public channel such as one of those proposed in Chen et al. (2004), Kanso and
Ghebleh (2012), Fu et al. (2018) or a steganographic scheme which hides the presence of
shadow images such as one of those proposed in Ghebleh and Kanso (2014), Fridrich et
al. (2002).

4. Performance Analysis

In this section, we demonstrate the efficiency of the proposed scheme and its robustness
against a number of attacks. The simulation results are based on the following parameters:
the number of bytes per value β = 2, the number of participants n = 6, the threshold
(minimum number of participants in an authorized set) k = 4, and m = 1024. For the
tests presented in this section, we use the cat matrix

A =
⎛
⎝ 469 117 703

1411 352 2115
126 31 189

⎞
⎠

obtained using the parameters (ax, ay, az; bx, by, bz) = (2, 1, 117; 31, 2, 3).
Recall that each block of the process involves mkβ = 8192 bytes of the secret, resulting

in 4096 elements of the field Fq with q = 216. Consider the standard grayscale image
Lena of size 512 × 512 presented in Fig. 1 to be the secret image. Then each shadow
image consists of 65536 bytes since the size of each share is 1/k the size of the secret.
For presentation, each Hi (1 � i � n) is reshaped into a 256 × 256 matrix also denoted
by Hi . Figure 2 depicts the six shadow images corresponding to the test image Lena.

4.1. Histogram Analysis

The histogram of a given digital image displays the distribution of its tonality. For a mean-
ingful image such as the test Lena image, the histogram shows non-uniform distribution
of its tonality, and hence one can derive some information about the content of the image.
However, for a truly random image the histogram is almost flat, so no useful information
about the image can be derived from it. This test shows that the histogram of each shadow
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Fig. 1. The secret image Lena of size 512 × 512.

Fig. 2. The shadow images H1, H2, . . . , H6 corresponding to the test image Lena, where each shadow image
has size 256 × 256.

image is almost flat, that is the intensity values are uniformly distributed in {0, 1, . . . , 255}.
Hence, no useful information about the secret can be derived from the shadow images.
Figure 3 depicts the histograms of the test image Lena and one sample shadow image from
H1,H2, . . . , H6. The histograms of the other shadow images show similar behaviour.
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Fig. 3. The histogram of the Lena image (left) and the histogram of a sample shadow image (right).

Table 2
Correlation coefficients of adjacent pixels in the Lena image and its corresponding shadow images.

Image Lena H1 H2 H3 H4 H5 H6

Horizontal 0.972726 0.005061 −0.000394 −0.002141 0.006671 0.020705 −0.013311
Vertical 0.985929 −0.009293 0.011721 −0.013857 −0.010711 0.010801 0.026160
Diagonal 0.962357 −0.014346 −0.005839 0.011137 −0.011505 −0.006731 −0.002312

4.2. Correlation Analysis

Correlation analysis is a randomness test that identifies the strength of relationships be-
tween adjacent pixels. Meaningful images such as the test image Lena possess high cor-
relation between adjacent pixels. This test shows that shadow images generated by the
proposed scheme have almost no correlation between adjacent pixels.

Consider a sample shadow image, and select N = 10000 random pairs of adjacent pix-
els xi and yi in the horizontal, vertical and diagonal directions. The correlation coefficient
between the two sequences {xt }Nt=1 and {yt }Nt=1 is given by

Cxy = E[(x − μx)(y − μy)]
σxσy

,

where μx and μy denote the mean values of x and y, respectively; σx and σy denote
their standard deviations, and E[·] is the expected value. The correlation coefficient
Cxy ∈ [−1, 1], where a value 0 indicates no correlation and a value ±1 indicates complete
correlation between the two sequences.

Table 2 presents the correlation coefficients between {xt }Nt=1 and {yt }Nt=1 in (i) the Lena
image and (ii) the shadow images. This table shows that the shadow images are almost
free of any correlation between adjacent pixels in the horizontal, vertical and diagonal
directions.

Furthermore, Fig. 4 depicts plots of randomly selected adjacent pixels (xt , yt ) in the
horizontal, vertical and diagonal directions, where t = 1, 2, . . . , N , for the image Lena
and a sample shadow image. In the case of Lena, one can easily observe the accumulation
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Fig. 4. Plots of N = 10000 randomly selected adjacent pairs of pixels in the test image Lena (left), and those of
a sample shadow image (right) in the horizontal, vertical and diagonal directions.

of vertices along the line y = x. However, for the shadow image the vertices are uniformly
spread in [0, 255]×[0, 255], which is the case for a truly random image. Hence, the shadow
images are almost free of any correlation between adjacent pixels.

We repeat this test on 100 test images of various sizes and different structures. Each
test image results in 6 shadow images. We compute the correlation coefficients between
10000 pairs of adjacent pixels in the horizontal, vertical and diagonal directions for a
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Table 3
Entropy measures for the image Lena and its six corresponding shadow images.

Image Lena H1 H2 H3 H4 H5 H6

H(s) 7.445507 7.997247 7.997184 7.997029 7.997582 7.997022 7.997080

sample shadow image from the 6 shadow images. The obtained results are similar to those
of H1,H2, . . . , H6, hence we omit them.

4.3. Entropy Analysis

Entropy (Shannon, 1951) measures the unpredictability of information content. The en-
tropy H(s) for a source s producing � = 28 distinct symbols is defined by

H(s) = −
�∑

i=1

P(si) log2 P(si),

where P(si) is the probability of occurrence of si in s.
This test shows that the entropy measures H(s) for shadow images generated by the

proposed scheme are close to those of truly random images i.e. H(s) ≈ 8. Table 3 presents
the entropy measures for those images. Hence, it confirms the unpredictability of generated
shadow images.

We repeat this test on 100 test images of various sizes and different structures. Each
test image results in 6 shadow images. We compute the entropy measure for a sample
shadow image from the 6 shadow images. The obtained results are also close to those of
truly random images, hence we omit them.

4.4. Randomness Analysis

To showcase the randomness of the shadow images generated by the proposed secret shar-
ing scheme, we subject the six shadow images corresponding to the test image Lena to the
Statistical Test Suite (STS) published by the National Institute of Standards and Technol-
ogy (NIST) (Bassham et al., 2010). The outcome of all tests turns out to be satisfactory.
Furthermore, we repeat this test on 60 shadow images each of size 256 × 256 obtained
from running the proposed scheme on the secret image Lena for 10 different secret keys.
Table 4 presents the results of each statistical test.

4.5. Similarity Analysis

Similarity measures such as the Number of Pixels Change Rate (NPCR) and Unified Av-
erage Changing Intensity (UACI) (Wu et al., 2011) are two common measures used to
study the similarity between random looking images. The NPCR and UACI are defined
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Table 4
Statistical Test Suite results for 60 shadow images corresponding to the
test secret image Lena for ten different secret keys. The minimum pass
rate for each statistical test with the exception of the random excursion
(variant) test is approximately 57 for a sample size 60 sequences. The

minimum pass rate for the random excursion (variant) test is
approximately 29 for a sample size 32 sequences (Bassham et al., 2010).

Statistical test P -value Result

Frequency 0.437274 60/60
Block-frequency 0.911413 59/60
Cumulative-sums (forward) 0.772760 60/60
Cumulative-sums (reverse) 0.671779 60/60
Runs 0.014216 59/60
Longest-runs 0.568055 59/60
Rank 0.148094 59/60
FFT 0.500934 60/60
Non-overlapping-templates 0.976060 60/60
Overlapping-templates 0.407091 59/60
Universal 0.378138 58/60
Approximate entropy 0.468595 60/60
Random-excursions 0.534146 32/32
Random-excursions variant 0.350485 32/32
Serial 1 0.437274 60/60
Serial 2 0.949602 60/60
Linear-complexity 0.437274 60/60

Table 5
Acceptance intervals for the null hypothesis with different levels of significance (Wu et al., 2011).

Parameter Size 0.05-level 0.01-level 0.001-level

NPCR 256 × 256 [99.5693, 100] [99.5527, 100] [99.5341, 100]
UACI 256 × 256 [33.2824, 33.6447] [33.2255, 33.7016] [33.1594, 33.7677]

by

NPCR =
∑

i,j D(i, j)

M × N
, where D(i, j) =

{
1 if P1(i, j) �= P2(i, j),

0 otherwise,

and

UACI = 1

M × N

∑
i,j

|P1(i, j) − P2(i, j)|
255

,

where P1 and P2 are M × N images.
It is shown in Wu et al. (2011) that for gray images the ideal PSNR and UACI measures

are 99.6094% and 33.4635%, respectively. Furthermore, the acceptance intervals for the
null hypothesis for α-level of significance, where α ∈ {0.001, 0.01, 0.05} are as presented
in Table 5 (Wu et al., 2011).
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Table 6
The NPCR and UACI measures between the six

shadow images corresponding to the test image Lena.

Pair of shadow images NPCR UACI

{H1,H2} 99.57% 33.53%
{H1,H3} 99.57% 33.46%
{H1,H4} 99.61% 33.52%
{H1,H5} 99.59% 33.37%
{H1,H6} 99.62% 33.48%
{H2,H3} 99.62% 33.58%
{H2,H4} 99.61% 33.42%
{H2,H5} 99.62% 33.53%
{H2,H6} 99.59% 33.54%
{H3,H4} 99.58% 33.55%
{H3,H5} 99.61% 33.47%
{H3,H6} 99.60% 33.60%
{H4,H5} 99.61% 33.64%
{H4,H6} 99.61% 33.49%
{H5,H6} 99.59% 33.47%

In this test, we use the NPCR and UACI to measure the similarity between all possible
pairs of shadow images corresponding to the test secret image Lena. It can be observed
from the resulting measures presented in Table 6 that all measures are close to the ideal
PSNR and UACI measures 99.6094% and 33.4635%, respectively.

On the basis of the obtained measures, we conclude that the shadow images generated
by the proposed scheme are random-like in comparison with one another.

4.6. Security Analysis

The security of the proposed scheme depends on keeping the secret key K0 and the shadow
images secure. In this proposal, the key is held at a central authority and is not shared be-
tween the participants. On the other hand, the shadow images are securely transmitted to
the participant. An unauthorized person has to get hold of the secret key and at least k

shadow images to reconstruct the secret image. Now, guessing the secret key is unreal-
istic since it consists of six double precision floating point values in the interval [0, 1)

which constitute the initial states x0 and x′
0 of the cat map, and six or twelve (depending

on whether the same cat matrix is used for the generation of transformation matrices and
shuffling the secret image or not) positive integers for parameters of the cat matrix. Fur-
thermore, the final stage which consists of shuffling the shares is accomplished by using
the cat map with three initial states and six control parameters for each share. Moreover,
Fig. 5 shows the high sensitivity of the cat map to its initial states and control parameters.
This figure presents the time series plot of {xt }100

t=0 and {x′
i}100

t=0 generated by the cat map
defined in Eq. (3), where |x0 − x′

0| = 10−15. It is evident from this figure that after about
ten iterations the two series become far apart from each other. Nonetheless, for security
issues, a chaotic map such as the cat map is usually iterated at least 200 times without
considering its outputs. Likewise, guessing k shadow images, where each shadow image
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Fig. 5. Time series plot of the x-values of the cat map defined in Eq. (3) for two different initial states (x0, y0, z0)

and (x′
0, y0, z0) such that |x0 − x′

0| = 10−15.

Table 7
The running times for encoding secret image of size 2s × 2s for s = 8, 9, . . . , 13 into n = 6 shadow images

using the proposed scheme with k = 4 and m = 1024.

s 8 9 10 11 12 13

Time in seconds 0.098432 0.391386 1.587491 6.390270 26.010420 106.111304

consists of L/k bytes, is equivalent to guess the secret image since one has to guess L

bytes (L is the length of the secret).
In the scenario where (k − 1) shadow images are present, the unauthorized set of less

than k participants cannot reveal any useful information about the secret image. This is
due to the fact that the secret key is unknown and that one of the shadow images is missing.
This can be observed from the following example. Consider a single k ×m block S which
can be obtained as follows: S = (X̃)−1Ỹ . Now if the k × k submatrix X̃ induced by
the rows i1, i2, . . . , ik of X is unknown and one of the rows of Ỹ is unknown, then the
probability of guessing the missing elements in Fq , where q = 216, correctly is about
(1/q)k

2+m, which renders the brute force attack infeasible for m > 100.

4.7. Running Speed

In the proposed (k, n)-threshold SIS, the generation of admissible vectors in F
k
q is image

independent. Therefore, a dealer can generate the number of admissible vectors needed
for the encoding of any secret image prior to the encoding process. Now, the complexity
of multiplication of an r × s matrix by an s × t matrix is O(rst). Thus, the complexity
of computing the n shadow images is O(Lnk). Table 7 reports the running times under
the aforementioned scenario for generation of shadow images for a secret image of size
2s × 2s for s = 8, 9, . . . , 13. The reported results are obtained using MATLAB R2016a
on a desktop machine with an Intel® Core™ i7-4770 processor and 8 GB of memory,
running Windows 10.
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Fig. 6. The running times for generation of n shadow images (each of size 256 × 256) by the proposed scheme
where k = 4, n = 6 and m = 2s .

Fig. 7. The reconstructed image Lena resulting from four shadow images where one of them is subjected to salt
and peppers noise with ratio: 0.05 (left) and 0.1 (right).

Furthermore, Fig. 6 shows the running times for encoding the image Lena into n

shadow images using the proposed scheme with k = 4 and m = 2s , for s = 8, 9, . . . , 15.

4.8. Error-Resilient Capability

This section shows that the proposed scheme has some error-resilient capability. If some
shadow images were disturbed by some noise such as salt and pepper of ratio 0.05 and
0.1, then the secret image can be reconstructed as shown in Fig. 7.

Furthermore, we show that if some shadow images are cropped by a certain percentage,
then the secret image can still be reconstructed. Figure 8 presents a shadow image cropped
by 5% and another one cropped by 10%. Figure 9 (left) presents the reconstructed secret
image Lena resulting from four shadow images where one of them is cropped by 5%,
whereas Fig. 9 (right) presents the reconstructed secret image Lena resulting from four
shadow images where one of them is cropped by 10%. Thus, it is evident that the proposed
scheme is resistant to the cropping attack.
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Fig. 8. A shadow image cropped by 5% (left) and another one cropped by 10% (right).

Fig. 9. The reconstructed image Lena resulting by the proposed scheme from four shadow images where one
shadow image is subjected to cropping by 5% (left) and 10% (right).

5. Comparison with Existing Work

In this section we compare the performance of the proposed approach, referred to by
Pr-SIS, with few existing (k, n)-SIS schemes: TL (Thien and Lin, 2002), Wu (2013),
KG (Kanso and Ghebleh, 2017), KE (Kabirirad and Eslami, 2018) and GK (Ghebleh and
Kanso, 2018). All comparisons are performed with (k, n) = (2, 4) with the secret image
Pirate of size 512 × 512 presented in Fig. 10. The sizes of the generated shadows images
are presented in Table 8.

In Table 9, we present the correlation coefficients between N = 10000 pairs of ran-
domly selected adjacent pixels in the horizontal, vertical and diagonal directions of sample
shadow images generated by TL (Thien and Lin, 2002), Wu (Wu, 2013), KG (Kanso and
Ghebleh, 2017), KE (Kabirirad and Eslami, 2018), GK (Ghebleh and Kanso, 2018) and
Pr-SIS. It is evident from this table that all schemes generate shadow images almost free
of any correlation between adjacent pixels.

Table 10 presents the entropy measures of sample shadow images of the schemes under
comparison.

Table 11 presents the mean absolute difference of the secret image Pirate and the re-
constructed image by the schemes under comparison. This table also presents the Peak
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Fig. 10. The test image Pirate of size 512 × 512.

Table 8
The size of shadow images generated by the scheme under comparison.

Scheme Size of shadow image Lossy

TL (Thien and Lin, 2002) L/k Yes
Wu (Wu, 2013) L/k Yes
KG (Kanso and Ghebleh, 2017) L/k Yes
KE (Kabirirad and Eslami, 2018) L No
GK (Ghebleh and Kanso, 2018) L/(k − 1) Yes
Pr-SIS L/k No

Table 9
Correlation coefficients of pairs of adjacent pixels in sample shadow images generated by (i) TL, (ii) Wu,

(iii) KG, (iv) GK and (v) Pr-SIS.

Scheme Horizontal Vertical Diagonal

TL (Thien and Lin, 2002) 0.001429 −0.002693 −0.012811
Wu (Wu, 2013) 0.015723 −0.008210 0.006800
KG (Kanso and Ghebleh, 2017) −0.004502 −0.007861 −0.008209
KE (Kabirirad and Eslami, 2018) −0.085000 0.050000 −0.189000
GK (Ghebleh and Kanso, 2018) −0.004358 −0.007642 −0.007148
Pr-SIS −0.003981 −0.008036 0.009603

Table 10
The entropy measures of sample shadow images

generated by the scheme under comparison.

Scheme H(s)

TL (Thien and Lin, 2002) 7.901762
Wu (Wu, 2013) 7.943923
KG (Kanso and Ghebleh, 2017) 7.908187
KE (Kabirirad and Eslami, 2018) 7.999300
GK (Ghebleh and Kanso, 2018) 7.999249
Pr-SIS 7.998559
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Table 11
The number of errors in the reconstructed image, the mean absolute difference between the two images as well

as their PSNR and SSIM measures.

Scheme Number of
modified pixels

Number of
modified LSB

Mean absolute
difference

PSNR SSIM

TL (Thien and Lin, 2002) 39360 79205 0.735153 42.528821 0.999906
Wu (Wu, 2013) 113 218 0.006897 57.703019 0.999948
KG (Kanso and Ghebleh, 2017) 38350 38350 0.1462946 56.478549 0.999996
KE (Kabirirad and Eslami, 2018) 0 0 0 ∞ 1.000000
GK (Ghebleh and Kanso, 2018) 2729 2729 0.010410 67.956168 0.999996
Pr-SIS 0 0 0 ∞ 1.000000

Signal to Noise Ratio (PSNR) and The Structural Similarity (SSIM) measures between
the secret image and the reconstructed one (Wang et al., 2004).

On the basis of the above results it is evident that the proposed scheme is competitive
with existing schemes. Many existing secret image sharing schemes use arithmetics in the
finite files Fq where q is a suitable prime. This yields in the need for truncation of values
and, in turn, in all these schemes being lossy, and hence incapable of applications where
the secret is sensitive. The proposed scheme, on the other hand, is defined on the field Fq

where q is a power of 2. This choice is more suitable for handling binary data since with
a proper choice of q one can avoid truncations of values. As shown in Table 8, among
the schemes in comparison, only KE is lossless, but it is at a clear disadvantage to the
proposed scheme Pr-SIS since each shadow image produced by KE has the same size as
the original secret image.

6. Concluding Remarks

In this research, we propose a lossless linear algebraic (k, n)-SIS which associates a vector
vi to the ith participant in the vector space Fk

q , where q is a power of 2. Admissibility con-
ditions are imposed on the vectors vi to satisfy the threshold property of secret sharing.
The scheme is shown to possess a number of characteristics such as robustness against
standard statistical attacks, high level of security including sensitivity to its secret key,
resilience to errors in shadow images, and reduction in the size of shadow images with re-
spect to the size of the secret image. Another feature of the scheme is being lossless, which
enables applications to digital media other than raw images. For example, the proposed
scheme can be used for sharing textual data, JPEG images, video, etc.

The proposed scheme is very fast provided the admissibility of the transformation
matrix is verified beforehand. This step is independent of the secret image and does not
present any security risks to the process of secret image sharing. On the other hand, check-
ing admissibility is costly in general and could be considered as a disadvantage of the pro-
posed scheme if it is not performed independently of the secret sharing itself. Processing
time and shadow image size can be further reduced if the proposed scheme is used in con-
junction with image compression algorithms such as those based on vector quantization.



520 A. Kanso et al.

Acknowledgements

The authors are grateful to the anonymous referees whose remarks helped improve the
presentation of this work.

References

Arnol’d, V.I., Avez, A. (1968). Ergodic Problems of Classical Mechanics. W. A. Benjamin Inc., New York,
Amsterdam. Translated from the French by A. Avez.

Asmuth, C., Bloom, J. (1983). A modular approach to key safeguarding. IEEE Transactions on Information
Theory, 29(2), 208–210.

Bai, L. (2006). A reliable (k, n) image secret sharing scheme. In: 2006 2nd IEEE International Symposium on
Dependable, Autonomic and Secure Computing. IEEE, pp. 31–36.

Bassham, L. III., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel,
M., Banks, D., Heckert, N., Dray, J. (2010). Sp 800-22 Rev. 1a. A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications.

Blakley, G.R. et al. (1979). Safeguarding cryptographic keys. In: Proceedings of the National Computer Con-
ference, Vol. 48.

Chang, C.C., Hwang, R.J. (1998). Sharing secret images using shadow codebooks. Information Sciences,
111(1–4), 335–345.

Chang, C.C., Chan, C.S., Fan, Y.H. (2006). A secret image sharing scheme based on vector quantization mech-
anism. In: International Conference on Embedded and Ubiquitous Computing. Springer, pp. 469–478.

Chang, C.C., Hsieh, Y.P., Lin, C.H. (2008). Sharing secrets in stego images with authentication. Pattern Recog-
nition, 41(10), 3130–3137.

Chen, G., Mao, Y., Chui, C.K. (2004). A symmetric image encryption scheme based on 3D chaotic cat maps.
Chaos, Solitons & Fractals, 21(3), 749–761.

Chen, L.S.T., Su, W.K., Lin, J.C. (2009). Secret image sharing based on vector quantization. International Jour-
nal of Circuits, Systems and Signal Processing, 3(3), 137–144.

del Rey, A.M. (2008). A matrix-based secret sharing scheme for images. In: Iberoamerican Congress on Pattern
Recognition. Springer, pp. 635–642.

Deng, X., Wen, W., Shi, Z. (2017). Threshold multi-secret sharing scheme based on phase-shifting interferom-
etry. Optics Communications, 387, 409–414.

Desmedt, Y., Frankel, Y. (1991). Shared generation of authenticators and signatures. In: Annual International
Cryptology Conference. Springer, pp. 457–469.

Ding, W., Liu, K., Yan, X., Wang, H., Liu, L., Gong, Q. (2018). An image secret sharing method based on matrix
theory. Symmetry, 10(10), 530.

El-Latif, A.A.A., Yan, X., Li, L., Wang, N., Peng, J.L., Niu, X. (2013). A new meaningful secret sharing scheme
based on random grids, error diffusion and chaotic encryption. Optics & Laser Technology, 54, 389–400.

Elsheh, E., Hamza, A.B. (2010). Comments on matrix-based secret sharing scheme for images. In: Iberoameri-
can Congress on Pattern Recognition. Springer, pp. 169–175.

Fridrich, J., Goljan, M., Du, R. (2002). Lossless data embedding—new paradigm in digital watermarking.
EURASIP Journal on Advances in Signal Processing, 2002(2), 986842.

Fu, C., Zhang, G.Y., Zhu, M., Chen, J.X., Lei, W.M. (2018). A fast chaos-based colour image encryption algo-
rithm using a hash function. Informatica, 29(4), 651–673.

Gersho, A., Gray, R.M. (2012). Vector Quantization and Signal Compression, Vol. 159. Springer Science &
Business Media.

Ghebleh, M., Kanso, A. (2014). A robust chaotic algorithm for digital image steganography. Communications
in Nonlinear Science and Numerical Simulation, 19(6), 1898–1907.

Ghebleh, M., Kanso, A. (2018). A novel secret image sharing scheme using large primes. Multimedia Tools and
Applications, 77(10), 11903–11923.

Gray, R. (1984). Vector quantization. IEEE ASSP Magazine, 1(2), 4–29.
Hu, W.T., Li, M.C., Guo, C., Ren, Y.Z. (2012). Reversible secret image sharing with steganography and dynamic

embedding. Security and Communication Networks, 5(11), 1267–1276.



A Lossless Linear Algebraic Secret Image Sharing Scheme 521

Kabirirad, S., Eslami, Z. (2018). A (t, n)-multi secret image sharing scheme based on Boolean operations.
Journal of Visual Communication and Image Representation, 57, 39–47.

Kanso, A., Ghebleh, M. (2012). A novel image encryption algorithm based on a 3D chaotic map. Communica-
tions in Nonlinear Science and Numerical Simulation, 17(7), 2943–2959.

Kanso, A., Ghebleh, M. (2013). A fast and efficient chaos-based keyed hash function. Communications in Non-
linear Science and Numerical Simulation, 18(1), 109–123.

Kanso, A., Ghebleh, M. (2015). A structure-based chaotic hashing scheme. Nonlinear Dynamics, 81(1–2),
27–40.

Kanso, A., Ghebleh, M. (2017). An efficient (t, n)-threshold secret image sharing scheme. Multimedia Tools
and Applications, 76(15), 16369–16388.

Kanso, A., Ghebleh, M. (2018). An efficient lossless secret sharing scheme for medical images. Journal of Visual
Communication and Image Representation, 56, 245–255.

Le, T.H.N., Lin, C.C., Chang, C.C., Le, H.B. (2011). A high quality and small shadow size visual secret sharing
scheme based on hybrid strategy for grayscale images. Digital Signal Processing, 21(6), 734–745.

Lin, C.C., Tsai, W.H. (2004). Secret image sharing with steganography and authentication. Journal of Systems
and Software, 73(3), 405–414.

Maneri, C., Silverman, R. (1966). A vector-space packing problem. Journal of Algebra, 4(3), 321–330.
Mignotte, M. (1982). How to share a secret. In: Workshop on Cryptography. Springer, pp. 371–375.
Naor, M., Wool, A. (1998). Access control and signatures via quorum secret sharing. IEEE Transactions on

Parallel and Distributed Systems, 9(9), 909–922.
Rong, C.G., Xiaoning, D. (1998). From Chaos to Order: Methodologies, Perspectives and Applications, Vol. 24.

World Scientific.
Schinzel, A., Spież, S., Urbanowicz, J. (2010). Admissible tracks in Shamir’s scheme. Finite Fields and Their

Applications, 16(6), 449–462.
Schoenmakers, B. (1999). A simple publicly verifiable secret sharing scheme and its application to electronic

voting. In: Annual International Cryptology Conference. Springer, pp. 148–164.
Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612–613.
Shannon, C.E. (1951). Prediction and entropy of printed English. Bell System Technical Journal, 30(1), 50–64.
Simić, N., Perić, Z.H., Savić, M.S. (2018). Image coding algorithm based on Hadamard transform and simple

vector quantization. Multimedia Tools and Applications, 77(5), 6033–6049.
Spiez, S., Srebrny, M., Urbanowicz, J. (2009). Secret sharing matrices. Preprint http://www.impan.pl/Preprints/

p708.pdf.
Spież, S., Srebrny, M., Urbanowicz, J. (2012). Remarks on the classical threshold secret sharing schemes. Fun-

damenta Informaticae, 114(3–4), 345–357.
Thien, C.C., Lin, J.C. (2002). Secret image sharing. Computers & Graphics, 26(5), 765–770.
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. et al. (2004). Image quality assessment: from error visi-

bility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
Wu, K.S. (2013). A secret image sharing scheme for light images. EURASIP Journal on Advances in Signal

Processing, 2013(1), 49.
Wu, Y., Noonan, J.P., Agaian, S. et al. (2011). NPCR and UACI randomness tests for image encryption Cyber

Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommu-
nications (JSAT), 1(2), 31–38.

Wylie, J.J., Bigrigg, M.W., Strunk, J.D., Ganger, G.R., Kiliccote, H., Khosla, P.K. (2000). Survivable information
storage systems. Computer, 33(8), 61–68.

Zarepour-Ahmadabadi, J., Ahmadabadi, M.S., Latif, A. (2016). An adaptive secret image sharing with a new
bitwise steganographic property. Information Sciences, 369, 467–480.

http://www.impan.pl/Preprints/p708.pdf
http://www.impan.pl/Preprints/p708.pdf


522 A. Kanso et al.

A. Kanso is an associate professor of mathematics at Kuwait University, Kuwait. He re-
ceived his BSc degree in mathematics from Queen Mary and Westfield College (Univer-
sity of London), in 1994. He earned his MSc degree in applied computing technology at
the Electronic Engineering department of Middlesex University, in 1996. In 1999 he ob-
tained a PhD in mathematics from Royal Holloway and Bedford New College (University
of London). His research interests include chaos-based encryption systems, information
hiding, hash functions, secret sharing, and graph theory.

M. Ghebleh is an associate professor of mathematics at Kuwait University, Kuwait. He
received his BSc and MSc in mathematics from Sharif University of Technology, Tehran,
Iran (1997 and 1999), and his PhD in mathematics from Simon Fraser University, Burn-
aby, British Columbia, Canada (2007). His research interests include graph theory, com-
binatorics, and digital security topics such as encryption, data hiding, hash functions, and
secret sharing.

A. Alazemi is an associate professor of mathematics at Kuwait University, Kuwait. He
received his BSc in mathematics from Kuwait University, Kuwait. He earned his MSc and
PhD in mathematics from Colorado State University, Colorado, the United States (2004
and 2007). His research interests include incidence structures, classification problems,
spectral graph theory, graph theory, combinatorics and algebra.


	Introduction
	Background and Notation
	The Proposed Scheme
	The Cat Map
	Generation of the Transformation Matrix X
	Generation of the Matrix S
	Generation of Shadow Images
	Secret Key
	Recovery of the Secret Image
	Delivery of Shares

	Performance Analysis
	Histogram Analysis
	Correlation Analysis
	Entropy Analysis
	Randomness Analysis
	Similarity Analysis
	Security Analysis
	Running Speed
	Error-Resilient Capability

	Comparison with Existing Work
	Concluding Remarks

