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Abstract. To solve the problem of choosing the appropriate cloud computing vendors in small and
medium-sized enterprises (SMEs), this paper boils it down to a group decision making (GDM)
problem. To facilitate the judgment, this paper uses preference relation as the decision making tech-
nology. Considering the situation where uncertain positive and negative judgments exist simultane-
ously, interval-valued intuitionistic fuzzy preference relations (IVIFPRs) are employed to express
the decision makers’ judgments. In view of the multiplicative consistency and consensus analysis,
a new GDM algorithm with IVIFPRs is offered. To accomplish this goal, a new multiplicative con-
sistency is first defined, which can avoid the limitations of the previous ones. Then, a programming
model is built to check the consistency of IVIFPRs. To deal with incomplete IVIFPRs, two program-
ming models are constructed to determine the missing values with the goal of maximizing the level
of multiplicative consistency and minimizing the total uncertainty. To achieve the minimum adjust-
ment of original preference information, a programming model is established to repair inconsistent
IVIFPRs. In addition, programming models for getting the decision makers (DMs)’ weights and
improving the consensus degree are offered. Finally, a practical decision making example is given
to illustrate the effectiveness of the proposed method and to compare it with previous methods.
Key words: group decision making, IVIFPR, multiplicative consistency, programming model,
consensus.

1. Introduction

In the era of economic globalization, the increasingly fierce competitive environment is
a common challenge faced by global small and medium-sized enterprises (SMEs). SMEs
must actively participate in the network economy to survive and develop. Compared with
the sizeable enterprises, SMEs lack funds and technology in enterprise informatization
construction (IC). To a certain extent, this limits the implementation effect of enterprise
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informatization. In recent years, with the rapid development of cloud computing (CC)
technology, it opens up a new avenue for the application of information technology in
SMEs. Many information processing-related businesses in CC model no longer install
and execute on local computers. They run on remote servers, known as the cloud, and the
results are offered to users as professional services. In this way, CC technology can effec-
tively alleviate the contradiction between the demand of SMEs’ personalized information
processing and the higher IC investment. This revolutionary technology is prompting more
and more information technology (IT) service companies to adjust their service patterns
by serving customers in the cloud. Facing the numerous CC vendors in the market, how to
choose the most appropriate one has become an important decision-making problem for
SMEs, which will greatly affect their business performance and competitiveness.

CC vendors selection can be treated as a typical multi-criteria decision-making
(MCDM) problem since it deals with the task of ranking a finite number of alterna-
tives under different criteria. At present, the research on MCDM has achieved fruitful
results. Among of which technique for order of preference by similarity to ideal solu-
tion (TOPSIS) and analytic hierarchy process (AHP) are the most of widely used de-
cision making technologies. Based on the transformation between interval-valued in-
tuitionistic fuzzy variables (IVIFVs) and linguistic variables (LVs), Büyüközkan et al.
(2018) proposed a hybrid method consisting of AHP, complex proportional assessment
(COPRAS), multi-objective optimization by ratio analysis plus the full multiplicative form
(MULTIMOORA), TOPSIS, and višekriterijumsko kompromisno rangiranje (VIKOR)
to rank CC vendors. Jatoth et al. (2018) presented a hybrid MCDM approach contain-
ing TOPSIS and AHP for the selection of cloud services. Onar et al. (2018) provided a
Pythagorean fuzzy TOPSIS method to select the proper cloud service provider by com-
bining a variety of tangible and intangible criteria. Based on AHP scale mapping method-
ology, Meesariganda and Ishizaka (2017) provided an approach to evaluate cloud storage
strategies for a company. Repschlaeger et al. (2014) described an AHP-based approach to
support IT organization for selecting an appropriate CC vendor. By integrating AHP, qual-
ity function deployment (QFD) and multi-choice goal programming technologies, Liao
and Kao (2014) presented a method to address the CC vendor selection problem in in-
formation service. Garg et al. (2013) proposed a framework that measures the quality of
cloud service and prioritizes CC vendors by applying AHP. Moreover, Sohaib et al. (2019)
utilized a TOPSIS based 2-tuple fuzzy linguistic multi-criteria group decision-making
method to facilitate assessing and choosing the CC models for SMEs.

From the above literature review, one can see that previous research about the CC
vendor selection problem mainly limits to decision matrix that needs DMs to offer the
absolute evaluation of each object for every criterion or attribute. However, it is difficult
or impossible for DMs due to various reasons such as the pressure of time, the limitations
of expertise, and the complexity of the selection of CC vendors. In addition, it is difficult
to establish a perfect index system to carry out quantitative evaluation on the CC vendors.
Methods with preference relations (PRs) which only require the DMs to compare two ob-
jects at one time and permit the existence of missing judgments provide a convenient tool
to solve complex MCDM problems. Since Saaty (1977) first proposed multiplicative PRs
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(MPRs), decision making based on PRs has made great success. In view of the DMs’ in-
determinacies, different types of PRs are introduced such as interval multiplicative PRs
(IMPRs) (Krejčí, 2017), fuzzy interval PRs (FIPRs) (Barrenechea et al., 2014) and interval
linguistic PRs (ILPRs) (Tapia García et al., 2012). The common feature of PRs mentioned
above is to consider only the preferred information of one object over another. Sometimes
this might be insufficient. In addition to the preferred information, non-preferred judg-
ments are also needed to fully express the recognition of DMs. For example, a DM may
think that one object has a preferred degree of 0.6 over another. However, the judgment of
non-preferred degree is 0.3 rather than 0.4, namely, the hesitancy degree between them is
0.1. In this situation, intuitionistic fuzzy values (IFVs) proposed by Szmidt and Kacprzyk
(2002) are powerful tools. However, IFVs only allow the DM to employ numeric values
[0, 1] to express their exact preferred and non-preferred judgments, which may be still
insufficient. In the above example, if the DM’s preferred degree is between 0.6 and 0.8
and the non-preferred degree is between 0.1 and 0.2, IFV is useless. To denote the un-
certainty of DMs’ judgments, Xu (2007a) further proposed interval-valued intuitionistic
fuzzy values (IVIFVs) and introduced interval-valued intuitionistic fuzzy preference re-
lations (IVIFPRs). Meanwhile, considering the complexity of decision-making problems,
group decision making (GDM) is necessary to avoid the possible decision bias caused
by a single DM. Considering the advantages of PRs and GDM, this paper introduces a
GDM method based on IVIFPRs to solve the problem of CC vendors selection for SMEs
through pairwise comparison among objects under the experts’ comprehensive consider-
ation of the evaluation criteria.

In decision making with PRs, the lack of consistency will lead to unreasonable conclu-
sions. Therefore, it is critical to study the consistency of IVIFPRs. Motivated by Xu and
Chen’s method (2008) for deriving the priority vector from FIPRs, Wang et al. (2009) used
the normalized interval weight vector to propose an additive consistency concept for IV-
IFPRs. According to the additive consistency concept for FIPRs, Wan et al. (2017) defined
an additive consistency concept for IVIFPRs and then presented a GDM method. Wan et
al. (2018) defined another additive consistency concept for IVIFPRs by transforming an
IVIFPR into an IFPR. Recently, Tang et al. (2018) analysed the limitations of previous
additive consistency concepts for IVIFPRs. Using 2-tuple preferred FIPRs (2TPFIPRs)
and quasi 2TPFIPRs (Q2TPFIPRs), the authors proposed a new definition for additive
consistent IVIFPRs.

In addition to the above additive consistency concepts for IVIFPRs, there are some
researches on the multiplicative consistency of IVIFPRs. For instance, based on IVIFVs’
operational laws, Xu and Cai (2009) proposed a multiplicative consistency concept for
IVIFPRs and developed a method for estimating missing values. Later, according to the
multiplicative transitivity for fuzzy PRs (Tanino, 1984), Xu and Cai (2015) introduced an-
other multiplicative consistency concept for IVIFPRs and developed an approach to GDM
with incomplete IVIFPRs. Similar to the multiplicative consistency concept in Xu and Cai
(2015), Liao et al. (2014) provided a multiplicative consistency concept for IVIFPRs and
investigated inconsistent IVIFPRs. To improve the consistency and consensus level, the
authors proposed two iterative algorithms. On the basis of Liao and Xu’s multiplicative
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consistency definition for IFPRs (Liao and Xu, 2014) and the induced matrices obtained
from IVIFPRs, Wan et al. (2016) proposed another definition for multiplicative consis-
tent IVIFPRs and introduced a GDM method. Meng et al. (2018) analysed the issues of
multiplicative consistency concepts for IVIFPRs and proposed a new definition for multi-
plicatively consistent IVIFPRs. Based on the discussions on the multiplicative consistency
and consensus, an algorithm for GDM with IVIFPRs is proposed. Other researches on de-
cision making with IVIFPRs can be found in the literature (Wu and Chiclana, 2012; Zhou
et al., 2018).

Through the above literature review about IVIFPRs, we find that there are some as-
pects of research on decision making with IVIFPRs that can be further improved. Some
methods do not calculate the priority vector based on the consistency analysis, which may
lead to illogical ranking results. Although some methods are based on the consistency
analysis, the consistency conclusion is dependent on compared orders of objects. Due to
the complexity of decision-making problems and the limitation of DMs’ subjective cog-
nition, incomplete information may occur in IVIFPRs, which is not covered in some of
the literature. Moreover, the iterative method for consistency and consensus improvement
may change the initial preference information of DMs greatly, and the procedure for cal-
culating the priority vector is complex in some of the literature.

Considering these facts, this paper offers a new method for GDM with IVIFPRs and
provides an effective way for SMEs to choose the appropriate CC products. The main
contributions of this paper include:

(i) A new multiplicative consistency definition for IVIFPRs is proposed and a program-
ming model is built to check the consistency.

(ii) For incomplete IVIFPRs, two programming models are constructed to determine
unknown preference information, which aim at both maximizing the multiplicative
consistency level and minimizing the total uncertain degree.

(iii) To repair inconsistent IVIFPRs, a goal programming model for deriving associated
multiplicatively consistent IVIFPRs is established, which minimizes the total adjust-
ment.

(iv) In GDM, a programming model is established to improve individual consensus level,
which endows different IVIFVs with different adjustments and minimizes the adjust-
ment of individual IVIFPRs to retain more original information.

(v) A GDM algorithm with IVIFPRs based on the multiplicative consistency and con-
sensus analysis is proposed, which can avoid the limitations of previous ones.

(vi) The application of the new method in selecting the appropriate CC vendors for SMEs
is discussed, which provides a new path for solving this important problem.

This paper is arranged as follows. Section 2 introduces some related basic concepts
and analyses several multiplicative consistency definitions. Section 3 proposes a new
multiplicative consistency definition for IVIFPRs that can avoid the issues of existing
ones. Meanwhile, a programming model is built to check the multiplicative consistency
of IVIFPRs. Section 4 tackles incomplete and inconsistent IVIFPRs. First, two program-
ming models are constructed to determine missing values in incomplete IVIFPRs, and
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then a programming model is presented for repairing inconsistent IVIFPRs. Section 5
discusses GDM with incomplete and inconsistent IVIFPRs. It first gives a programming
model to determine the DMs’ weights and offers a formula to measure the consensus de-
gree. Then, a programming model is provided to reach the given consensus threshold.
After that, the concrete algorithm for GDM with IVIFPRs is put forward. Section 6 ap-
plies the proposed method to solve the selection of CC products for SMEs and to compare
the new method with previous ones. Conclusions and future remarks are conducted in
Section 7.

2. Basic Concepts

To make the following discussions easily, the section reviews some related concepts.

Definition 1 (See Xu, 2004). A FIPR A = (aij )n×n on the finite set X = {x1, x2, . . . ,

xn} is an interval fuzzy binary relation, characterized by an interval fuzzy subset of X ×
X, i.e. μA : X × X → D[0, 1] such that D[0, 1] is the set of all possible intervals in
[0, 1], where the interval aij = μA(xi, xj ) is the interval preferred degree of the object
xi over xj . Furthermore, its elements satisfy

⎧⎪⎨
⎪⎩

āij = [aL
ij , a

U
ij ] ⊆ [0, 1],

aL
ij � aU

ij ,

aL
ij + aU

ji = aU
ij + aL

ji = 1,

(1)

where i, j = 1, 2, . . . , n.

To ensure the rationality of decision-making results, many scholars devoted themselves
to the investigation of the consistency of FIPRs. After comparing and analysing the pre-
vious multiplicative consistency concepts, Meng et al. (2017) introduced the below mul-
tiplicative consistency concept for FIPRs.

Definition 2 (See Meng et al., 2017). Let A = (aij )n×n be a FIPR. A is multiplicatively
consistent if there is an associated multiplicatively consistent quasi FIPR (QFIPR) B =
(bij )n×n, namely,

b̄ij ⊗ b̄jk ⊗ b̄ki = b̄j i ⊗ b̄ik ⊗ b̄kj (2)

for all i, k, j = 1, 2, . . . , n, where

{
b̄ij = [aL

ij , a
U
ij ]

b̄j i = [aU
ji, a

L
ji]

or

{
b̄ij = [aU

ij , aL
ij ]

b̄j i = [aL
ji, a

U
ji]

for all i, j =
1, 2, . . . , n.

From Definition 2, we can see that Meng et al.’s concept requires the endpoints of
interval judgments to satisfy the multiplicative transitivity. In contrast to Definition 2,
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Krejčí (2019) offered another multiplicative consistency concept for FIPRs based on the
constrained operations on intervals (Lodwick and Jenkins, 2013) that does not restrict to
the endpoints of interval judgments.

Definition 3 (See Krejčí, 2019). Let A = (aij )n×n be a FIPR. A is multiplicatively
consistent if

∀aij ∈ āij , ∃aik ∈ āik ∧ akj ∈ ākj ⇒ aij = aikakj

1 − aik − akj + 2aikakj

(3)

is true for all i, k, j = 1, 2, . . . , n.

By the reciprocity of FIPRs, one can check that formula (3) is equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aL
ij

1 − aL
ij

�
aL
ika

L
kj

(1 − aL
ik)(1 − aL

kj )
,

aU
ij

1 − aU
ij

�
aU
ika

U
kj

(1 − aU
ik)(1 − aU

kj )

(4)

for all i, k, j = 1, 2, . . . , n with k �= i, j ∧ i < j .
From formulae (2) and (4), one can conclude that Definition 2 can be seen as a special

case of Definition 3. Just as Meng et al. (2019) noted, Definition 3 is more flexible than
Definition 2.

To simultaneously express both the preferred and non-preferred information of one ob-
ject over the other, Szmidt and Kacprzyk (2002) proposed the concept for IFVs. Following
this, Xu (2007b) gave the definition for IFPRs.

Definition 4 (See Xu, 2007b). An IFPR R on the finite set X = {x1, x2, . . . , xn} is
presented by a matrix R = (rij )n×n such that rij = (μij , vij ) is an IFV, which denotes
the intuitionistic fuzzy preference of the object xi over xj , i, j = 1, 2, . . . , n. Furthermore,
its elements satisfy the following conditions:

{
μij , vij � 0, μij + vij � 1,

μji = vij , vji = μij , μii = vii = 0.5,
(5)

where i, j = 1, 2, . . . , n.

To reflect the uncertainty of DMs’ judgments on preferred and non-preferred informa-
tion, Atanassov and Gargov (1989) further introduced IVIFSs, and Xu (2007a) proposed
IVIFVs for facilitating the application. Based on IVIFVs, Xu (2007c) offered the concept
of IVIFPRs.

Definition 5 (See Xu, 2007c). An IVIFPR R̃ on the finite set X = {x1, x2, . . . , xn} is
represented by a matrix R̃ = (r̃ij )n×n such that r̃ij = (μij , vij ) is an IVIFV, which
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denotes the interval-valued intuitionistic fuzzy preference of the object xi over xj , i, j =
1, 2, . . . , n. Furthermore, its elements satisfy the following conditions:

⎧⎨
⎩

μ̄ij = [μl,ij , μu,ij ] ⊆ [0, 1], v̄ij = [vl,ij , vu,ij ] ⊆ [0, 1],
μ̄ji = v̄ij , v̄j i = μ̄ij , μu,ij + vu,ij � 1,

μ̄ii = v̄ii = [0.5, 0.5],
(6)

where i, j = 1, 2, . . . , n.

Regarding IVIFPRs’ multiplicative consistency, Liao et al. (2014) introduced a con-
cept on the basis of multiplicative transitivity for fuzzy PRs (Tanino, 1984). By applying
Liao and Xu’s multiplicative consistency definition for IFPRs (Liao and Xu, 2014), Wan
et al. (2016) also offered a multiplicative consistency concept for IVIFPRs. The common
limitation of the two concepts is that they do not satisfy the robustness, which means con-
tradictory conclusions about consistency might be obtained under different comparison
orders between objects. Furthermore, different ranking orders might be derived too.

Example 1. Let the IVIFPR R̃ on X = {x1, x2, x3} be defined as follows:

R̃ =
x1 x2 x3⎛

⎝ ([1/2, 1/2], [1/2, 1/2]) ([1/4, 1/3], [2/5, 1/2]) ([1/5, 1/3], [2/17, 1/5])
([2/5, 1/2], [1/4, 1/3]) ([1/2, 1/2], [1/2, 1/2]) ([3/7, 1/2], [1/6, 1/5])
([2/17, 1/5], [1/5, 1/3]) ([1/6, 1/5], [3/7, 1/2]) ([1/2, 1/2], [1/2, 1/2])

⎞
⎠ x1

x2

x3

.

One can check that R̃ is multiplicatively consistent according to the consistency def-
inition in Liao et al. (2014). On the other hand, let σ be a permutation on the labels of
objects, where σ(1) = 3, σ(2) = 1, σ(3) = 2. Then, we get the below IVIFPR

x2 x3 x1

R̃σ =
⎛
⎝([1/2, 1/2], [1/2, 1/2]) ([3/7, 1/2], [1/6, 1/5]) ([2/5, 1/2], [1/4, 1/3])

([1/6, 1/5], [3/7, 1/2]) ([1/2, 1/2], [1/2, 1/2]) ([2/17, 1/5], [1/5, 1/3])
([1/4, 1/3], [2/5, 1/2]) ([1/5, 1/3], [2/17, 1/5]) ([1/2, 1/2], [1/2, 1/2])

⎞
⎠ x2

x3

x1

,

which is inconsistent following Liao et al.’s consistency definition. However, the IVIFPR
R̃ and R̃σ are identical for the compared objects x1, x2 and x3. Thus, the multiplica-
tive consistency definition in Liao et al. (2014) is insufficient to judge the consistency of
IVIFPRs. Similarly, we can illustrate the limitation of the consistency definition proposed
in Wan et al. (2016).

In contrast to the above two multiplicative consistency concepts, Meng et al. (2018)
defined 2TPFIPRs by which the authors derived a new multiplicative consistency concept.

Definition 6 (See Meng et al., 2018). Let R̃ = (r̃ij )n×n be an IVIFPR, where r̃ij =
([μl,ij , μu,ij ], [vl,ij , vu,ij ]) for all i, j = 1, 2, . . . , n. P̃ = (p̃ij )n×n is called a 2TPFIPR,
where p̃ij = ([μl,ij , 1 − vl,ij ], [μu,ij , 1 − vu,ij ]) denotes the interval possible preferred
degree of the object xi over xj for all i, j = 1, 2, . . . , n.
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Corresponding to 2TPFIPRs, the concept for Q2TPFIPRs is offered as follows:

Definition 7 (See Meng et al., 2018). Let R̃ be an IVIFPR and P̃ be its 2TPFIPR as
shown in Definition 6. S̃ = (s̃ij )n×n is called a Q2TPFIPR if its elements satisfy one of
the following four cases:

(i)

{
s̃ij = ([μl,ij , 1 − vl,ij ], [μu,ij , 1 − vu,ij ]),
s̃j i = ([1 − μl,ij , vl,ij ], [1 − μu,ij , vu,ij ]),

(ii)

{
s̃ij = ([1 − vl,ij , μl,ij ], [μu,ij , 1 − vu,ij ]),
s̃j i = ([vl,ij , 1 − μl,ij ], [1 − μu,ij , vu,ij ]),

(iii)

{
s̃ij = ([μl,ij , 1 − vl,ij , ], [1 − vu,ij , μu,ij ]),
s̃j i = ([1 − μl,ij , vl,ij ], [vu,ij , 1 − μu,ij ]),

(iv)

{
s̃ij = ([1 − vl,ij , μl,ij ], [1 − vu,ij , μu,ij ]),
s̃j i = ([vl,ij , 1 − μl,ij ], [vu,ij , 1 − μu,ij ])

(7)

for all i, j = 1, 2, . . . , n.

Definition 7 indicates that the Q2TPFIPR S̃ = (s̃ij )n×n is composed by two QFIPRs
η = (ηij )n×n and λ = (λij )n×n, where

{
η̄ij = [μl,ij , 1 − vl,ij ]
η̄j i = [1 − μl,ij , vl,ij ] ∨

{
η̄ij = [1 − vl,ij , μl,ij ]
η̄j i = [vl,ij , 1 − μl,ij ],{

λ̄ij = [μu,ij , 1 − vu,ij ]
λ̄j i = [1 − μu,ij , vu,ij ] ∨

{
λ̄ij = [1 − vu,ij , μu,ij ]
λ̄j i = [vu,ij , 1 − μu,ij ]

(8)

for all i, j = 1, 2, . . . , n.
Based on the above fact and Definition 2, Meng et al. (2018) gave the below multi-

plicative consistency concept for Q2TPFIPRs:

Definition 8 (See Meng et al., 2018). Let R̃ = (r̃ij )n×n be an IVIFPR and S̃ = (s̃ij )n×n

be its Q2TPFIPR. S̃ is multiplicatively consistent if the QFIPRs η = (ηij )n×n and λ =
(λij )n×n as shown in formula (8) are both multiplicatively consistent, namely,{

η̄ij ⊗ η̄jk ⊗ η̄ki = η̄j i ⊗ η̄ik ⊗ η̄kj ,

λ̄ij ⊗ λ̄jk ⊗ λ̄ki = λ̄j i ⊗ λ̄ik ⊗ λ̄kj

(9)

for all i, k, j = 1, 2, . . . , n.

Based on the multiplicative consistency of Q2TPFIPRs, Meng et al. (2018) further
proposed the following multiplicative consistency concept for IVIFPRs:

Definition 9 (See Meng et al., 2018). Let R̃ = (r̃ij )n×n be an IVIFPR and S̃ = (s̃ij )n×n

be its Q2TPFIPR. If S̃ is multiplicatively consistent following Definition 8, then R̃ is
multiplicatively consistent.
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For example, the IVIFPR:

R̃ =
(

([0.50, 0.50], [0.50, 0.50]) ([0.46, 0.46], [0.52, 0.52]) ([0.57, 0.60], [0.35, 0.36]) ([0.70, 0.70], [0.29, 0.29])
([0.52, 0.52], [0.46, 0.46]) ([0.50, 0.50], [0.50, 0.50]) ([0.59, 0.62], [0.32, 0.33]) ([0.73, 0.73], [0.27, 0.27])
([0.35, 0.36], [0.57, 0.60]) ([0.32, 0.33], [0.59, 0.62]) ([0.50, 0.50], [0.50, 0.50]) ([0.55, 0.56], [0.35, 0.38])
([0.29, 0.29], [0.70, 0.70]) ([0.27, 0.27], [0.73, 0.73]) ([0.35, 0.38], [0.55, 0.56]) ([0.50, 0.50], [0.50, 0.50])

)

is multiplicatively consistent according to Definition 9, since there are two corresponding
multiplicatively consistent QFIPRs as follows:

η̄ =

⎛
⎜⎜⎝

[0.50, 0.50] [0.48, 0.46] [0.57, 0.65] [0.71, 0.70]
[0.52, 0.54] [0.50, 0.50] [0.59, 0.68] [0.73, 0.73]
[0.43, 0.35] [0.41, 0.32] [0.50, 0.50] [0.65, 0.55]
[0.29, 0.30] [0.27, 0.27] [0.35, 0.45] [0.50, 0.50]

⎞
⎟⎟⎠ ,

λ̄ =

⎛
⎜⎜⎝

[0.50, 0.50] [0.46, 0.48] [0.64, 0.60] [0.70, 0.71]
[0.54, 0.52] [0.50, 0.50] [0.67, 0.62] [0.73, 0.73]
[0.36, 0.40] [0.33, 0.38] [0.50, 0.50] [0.56, 0.62]
[0.30, 0.29] [0.27, 0.27] [0.44, 0.38] [0.50, 0.50]

⎞
⎟⎟⎠ .

From Definition 9, one can find that Meng et al.’s multiplicative consistency concept is
based on Definition 2. Although it can avoid the limitations of the multiplicative concepts
in Liao et al. (2014), Wan et al. (2016), the main issue of Definition 9 is not flexible enough
(Meng et al., 2019).

3. A New Multiplicative Consistency Concept for IVIFPRs

Considering the limitations of previous multiplicative consistency concepts for IVIFPRs,
this section introduces a new one based on Krejčí’s multiplicative consistency concept
(Krejčí, 2019) for FIPRs.

Let R̃ = (r̃ij )n×n be an IVIFPR, and let P̃ be its 2TPFIPR as shown in Definition 6.
One can find that the 2TPFIPR P̃ is composed by the matrices P

L = (pL
ij )n×n and P

U =
(pU

ij )n×n, where

{
p̄L

ij = [μl,ij , 1 − vl,ij ],
p̄U

ij = [μu,ij , 1 − vu,ij ] (10)

for all i, j = 1, 2, . . . , n.
Following the concept for IVIFPRs and formula (10), we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p̄L
ij = [μl,ij , 1 − vl,ij ] ⊆ [0, 1],

p̄L
ji = [μl,ji , 1 − vl,j i] ⊆ [0, 1],

μl,j i + 1 − vl,ij = vl,ij + 1 − vl,ij = 1,

μl,ij + 1 − vl,j i = μl,ij + 1 − μl,ij = 1,

and
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⎪⎪⎪⎪⎩

p̄U
ij = [μu,ij , 1 − vu,ij ] ⊆ [0, 1],

p̄U
ji = [μu,ji , 1 − vu,ji] ⊆ [0, 1],

μu,ji + 1 − vu,ij = vu,ij + 1 − vu,ij = 1,

μu,ij + 1 − vu,ji = μu,ij + 1 − μu,ij = 1

(11)

for all i, j = 1, 2, . . . , n. Therefore, P
L = (pL

ij )n×n and P
U = (pU

ij )n×n are FIPRs.
Based on the above relationship, we employ the multiplicative consistent FIPRs to

define multiplicative consistent 2TPFIPRs.

Definition 10. Let P̃ = (p̃ij )n×n be the 2TPFIPR of the IVIFPR R̃ = (r̃ij )n×n. P̃ is
multiplicatively consistent if the FIPRs P

L = (pL
ij )n×n and P

U = (pU
ij )n×n shown in

formula (10) are both multiplicatively consistent, namely,
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀pL
ij ∈ p̄L

ij , ∃pL
ik ∈ p̄L

ik ∧ pL
kj ∈ p̄L

kj ⇒ pL
ij = pL

ikp
L
kj

1 − pL
ik − pL

kj + 2pL
ikp

L
kj

,

∀pU
ij ∈ p̄U

ij , ∃pU
ik ∈ p̄U

ik ∧ pU
kj ∈ p̄U

kj ⇒ pU
ij = pU

ikp
U
kj

1 − pU
ik − pU

kj + 2pU
ikp

U
kj

(12)

for all i, k, j = 1, 2, . . . , n.

Following formula (4) and Definition 10, one can easily derive the below theorem:

Theorem 1. Let P̃ = (p̃ij )n×n be the 2TPFIPR of the IVIFPR R̃, P̃ is multiplicatively
consistent according to Definition 10 if and only if the following is true, where

⎧⎪⎪⎨
⎪⎪⎩

μl,ij

1 − μl,ij

� μl,ikμl,kj

(1 − μl,ik)(1 − μl,kj )
,

vl,ij

1 − vl,ij

� vl,ikvl,kj

(1 − vl,ik)(1 − vl,kj )
,

and

⎧⎪⎪⎨
⎪⎪⎩

μu,ij

1 − μu,ij

� μu,ikμu,kj

(1 − μu,ik)(1 − μu,kj )
,

vu,ij

1 − vu,ij

� vu,ikvu,kj

(1 − vu,ik)(1 − vu,kj )

(13)

for all i, k, j = 1, 2, . . . , n with k �= i, j ∧ i < j .

Theorem 1 shows that the multiplicative consistency of 2TPFIPRs is based on the
multiplicative transitivity of the endpoints of IVIFVs in associated IVIFPRs. Thus, we
can adopt Definition 10 to further define the multiplicative consistency of IVIFPRs.

Definition 11. Let R̃ = (r̃ij )n×n be an IVIFPR. R̃ is multiplicatively consistent if its
2TPFIPR P̃ = (p̃ij )n×n is multiplicatively consistent according to Definition 10, namely,
its elements satisfy formula (13).

According to the independence of Definition 3 for the compared orders, it can be easily
checked that Definition 11 is invariant for the permutation of objects.
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In the following, we study the relationship between Definitions 9 and 11 to show the
flexibility of the new concept.

Theorem 2. Let R̃ = (r̃ij )n×n be an IVIFPR. When R̃ is multiplicatively consistent fol-
lowing Definition 9, then it is multiplicatively consistent based on Definition 11.

Proof. When R̃ is multiplicatively consistent following Definition 9, according to formu-
lae (3.4) and (3.5) in Meng et al. (2018), we have:

(i)

⎧⎪⎪⎨
⎪⎪⎩

μl,jiμl,ikμl,kj

(1 − μl,ji)(1 − μl,ik)(1 − μl,kj )
= 1,

vl,j ivl,ikvl,kj

(1 − vl,j i)(1 − vl,ik)(1 − vl,kj )
= 1,

(ii)

⎧⎪⎪⎨
⎪⎪⎩

μl,ij

(1 − μl,ij )
= μl,ikμl,kj

(1 − μl,ik)(1 − μl,kj )
,

vl,ij

(1 − vl,ij )
= vl,ikvl,kj

(1 − vl,ik)(1 − vl,kj )
,

(iii)

⎧⎪⎪⎨
⎪⎪⎩

μl,ik

(1 − μl,ik)
= μl,ijμl,jk

(1 − μl,ij )(1 − μl,jk)
,

vl,ik

(1 − vl,ik)
= vl,ij vl,jk

(1 − vl,ij )(1 − vl,jk)
,

(iv)

⎧⎪⎪⎨
⎪⎪⎩

μl,kj

(1 − μl,kj )
= μl,kiμl,ij

(1 − μl,ki)(1 − μl,ij )
,

vl,kj

(1 − vl,kj )
= vl,kivl,ij

(1 − vl,ki)(1 − vl,ij )

(14)

and

(i)

⎧⎪⎪⎨
⎪⎪⎩

μu,jiμu,ikμu,kj

(1 − μu,ji)(1 − μu,ik)(1 − μu,kj )
= 1,

vu,jivu,ikvu,kj

(1 − vu,ji)(1 − vu,ik)(1 − vu,kj )
= 1,

(ii)

⎧⎪⎪⎨
⎪⎪⎩

μu,ij

(1 − μu,ij )
= μu,ikμu,kj

(1 − μu,ik)(1 − μu,kj )
,

vu,ij

(1 − vu,ij )
= vu,ikvu,kj

(1 − vu,ik)(1 − vu,kj )
,

(iii)

⎧⎪⎪⎨
⎪⎪⎩

μu,ik

(1 − μu,ik)
= μu,ijμu,jk

(1 − μu,ij )(1 − μu,jk)
,

vu,ik

(1 − vu,ik)
= vu,ij vu,jk

(1 − vu,ij )(1 − vu,jk)
,

(iv)

⎧⎪⎪⎨
⎪⎪⎩

μu,kj

(1 − μu,kj )
= μu,kiμu,ij

(1 − μu,ki)(1 − μu,ij )
,

vu,kj

(1 − vu,kj )
= vu,kivu,ij

(1 − vu,ki)(1 − vu,ij )

(15)

for all i, k, j = 1, 2, . . . , n.
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Fig. 1. The relationship between two multiplicative consistency concepts.

According to formulae (14) and (15), one can check that formula (13) is true. There-
fore, R̃ is multiplicatively consistent based on Definition 11. �

Remark 1. When an IVIFPR is multiplicatively consistent following Definition 11, we
cannot conclude that it is multiplicatively consistent in accordance with Definition 9.

Considering the below IVIFPR:

R̃ =
(

([0.50, 0.50], [0.50, 0.50]) ([0.40, 0.60], [0.30, 0.40]) ([0.40, 0.60], [0.40, 0.40])
([0.30, 0.40], [0.40, 0.60]) ([0.50, 0.50], [0.50, 0.50]) ([0.35, 0.50], [0.45, 0.50])
([0.40, 0.40], [0.40, 0.60]) ([0.45, 0.50], [0.35, 0.50]) ([0.50, 0.50], [0.50, 0.50])

)
.

One can check that R̃ is multiplicatively consistent according to Definition 11. Never-
theless, it is inconsistent following Definition 9.

The relationship between the new and Meng et al.’s multiplicative consistency con-
cepts for IVIFPRs is listed in Fig. 1.

Although Definition 11 owns all properties of Definition 3, it is inefficient to judge
the multiplicative consistency of IVIFPRs directly. For an IVIFPR R̃, there are two as-
sociated FIPRs based on formula (10). Then, 2n(n − 1)(n − 2) triples of (i, k, j) need
to be compared by formula (13) for judging its multiplicative consistency. Therefore, this
way is time consuming and infeasible. To solve this problem, we construct the following
programming model to judge the IVIFPRs’ multiplicative consistency:

Model 1: �∗ = min
n−1∑
i=1

n∑
j=i+1

(αl,ij + βl,ij + αu,ij + βu,ij )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(μl,ij ) − log(1 − μl,ij ) + αl,ij

� log(μl,ik) + log(μl,kj ) − log(1 − μl,ij ) − log(1 − μl,kj ),

log(vl,ij ) − log(1 − vl,ij ) + βl,ij

� log(vl,ik) + log(vl,kj ) − log(1 − vl,ij ) − log(1 − vl,kj ),

log(μu,ij ) − log(1 − μu,ij ) + αu,ij

� log(μu,ik) + log(μu,kj ) − log(1 − μu,ij ) − log(1 − μu,kj ),

log(vu,ij ) − log(1 − vu,ij ) + βu,ij

� log(vu,ik) + log(vu,kj ) − log(1 − vu,ij ) − log(1 − vu,kj ),

i, k, j = 1, 2, . . . , n, k �= i, j, i < j,

αl,ij , βl,ij , αu,ij , βu,ij � 0, i, j = 1, 2, . . . , n, i < j,

(16)
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where the first four constraints are obtained by taking the natural logarithm of the inequali-
ties in formula (13) and adding the non-negative deviation variables αl,ij , βl,ij , αu,ij , βu,ij .

By solving Model 1, when the optimal objective value �∗ = 0, R̃ is multiplicatively
consistent according to Definition 11. Otherwise, it is inconsistent.

4. Programming Models for Dealing with Incomplete and Inconsistent IVIFPRs

Due to DMs’ personal limitations and time pressure, DMs may not provide some prefer-
ence information. In this section, two programming models are constructed to determine
the missing values under the conditions of maximizing the multiplicative consistency level
and minimizing the total uncertainty.

Let R̃ = (r̃ij )n×n be an incomplete IVIFPR. If it is multiplicatively consistent, formula
(13) is true. When R̃ is inconsistent, we cannot derive formula (13). In this case, we relax
formula (13) by adding the deviation variables, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(μl,ij ) − log(1 − μl,ij ) + αl,ij

� log(μl,ik) + log(μl,kj ) − log(1 − μl,ik) − log(1 − μl,kj ),

log(vl,ij ) − log(1 − vl,ij ) + βl,ij

� log(vl,ik) + log(vl,kj ) − log(1 − vl,ik) − log(1 − vl,kj ),

log(μu,ij ) − log(1 − μu,ij ) + αu,ij

� log(μu,ik) + log(μu,kj ) − log(1 − μu,ik) − log(1 − μu,kj ),

log(vu,ij ) − log(1 − vu,ij ) + βu,ij

� log(vu,ik) + log(vu,kj ) − log(1 − vu,ik) − log(1 − vu,kj )

(17)

for all i, k, j = 1, 2, . . . , n with k �= i, j ∧ i < j , and αl,ij , βl,ij , αu,ij , βu,ij � 0.
In addition, there are following 15 different types of missing values of an IVIFV r̃ij =

([μl,ij , μu,ij ], [vl,ij , vu,ij ]).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μl,ij ∈ U−
μ ∧ μu,ij /∈ U+

μ ∧ vl,ij /∈ U−
v ∧ vu,ij /∈ U+

v ,

μl,ij /∈ U−
μ ∧ μu,ij ∈ U+

μ ∧ vl,ij /∈ U−
v ∧ vu,ij /∈ U+

v ,

μl,ij /∈ U−
μ ∧ μu,ij /∈ U+

μ ∧ vl,ij ∈ U−
v ∧ vu,ij /∈ U+

v ,

μl,ij /∈ U−
μ ∧ μu,ij /∈ U+

μ ∧ vl,ij /∈ U−
v ∧ vu,ij ∈ U+

v ,

μl,ij ∈ U−
μ ∧ μu,ij ∈ U+

μ ∧ vl,ij /∈ U−
v ∧ vu,ij /∈ U+

v ,

μl,ij ∈ U−
μ ∧ μu,ij /∈ U+

μ ∧ vl,ij ∈ U−
v ∧ vu,ij /∈ U+

v ,

μl,ij ∈ U−
μ ∧ μu,ij /∈ U+

μ ∧ vl,ij /∈ U−
v ∧ vu,ij ∈ U+

v ,

μl,ij /∈ U−
μ ∧ μu,ij ∈ U+

μ ∧ vl,ij ∈ U−
v ∧ vu,ij /∈ U+

v ,

μl,ij /∈ U−
μ ∧ μu,ij ∈ U+

μ ∧ vl,ij /∈ U−
v ∧ vu,ij ∈ U+

v ,

μl,ij /∈ U−
μ ∧ μu,ij /∈ U+

μ ∧ vl,ij ∈ U−
v ∧ vu,ij ∈ U+

v ,

μl,ij ∈ U−
μ ∧ μu,ij ∈ U+

μ ∧ vl,ij ∈ U−
v ∧ vu,ij /∈ U+

v ,

μl,ij ∈ U−
μ ∧ μu,ij ∈ U+

μ ∧ vl,ij /∈ U−
v ∧ vu,ij ∈ U+

v ,

μl,ij ∈ U−
μ ∧ μu,ij /∈ U+

μ ∧ vl,ij ∈ U−
v ∧ vu,ij ∈ U+

v ,

μl,ij /∈ U−
μ ∧ μu,ij ∈ U+

μ ∧ vl,ij ∈ U−
v ∧ vu,ij ∈ U+

v ,

μl,ij ∈ U−
μ ∧ μu,ij ∈ U+

μ ∧ vl,ij ∈ U−
v ∧ vu,ij ∈ U+

v .

(18)

where
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U−
μ = {μl,ij is unknown for all i, j = 1, 2, . . . , n with i < j},

U+
μ = {μu,ij is unknown for all i, j = 1, 2, . . . , n with i < j},

U−
v = {vl,ij is unknown for alli, j = 1, 2, . . . , n with i < j},

U+
v = {vu,ij is unknown for all i, j = 1, 2, . . . , n with i < j}.

Each case in formula (18) corresponds to a constraint ci, (i = 1, 2, . . . , 15) as listed
in the following formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 : 0 � μl,ij � μu,ij , vl,j i = μl,ij ,

c2 :μl,ij � μu,ij � 1 − vu,ij , vu,ji = μu,ij ,

c3 : 0 � vl,ij � vu,ij , μl,j i = vl,ij ,

c4 : vl,ij � vu,ij � 1 − μu,ij , μu,ji = vu,ij ,

c5 : 0 � μl,ij � μu,ij � 1 − vu,ij , vl,j i = μl,ij , vu,ji = μu,ij ,

c6 : 0 � μl,ij � μu,ij , 0 � vl,ij � vu,ij , vl,j i = μl,ij , μl,j i = vl,ij

c7 : 0 � μl,ij � μu,ij , vl,ij � vu,ij � 1 − μu,ij , vl,j i = μl,ij , μu,ji = vu,ij

c8 :μl,ij � μu,ij � 1 − vu,ij , 0 � vl,ij � vu,ij , vu,ji = μu,ij , μl,j i = vl,ij ,

c9 :μl,ij � μu,ij � 1 − vu,ij , vl,ij � vu,ij , vu,ji = μu,ij , μu,ji = vu,ij ,

c10 : 0 � vl,ij � vu,ij � 1 − μu,ij , μl,j i = vl,ij , μu,ji = vu,ij ,

c11 : 0 � μl,ij � μu,ij � 1 − vu,ij , 0 � vl,ij � vu,ij , vl,j i = μl,ij ,

vu,ji = μu,ij , μl,j i = vl,ij ,

c12 : 0 � μl,ij � μu,ij , vl,ij � vu,ij � 1 − μu,ij , vl,j i = μl,ij ,

vu,ji = μu,ij , μu,ji = vu,ij ,

c13 : 0 � μl,ij � μu,ij , 0 � vl,ij � vu,ij � 1 − μu,ij , vl,j i = μl,ij ,

μl,j i = vl,ij , μu,ji = vu,ij ,

c14 :μl,ij � μu,ij � 1 − vu,ij , 0 � vl,ij � vu,ij , vu,ji = μu,ij ,

μl,j i = vl,ij , μu,ji = vu,ij ,

c15 : 0 � μl,ij � μu,ij � 1 − vu,ij , 0 � vl,ij � vu,ij � 1 − μu,ij , vl,j i = μl,ij ,

vu,ji = μu,ij , μl,j i = vl,ij , μu,ji = vu,ij .

(19)

Let C = {c1, c2, . . . , c15}. The following programming model is constructed to obtain
the values for missing information.

Model 2: f ∗ = min
n−1∑
i=1

n∑
j=i+1

(αl,ij + βl,ij + αu,ij + βu,ij ) (20)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(μl,ij ) − log(1 − μl,ij ) + αl,ij

� log(μl,ik) + log(μl,kj ) − log(1 − μl,ik) − log(1 − μl,kj ),

log(vl,ij ) − log(1 − vl,ij ) + βl,ij

� log(vl,ik) + log(vl,kj ) − log(1 − vl,ik) − log(1 − vl,kj ),

log(μu,ij ) − log(1 − μu,ij ) + αu,ij

� log(μu,ik) + log(μu,kj ) − log(1 − μu,ik) − log(1 − μu,kj ),

log(vu,ij ) − log(1 − vu,ij ) + βu,ij

� log(vu,ik) + log(vu,kj ) − log(1 − vu,ik) − log(1 − vu,kj ),

αl,ij , βl,ij , αu,ij , βu,ij � 0, i, k, j = 1, 2, . . . , n, k �= i, j ∧ i < j,

ci ∈ C, i = 1, 2, . . . , 15,
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where the first four constraints ensure the obtained IVIFPR to be multiplicatively consis-
tent.

Considering the fact that the larger the uncertain degree is, the lesser the useful infor-
mation will be. We further offer the following programming model:

Model 3: g∗ = min
∑

μl,ij ∈U−
μ ∨μu,ij ∈U+

μ ∨vl,ij ∈U−
v ∨vu,ij ∈U−

v

(μu,ij − μl,ij + vu,ij − vl,ij )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1
i=1

∑n
j=i+1(αl,ij + βl,ij + αu,ij + βu,ij ) = f ∗,

log(μl,ij ) − log(1 − μl,ij ) + αl,ij

� log(μl,ik) + log(μl,kj ) − log(1 − μl,ik) − log(1 − μl,kj ),

log(vl,ij ) − log(1 − vl,ij ) + βl,ij

� log(vl,ik) + log(vl,kj ) − log(1 − vl,ik) − log(1 − vl,kj ),

log(μu,ij ) − log(1 − μu,ij ) + αu,ij

� log(μu,ik) + log(μu,kj ) − log(1 − μu,ik) − log(1 − μu,kj ),

log(vu,ij ) − log(1 − vu,ij ) + βu,ij

� log(vu,ik) + log(vu,kj ) − log(1 − vu,ik) − log(1 − vu,kj ),

αl,ij , βl,ij , αu,ij , βu,ij � 0, i, k, j = 1, 2, . . . , n, k �= i, j ∧ i < j.

ci ∈ C, i = 1, 2, . . . , 15,

(21)

where f ∗ is the optimal objective value of Model 2, and other constraints are the same as
that in Model 2.

Here, we use the example in Meng et al. (2018) to show the effectiveness of the above
methods.

Example 2 (See Meng et al., 2018). Let R̃ be an incomplete IVIFPR on X = {x1, x2, . . . ,

xn} as follows:

R̃ =
⎛
⎝ ([1/2, 1/2], [1/2, 1/2]) ([μl,12, μu,12], [vl,12, vu,12]) ([1/3, 1/2], [vl,13, 1/5]) ([1/4, μu,14], [vl,14, 2/7])

([vl,12, vu,12], [μl,12, μu,12]) ([1/2, 1/2], [1/2, 1/2]) ([μl,23, 3/5], [1/6, 1/4]) ([μl,24, 3/7], [vl,24, 2/5])
([vl,13, 1/5], [1/3, 1/2]) ([1/6, 1/4], [μl,23, 3/5]) ([1/2, 1/2], [1/2, 1/2]) ([1/5, 1/2], [2/9, 1/3])

([vl,14, 2/7], [1/4, μu,14]) ([vl,24, 2/5], [μl,24, 3/7]) ([2/9, 1/3], [1/5, 1/2]) ([1/2, 1/2], [1/2, 1/2])

⎞
⎠ .

By solving Models 2 and 3, we derive

μl,12 = 0.31, μu,12 = 0.40, vl,12 = 0.28, vu,12 = 0.28; vl,13 = 0.20;
μu,14 = 0.50, vl,14 = 0.29; μl,23 = 0.53; μl,24 = 0.43, vl,24 = 0.20.

Furthermore, the associated complete IVIFPR is obtained as follows:

R̃ =
(

([0.50, 0.50], [0.50, 0.50]) ([0.31, 0.40], [0.28, 0.28]) ([0.33, 0.50], [0.20, 0.20]) ([0.25, 0.50], [0.29, 0.29])
([0.28, 0.28], [0.31, 0.40]) ([0.50, 0.50], [0.50, 0.50]) ([0.53, 0.60], [0.17, 0.25]) ([0.43, 0.43], [0.20, 0.40])
([0.20, 0.20], [0.33, 0.50]) ([0.17, 0.25], [0.53, 0.60]) ([0.50, 0.50], [0.50, 0.50]) ([0.20, 0.50], [0.22, 0.33])
([0.29, 0.29], [0.25, 0.50]) ([0.20, 0.40], [0.43, 0.43]) ([0.22, 0.33], [0.20, 0.50]) ([0.50, 0.50], [0.50, 0.50])

)
.

In addition, because of the inherent vagueness of human thinking, it is very difficult
for the DMs to provide multiplicative consistent IVIFPRs. For inconsistent IVIFPRs, we
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need to adjust the DMs’ original judgments. Meanwhile, the adjustment should be as small
as possible to retain more original information. With these conditions, the following pro-
gramming model is built:

Model 4: �∗ = min
n−1∑
i=1

n∑
j=i+1

(
γ +
l,ij + γ −

l,ij + δ+
l,ij + δ−

l,ij + γ +
u,ij + γ −

u,ij + δ+
u,ij + δ−

u,ij

)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(μl,ij − γ +
l,ij + γ −

l,ij ) − log(1 − μl,ij + γ +
l,ij − γ −

l,ij )

� log(μl,ik − γ +
l,ik + γ −

l,ik) + log(μl,kj − γ +
l,kj + γ −

l,kj )

− log(1 − μl,ik + γ +
l,ik − γ −

l,ik) − log(1 − μl,kj + γ +
l,kj − γ −

l,kj ),

log(vl,ij − δ+
l,ij + δ−

l,ij ) − log(1 − vl,ij + δ+
l,ij − δ−

l,ij )

� log(vl,ik − δ+
l,ik + δ−

l,ik) + log(vl,kj − δ+
l,kj + δ−

l,kj )

− log(1 − vl,ik + δ+
l,ik − δ−

l,ik) − log(1 − vl,kj + δ+
l,kj − δ−

l,kj ),

log(μu,ij − γ +
u,ij + γ −

u,ij ) − log(1 − μu,ij + γ +
u,ij − γ −

u,ij )

� log(μu,ik − γ +
u,ik + γ −

u,ik) + log(μu,kj − γ +
u,kj + γ −

u,kj )

− log(1 − μu,ik + γ +
u,ik − γ −

u,ik) − log(1 − μu,kj + γ +
u,kj − γ −

u,kj ),

log(vu,ij − δ+
u,ij + δ−

u,ij ) − log(1 − vu,ij + δ+
u,ij − δ−

u,ij )

� log(vu,ik − δ+
u,ik + δ−

u,ik) + log(vu,kj − δ+
u,kj + δ−

u,kj )

− log(1 − vu,ik + δ+
u,ik − δ−

u,ik) − log(1 − vu,kj + δ+
u,kj − δ−

u,kj ),

i, k, j = 1, 2, . . . , n, k �= i, j, i < j,

0 � μl,ij − γ +
l,ij + γ −

l,ij � μu,ij − γ +
u,ij + γ −

u,ij , i, j = 1, 2, . . . , n, i < j,

0 � vl,ij − δ+
l,ij + δ−

l,ij � vu,ij − δ+
u,ij + δ−

u,ij , i, j = 1, 2, . . . , n, i < j,

μu,ij − γ +
u,ij + γ −

u,ij + vu,ij − δ+
u,ij + δ−

u,ij � 1, i, j = 1, 2, . . . , n, i < j,

γ −
l,ij − γ +

l,ij + δ+
l,j i − δ−

l,j i = 0, i, j = 1, 2, . . . , n, i < j,

δ−
l,ij − δ+

l,ij + γ +
l,j i − γ −

l,j i = 0, i, j = 1, 2, . . . , n, i < j,

γ −
u,ij − γ +

u,ij + δ+
u,ji − δ−

u,ji = 0, i, j = 1, 2, . . . , n, i < j,

δ−
u,ij − δ+

u,ij + γ +
u,ji − γ −

u,ji = 0, i, j = 1, 2, . . . , n, i < j,

γ +
l,ij , γ

−
l,ij , δ

+
l,ij , δ

−
l,ij , γ

+
u,ij , γ

−
u,ij , δ

+
u,ij , δ

−
u,ij � 0, i, j = 1, 2, . . . , n, i < j,

(22)

where the first four constraints are constructed from formula (13) by adding the non-
negative deviation variables γ +

l,ij , γ −
l,ij , δ+

l,ij , δ−
l,ij , γ +

u,ij , γ −
u,ij , δ+

u,ij , δ−
u,ij , i, j =

1, 2, . . . , n, i < j , the fifth to seventh constraints are obtained from the construction of
IVIFVs in IVIFPRs, and the eighth to eleventh constraints can guarantee the endpoints of
corresponding IVIFVs to have the same adjustment.

With respect to the complete IVIFPR R̃ in Example 2, we have �∗ = 2.62 following
Model 1, which shows that the IVIFPR R̃ is inconsistent. In this case, we use Model 4 to
adjust it, and the corresponding multiplicatively consistent IVIFPR is obtained as follows:

R̃ =
(

([0.50, 0.50], [0.50, 0.50]) ([0.30, 0.40], [0.28, 0.28]) ([0.33, 0.50], [0.20, 0.22]) ([0.25, 0.50], [0.29, 0.29])
([0.28, 0.28], [0.30, 0.40]) ([0.50, 0.50], [0.50, 0.50]) ([0.53, 0.53], [0.17, 0.25]) ([0.43, 0.43], [0.20, 0.30])
([0.20, 0.22], [0.33, 0.50]) ([0.17, 0.25], [0.53, 0.53]) ([0.50, 0.50], [0.50, 0.50]) ([0.20, 0.40], [0.22, 0.33])
([0.29, 0.29], [0.25, 0.50]) ([0.20, 0.30], [0.43, 0.43]) ([0.22, 0.33], [0.20, 0.40]) ([0.50, 0.50], [0.50, 0.50])

)
.
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From the marked judgments, one can see that only five values in the upper triangular
part are adjusted.

To overcome the limitation of a single DM, GDM has been widely applied in many
real-life decision-making problems. Next, we further discuss GDM with IVIFPRs.

5. A New Method for GDM with IVIFPRs

Suppose that m DMs E = {e1, e2, . . . , em} are invited to evaluate n objects X =
{x1, x2, . . . , xn}. Let R̃∗

p = (r̃∗
p,ij )n×n be the multiplicatively consistent IVIFPR of the

individual IVIFPR R̃p, where r̃∗
p,ij = ([μ∗p

l,ij , μ
∗p
u,ij ], [v∗p

l,ij , v
∗p
u,ij ]), i, j = 1, 2, . . . , n and

p = 1, 2, . . . , m. Let w = (w1, w2, . . . , wm)T be weight vector on the DM set E, where
wp is the weight of DM ep satisfying wp � 0, p = 1, 2, . . . , m, and

∑m
p=1 wp = 1.

Using the symmetric interval-valued intuitionistic fuzzy weighted averaging (SIVIFWA)
operator (Liao et al., 2014) to calculate the collective PR R̃∗

C = (r̃∗
C,ij )n×n, where

r̃∗
C,ij = ([

μ∗C
l,ij , μ

∗C
u,ij

]
,
[
v∗C
l,ij , v

∗C
u,ij

])
=

([ ∏m
p=1(μ

∗p
l,ij )

wp∏m
p=1(μ

∗p
l,ij )

wp + ∏m
p=1(1 − μ

∗p
l,ij )

wp
,

∏m
p=1(μ

∗p
u,ij )

wp∏m
p=1(μ

∗p
u,ij )

wp + ∏m
p=1(1 − μ

∗p
u,ij )

wp

]
,

[ ∏m
p=1(v

∗p
l,ij )

wp∏m
p=1(v

∗p
l,ij )

wp + ∏m
p=1(1 − v

∗p
l,ij )

wp
,

∏m
p=1(v

∗p
u,ij )

wp∏m
p=1(v

∗p
u,ij )

wp + ∏m
p=1(1 − v

∗p
u,ij )

wp

])
(23)

for all i, j = 1, 2, . . . , n.
One can check that the collective PR R̃∗

C is an IVIFPR. Based on the multiplicative
consistency of the collective IVIFPR R̃∗

C , we have the following theorem.

Theorem 3. If all individual IVIFPRs R̃∗
p, p = 1, 2, . . . , m, are multiplicatively consis-

tent, the collective IVIFPR R̃∗
C derived from formula (23) is multiplicatively consistent.

Proof. To prove the multiplicative consistency of R̃∗
C = (r̃∗

C,ij )n×n, it only needs to prove
the following equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ∗C
l,ij

1 − μ∗C
l,ij

�
μ∗C

l,ikμ
∗C
l,kj

(1 − μ∗C
l,ik)(1 − μ∗C

l,kj )
,

v∗C
l,ij

1 − v∗C
l,ij

�
v∗C
l,ikv

∗C
l,kj

(1 − v∗C
l,ik)(1 − v∗C

l,kj )
,

μ∗C
u,ij

1 − μ∗C
u,ij

�
μ∗C

u,ikμ
∗C
u,kj

(1 − μ∗C
u,ik)(1 − μ∗C

u,kj )
,

v∗C
u,ij

1 − v∗C
u,ij

�
v∗C
u,ikv

∗C
u,kj

(1 − v∗C
u,ik)(1 − v∗C

u,kj )

(24)

holds for all i, k, j = 1, 2, . . . , n with k �= i, j ∧ i < j .
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According to formula (23), the above inequalities can be transformed into:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏m
p=1(μ

∗p
l,ij )

wp∏m
p=1(1 − μ

∗p
l,ij )

wp
�

∏m
p=1(μ

∗p
l,ik)

wp
∏m

p=1(μ
∗p
l,kj )

wp∏m
p=1(1 − μ

∗p
l,ik)

wp
∏m

p=1(1 − μ
∗p
l,kj )

wp
,

∏m
p=1(v

∗p
l,ij )

wp∏m
p=1(1 − v

∗p
l,ij )

wp
�

∏m
p=1(v

∗p
l,ik)

wp
∏m

p=1(v
∗p
l,kj )

wp∏m
p=1(1 − v

∗p
l,ik)

wp
∏m

p=1(1 − v
∗p
l,kj )

wp
,

∏m
p=1(μ

∗p
u,ij )

wp∏m
p=1(1 − μ

∗p
u,ij )

wp
�

∏m
p=1(μ

∗p
u,ik)

wp
∏m

p=1(μ
∗p
u,kj )

wp∏m
p=1(1 − μ

∗p
u,ik)

wp
∏m

p=1(1 − μ
∗p
u,kj )

wp
,

∏m
p=1(v

∗p
u,ij )

wp∏m
p=1(1 − v

∗p
u,ij )

wp
�

∏m
p=1(v

∗p
u,ik)

wp
∏m

p=1(v
∗p
u,kj )

wp∏m
p=1(1 − v

∗p
u,ik)

wp
∏m

p=1(1 − v
∗p
u,kj )

wp
,

(25)

where i, k, j = 1, 2, . . . , n with k �= i, j ∧ i < j .
Based on the multiplicative consistency of R̃∗

p = (r̃∗
p,ij )n×n, where r̃∗

p,ij =
([μ∗p

l,ij , μ
∗p
u,ij ], [v∗p

l,ij , v
∗p
u,ij ]) for all i, j = 1, 2, . . . , n and all p = 1, 2, . . . , m, we have

the following inequality conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
∗p
l,ij

1 − μ
∗p
l,ij

�
μ

∗p
l,ikμ

∗p
l,kj

(1 − μ
∗p
l,ik)(1 − μ

∗p
l,kj )

,

v
∗p
l,ij

1 − v
∗p
l,ij

�
v

∗p
l,ikv

∗p
l,kj

(1 − v
∗p
l,ik)(1 − v

∗p
l,kj )

,

μ
∗p
u,ij

1 − μ
∗p
u,ij

�
μ

∗p
u,ikμ

∗p
u,kj

(1 − μ
∗p
u,ik)(1 − μ

∗p
u,kj )

,

v
∗p
u,ij

1 − v
∗p
u,ij

�
v

∗p
u,ikv

∗p
u,kj

(1 − v
∗p
u,ik)(1 − v

∗p
u,kj )

(26)

for all i, k, j = 1, 2, . . . , n such that k �= i, j ∧ i < j , and p = 1, 2, . . . , m.
Combining formula (26), it is apparent that formula (25) is true. The proof of Theo-

rem 3 is completed. �

As aforementioned, the DMs’ weights are needed in the process of calculating collec-
tive IVIFPRs. Next, we introduce a maximum consensus-based programming model to
determine the weights of the DMs. Considering the fact that the higher the consensus de-
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gree is, the better the individual IVIFPRs will be, we establish the following programming
model:

Model 5: J ∗ = min
m∑

p=1

(ρp + κp + op + πp)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i,j=1,i<j

(
μ

∗p
l,ij −

∏m
p=1(μ

∗p
l,ij )

wp∏m
p=1(μ

∗p
l,ij )

wp + ∏m
p=1(1 − μ

∗p
l,ij )

wp

)2

− ρp = 0,

n∑
i,j=1,i<j

(
μ

∗p
u,ij −

∏m
p=1(μ

∗p
u,ij )

wp∏m
p=1(μ

∗p
u,ij )

wp + ∏m
p=1(1 − μ

∗p
u,ij )

wp

)2

− κp = 0,

n∑
i,j=1,i<j

(
v

∗p
l,ij −

∏m
p=1(v

∗p
l,ij )

wp∏m
p=1(v

∗p
l,ij )

wp + ∏m
p=1(1 − v

∗p
l,ij )

wp

)2

− op = 0,

n∑
i,j=1,i<j

(
v

∗p
u,ij −

∏m
p=1(v

∗p
u,ij )

wp∏m
p=1(v

∗p
u,ij )

wp + ∏m
p=1(1 − v

∗p
u,ij )

wp

)2

− πp = 0,

ρp, κp, op, πp � 0, p = 1, 2, . . . , m,

m∑
p=1

wp = 1,

(27)

where the constraints are constructed from the deviation between individual IVIFPRs and
the collective IVIFPR.

In the process of GDM, prior to the selection of the best object, there should be a high
consensus degree among all DMs. To measure the individual consensus degree, we use
the distance measure between IVIFPRs.

Definition 12. Let R̃p = (r̃p,ij )n×n, p = 1, 2, . . . , m, be m IVIFPRs, and R̃∗
p =

(r̃∗
p,ij )n×n, p = 1, 2, . . . , m, be the associated multiplicatively consistent IVIFPRs. Fur-

thermore, let R̃∗
C = (r̃∗

C,ij )n×n be the collective IVIFPR shown as formula (23). Then, the
consensus index of the individual IVIFPR R̃∗

p is defined as

GCI
(
R̃∗

p

) = 1 − 1

2n(n − 1)

n∑
i,j=1,i<j

(∣∣μ∗p
l,ij − μ∗C

l,ij

∣∣ + ∣∣μ∗p
u,ij − μ∗C

u,ij

∣∣
+ ∣∣v∗p

l,ij − v∗C
l,ij

∣∣ + ∣∣v∗p
u,ij − v∗C

u,ij

∣∣). (28)

Let θ∗ be the threshold of the consensus index. If GCI (R̃∗
p) < θ∗, we need to improve

the consensus level of R̃∗
p. To do this, we construct the following programming model:



182 S. Zhang et al.

Model 6: ζ ∗ = max
n∑

i,j=1,i<j

(αl,ij + αu,ij + βl,ij + βu,ij )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i,j=1,i<j

(∣∣∣∣μ∗∗p
l,ij − (μ

∗∗p
l,ij )wp

∏m
t=1,t �=p(μ∗t

l,ij )
wt

(μ
∗∗p
l,ij )wp

∏m
t=1,t �=p(μ∗t

l,ij )
wt + (1 − (μ

∗∗p
l,ij ))wp

∏m
t=1,t �=p(1 − μ∗t

l,ij )
wt

∣∣∣∣

+
∣∣∣∣μ∗∗p

u,ij − (μ
∗∗p

u,ij )
wp

∏m
t=1,t �=p(μ∗t

u,ij )
wt

(μ
∗∗p
u,ij )

wp
∏m

t=1,t �=p(μ∗t
u,ij )

wt + (1 − (μ
∗∗p
u,ij ))

wp
∏m

t=1,t �=p(1 − μ∗t
u,ij )

wt

∣∣∣∣
+

∣∣∣∣v∗∗p
l,ij − (v

∗∗p
l,ij )wp

∏m
t=1,t �=p(v∗t

l,ij )
wt

(v
∗∗p
l,ij )wp

∏m
t=1,t �=p(v∗t

l,ij )
wt + (1 − (v

∗∗p
l,ij ))wp

∏m
t=1,t �=p(1 − v∗t

l,ij )
wt

∣∣∣∣
+

∣∣∣∣v∗∗p
u,ij − (v

∗∗p
u,ij )wp

∏m
t=1,t �=p(v∗t

u,ij )
wt

(v
∗∗p
u,ij )wp

∏m
t=1,t �=p(v∗t

u,ij )
wt + (1 − (v

∗∗p
u,ij ))wp

∏m
t=1,t �=p(1 − v∗t

u,ij )
wt

∣∣∣∣
)

� 2n(n − 1)
(
1 − θ∗), i, j = 1, 2, . . . , n, i < j,

log
(
μ

∗∗p
l,ij

) − log
(
1 − μ

∗∗p
l,ij

)
� log

(
μ

∗∗p
l,ik

) + log
(
μ

∗∗p
l,kj

) − log
(
1 − μ

∗∗p
l,ik

) − log
(
1 − μ

∗∗p
l,kj

)
,

log
(
μ

∗∗p
u,ij

) − log
(
1 − μ

∗∗p
u,ij

)
� log

(
μ

∗∗p
u,ik

) + log
(
μ

∗∗p
u,kj

) − log
(
1 − μ

∗∗p
u,ik

) − log
(
1 − μ

∗∗p
u,kj

)
,

log
(
v

∗∗p
l,ij

) − log
(
1 − v

∗∗p
l,ij

)
� log

(
v

∗∗p
l,ik

) + log
(
v

∗∗p
l,kj

) − log
(
1 − v

∗∗p
l,ik

) − log
(
1 − v

∗∗p
l,kj

)
,

log
(
v

∗∗p
u,ij

) − log
(
1 − v

∗∗p
u,ij

)
� log

(
v

∗∗p
u,ik

) + log
(
v

∗∗p
u,kj

) − log
(
1 − v

∗∗p
u,ik

) − log
(
1 − v

∗∗p
u,kj

)
,

0 � αl,ij , αl,ik, αl,kj , αu,ij , αu,ik, αu,kj , βl,ij , βl,ik, βl,kj , βu,ij , βu,ik, βu,kj

� 1,

i, k, j = 1, 2, . . . , n, k �= i, j ∧ i < j,

μ
∗∗p
l,ij � μ

∗∗p
u,ij , v

∗∗p
l,ij � v

∗∗p
u,ij , i, j = 1, 2, . . . , n, i < j,

αl,ij = βl,ji , αu,ij = βu,ji , βl,ij = αl,ji , βu,ij = αu,ji ,

i, j = 1, 2, . . . , n, i < j,
(29)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
∗∗p
l,ij = αl,ijμ

∗p
l,ij + (1 − αl,ij )μ

∗C
l,ij ,

μ
∗∗p
u,ij = αu,ijμ

∗p
u,ij + (1 − αu,ij )μ

∗C
u,ij ,

v
∗∗p
l,ij = βl,ij v

∗p
l,ij + (1 − βl,ij )v

∗C
l,ij ,

v
∗∗p
u,ij = βu,ij v

∗p
u,ij + (1 − βu,ij )v

∗C
u,ij ,

i, j = 1, 2, . . . , n, i �= j.

(30)

In Model 6, the first constraint is derived from formula (28) that ensures the adjusted
IVIFPR to satisfy the consensus requirement, the second to fifth constraints ensure the
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adjusted IVIFPR to be multiplicative consistent, the sixth constraint defines the range of
variables, the seventh constraint is obtained from the construction of IVIFVs in IVIFPR,
and the last constraint guarantees the endpoints of corresponding IVIFVs to have the same
adjustment.

To facilitate the solution of Model 6, let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
∗∗p
l,ij − (μ

∗∗p
l,ij )wp

∏m
t=1,t �=p(μ∗t

l,ij )
wt

(μ
∗∗p
l,ij )wp

∏m
t=1,t �=p(μ∗t

l,ij )
wt + (1 − (μ

∗∗p
l,ij ))wp

∏m
t=1,t �=p(1 − μ∗t

l,ij )
wt

− τ+
ij + τ−

ij = 0,

μ
∗∗p
u,ij − (μ

∗∗p
u,ij )

wp
∏m

t=1,t �=p(μ∗t
u,ij )

wt

(μ
∗∗p
u,ij )

wp
∏m

t=1,t �=p(μ∗t
u,ij )

wt + (1 − (μ
∗∗p
u,ij ))

wp
∏m

t=1,t �=p(1 − μ∗t
u,ij )

wt

− η+
ij + η−

ij = 0,

v
∗∗p
l,ij − (v

∗∗p
l,ij )wp

∏m
t=1,t �=p(v∗t

l,ij )
wt

(v
∗∗p
l,ij )wp

∏m
t=1,t �=p(v∗t

l,ij )
wt + (1 − (v

∗∗p
l,ij ))wp

∏m
t=1,t �=p(1 − v∗t

l,ij )
wt

− φ+
ij + φ−

ij = 0,

v
∗∗p
u,ij − (v

∗∗p
u,ij )wp

∏m
t=1,t �=p(v∗t

u,ij )
wt

(v
∗∗p
u,ij )wp

∏m
t=1,t �=p(v∗t

u,ij )
wt + (1 − (v

∗∗p
u,ij ))wp

∏m
t=1,t �=p(1 − v∗t

u,ij )
wt

− ε+
ij + ε−

ij = 0,

(31)

where τ+
ij , τ−

ij , η+
ij , η

−
ij , φ

+
ij , φ−

ij , ε+
ij , ε

−
ij are non-negative deviation variables such that

τ+
ij × τ−

ij = η+
ij × η−

ij = φ+
ij × φ−

ij = ε+
ij × ε−

ij = 0.
Therefore, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣μ∗∗p
l,ij − (μ

∗∗p
l,ij )wp

∏m
t=1,t �=p(μ∗t

l,ij )
wt

(μ
∗∗p
l,ij )wp

∏m
t=1,t �=p(μ∗t

l,ij )
wt + (1 − (μ

∗∗p
l,ij ))wp

∏m
t=1,t �=p(1 − μ∗t

l,ij )
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∣∣∣∣
= τ+

ij + τ−
ij ,∣∣∣∣μ∗∗p

u,ij − (μ
∗∗p
u,ij )
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∏m

t=1,t �=p(μ∗t
u,ij )

wt

(μ
∗∗p
u,ij )

wp
∏m

t=1,t �=p(μ∗t
u,ij )

wt + (1 − (μ
∗∗p
u,ij ))

wp
∏m

t=1,t �=p(1 − μ∗t
u,ij )

wt

∣∣∣∣
= η+

ij + η−
ij ,∣∣∣∣v∗∗p

l,ij − (v
∗∗p
l,ij )wp

∏m
t=1,t �=p(v∗t

l,ij )
wt

(v
∗∗p
l,ij )wp

∏m
t=1,t �=p(v∗t

l,ij )
wt + (1 − (v

∗∗p
l,ij ))wp

∏m
t=1,t �=p(1 − v∗t

l,ij )
wt

∣∣∣∣
= φ+

ij + φ−
ij ,∣∣∣∣v∗∗p

u,ij − (v
∗∗p
u,ij )wp

∏m
t=1,t �=p(v∗t

u,ij )
wt

(v
∗∗p
u,ij )wp

∏m
t=1,t �=p(v∗t

u,ij )
wt + (1 − (v

∗∗p
u,ij ))wp

∏m
t=1,t �=p(1 − v∗t

u,ij )
wt

∣∣∣∣
= ε+

ij + ε−
ij .

(32)
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With formula (32), the Model 6 can be transformed as follows:

Model 7: ζ ∗ = max
n∑

i,j=1,i<j

(αl,ij + αu,ij + βl,ij + βu,ij )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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ij
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0 � αl,ij , αl,ik, αl,kj , αu,ij , αu,ik, αu,kj , βl,ij , βl,ik, βl,kj , βu,ij , βu,ik, βu,kj � 1,

i, k, j = 1, 2, . . . , n, k �= i, j ∧ i < j,

μ
∗∗p
l,ij � μ

∗∗p
u,ij , v

∗∗p
l,ij � v

∗∗p
u,ij , i, j = 1, 2, . . . , n, i < j.

αl,ij = βl,ji , αu,ij = βu,ji , βl,ij = αl,ji , βu,ij = αu,ji ,

i, j = 1, 2, . . . , n, i < j.

(33)
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Model 7 can not only guarantee the multiplicative consistency and consensus of the
adjusted individual IVIFPRs, but also endow different IVIFVs with different adjustments.
Meanwhile, the adjusted individual IVIFPR has the smallest total adjustment to retain
more original information.

Based on the above analysis, this paper develops the following GDM method.

Algorithm 1.

Step 1: If the individual IVIFPRs R̃p = (r̃p,ij )n×n, p = 1, 2, . . . , m, are all complete,
go to Step 2. Otherwise, Models 2 and 3 are adopted to determine the missing
values.

Step 2: Model 1 is used to judge the multiplicative consistency of individual IVIFPRs.
When individual IVIFPRs are all multiplicatively consistent, go to Step 3. Oth-
erwise, Model 4 is applied to derive the multiplicatively consistent IVIFPRs, de-
noted as R̃∗

p = (r̃∗
p,ij )n×n, p = 1, 2, . . . , m.

Step 3: Model 5 is used to determine the DMs’ weights, and formula (23) is adopted to
obtain the collective IVIFPR R̃∗

C = (r̃∗
C,ij )n×n.

Step 4: Formula (28) is adopted to measure the consensus level of individual IVIFPRs.
Let θ∗ be the given consensus threshold. If we have GCI (R̃∗

p) > θ∗ for all
p = 1, 2, . . . , m, go to Step 5. Otherwise, Model 7 is applied to improve the
consensus level of the corresponding individual IVIFPR.

Step 5: The symmetric interval-valued intuitionistic fuzzy averaging (SIVIFA) operator
(Liao et al., 2014) is used to fuse the comprehensive IVIFV r̃i , where

r̃i =
([ ∏n

j=1(μ
∗C
l,ij )

1/n∏n
j=1(μ

∗C
l,ij )

1/n + ∏n
j=1(1 − μ∗C

l,ij )
1/n

,
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∗C
u,ij )

1/n∏n
j=1(μ

∗C
u,ij )

1/n + ∏n
j=1(1 − μ∗C

u,ij )
1/n

]
,

[ ∏n
j=1(v

∗C
l,ij )

1/n∏n
j=1(v

∗C
l,ij )

1/n + ∏n
j=1(1 − v∗C

l,ij )
1/n

,

∏n
j=1(v

∗C
u,ij )

1/n∏n
j=1(v

∗C
u,ij )

1/n + ∏n
j=1(1 − v∗C

u,ij )
1/n

])
(34)

for all i = 1, 2, . . . , n.
Step 6: For the comprehensive IVIFVs r̃i = ([μl,i , μu,i], [vl,i , vu,i]), i = 1, 2, . . . , n,

the following functions (Xu, 2007a)

S(r̃i) = 0.5(μl,i + μu,i − vl,i − vu,i), (35)
H(r̃i) = 0.5(μl,i + μu,i + vl,i + vu,i) (36)

are applied to calculate the score and accuracy values, by which we get the rank-
ing of objects x1, x2, . . . , xn.

6. Case Study and Comparison

To illustrate the application of the proposed algorithm and compare the new method with
previous ones, the selection of CC vendor for a SME is provided.
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Example 3. Silver Swallow Clothing Co., LTD (SS for short) is a SME in Qingdao, China.
With the rapid popularity of online shopping among consumers in China, the traditional
sales model has been unable to adapt to consumer demands. To broaden the sales channels,
the company needs to add e-commerce (EC) modules on the basis of the existing enterprise
management information system (MIS). Due to the funds and technical conditions, as
well as the high concurrent response requirements during the promotion, the company
decides to adopt the EC order management system (OMS) based on the CC Software-
as-a-Service (SaaS) model. Through the application program interface (API) provided by
the system, data exchange between offline enterprise resource planning (ERP) and various
third-party systems can be established. At present, there are more than 30 providers of such
CC application for SMEs in Chinese market. After primary screening, four different CC
vendors enter the final selection process, namely, Guan Yi Yun, Ju Shui Tan, Wang Dian
Tong and Wand Dian Guan Jia, marked as {x1, x2, x3, x4}, respectively.

To select the most appropriate one, three experts (DMs) {e1, e2, e3} are commissioned
to carry out the assessment. Unlike the choice of a physical product, CC applications
belong to a kind of service with abstraction. At the same time, both the vendors and the
internal conditions of the SMEs are related to the application effect of CC. That is to
say, the selection of CC vendors should be combined with the enterprise’s characteristics,
which increases the difficulty of dealing with such problems. Generally speaking, there
are several recognized factors in selecting CC vendors for SMEs, including economy,
security, compatibility, technical stability and service quality. Due to the complexity of the
problem, it is difficult for the experts to quantify these factors by constructing the indicator
system. The method based on PRs as aforementioned is a good choice. Furthermore, due to
the experts’ expertise, experience and preferences, they are allowed to offer the uncertain
preferred and non-preferred judgments simultaneously, which comes down to a GDM
problem with IVIFPRs. By pairwise comparisons among these four vendors, the experts
ep, (p = 1, 2, 3) give the following IVIFPRs.

R̃1 =
(

([0.50, 0.50], [0.50, 0.50]) ([0.40, 0.55], [0.25, 0.45]) ([0.45, 0.60], [0.25, 0.40]) ([0.60, 0.75], [0.10, 0.15])
([0.25, 0.45], [0.40, 0.55]) ([0.50, 0.50], [0.50, 0.50]) ([0.35, 0.55], [0.25, 0.40]) ([0.40, 0.60], [0.15, 0.40])
([0.25, 0.40], [0.45, 0.60]) ([0.25, 0.40], [0.35, 0.55]) ([0.50, 0.50], [0.50, 0.50]) ([0.40, 0.55], [0.25, 0.45])
([0.10, 0.15], [0.60, 0.75]) ([0.15, 0.40], [0.40, 0.60]) ([0.25, 0.45], [0.40, 0.55]) ([0.50, 0.50], [0.50, 0.50])

)
,

R̃2 =
(

([0.50, 0.50], [0.50, 0.50]) ([0.25, 0.35], [0.40, 0.65]) ([0.40, 0.55], [0.30, 0.35]) ([0.30, 0.40], [0.35, 0.55])
([0.40, 0.65], [0.25, 0.35]) ([0.50, 0.50], [0.50, 0.50]) ([0.50, 0.75], [0.15, 0.20]) ([0.45, 0.55], [0.30, 0.45])
([0.30, 0.35], [0.40, 0.55]) ([0.15, 0.20], [0.50, 0.75]) ([0.50, 0.50], [0.50, 0.50]) ([0.20, 0.35], [0.45, 0.60])
([0.35, 0.55], [0.30, 0.40]) ([0.30, 0.45], [0.45, 0.55]) ([0.45, 0.60], [0.20, 0.35]) ([0.50, 0.50], [0.50, 0.50])

)
,

R̃3 =
(

([0.50, 0.50], [0.50, 0.50]) ([0.30, 0.40], [0.40, 0.55]) ([0.35, 0.50], [0.30, 0.50]) ([0.55, 0.70], [0.15, 0.20])
([0.40, 0.55], [0.30, 0.40]) ([0.50, 0.50], [0.50, 0.50]) ([0.45, 0.55], [0.30, 0.35]) ([0.65, 0.80], [0.05, 0.20])
([0.30, 0.50], [0.35, 0.50]) ([0.30, 0.35], [0.45, 0.55]) ([0.50, 0.50], [0.50, 0.50]) ([0.55, 0.65], [0.20, 0.25])
([0.15, 0.20], [0.55, 0.70]) ([0.05, 0.20], [0.65, 0.80]) ([0.20, 0.25], [0.55, 0.65]) ([0.50, 0.50], [0.50, 0.50])

)
.

It should be noted that Lingo software is used to solve the models involved in the
processing of this problem.

Step 1: Since the individual IVIFPRs are all complete, go to Step 2.

Step 2: By Model 1, we have the optimal objective values �∗
1 = 3.30, �∗

2 = 2.05,
�∗

3 = 1.66. Thus, none of them is consistent. In this case, Model 4 is used to derive
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multiplicatively consistent IVIFPRs as follows:

R̃∗
1 =

(
([0.50, 0.50], [0.50, 0.50]) ([0.40, 0.55], [0.25, 0.45]) ([0.45, 0.60], [0.25, 0.40]) ([0.60, 0.65], [0.10, 0.35])
([0.25, 0.45], [0.40, 0.55]) ([0.50, 0.50], [0.50, 0.50]) ([0.35, 0.55], [0.25, 0.45]) ([0.40, 0.60], [0.15, 0.40])
([0.25, 0.40], [0.45, 0.60]) ([0.25, 0.45], [0.35, 0.55]) ([0.50, 0.50], [0.50, 0.50]) ([0.40, 0.55], [0.25, 0.45])
([0.10, 0.35], [0.60, 0.65]) ([0.15, 0.40], [0.40, 0.60]) ([0.25, 0.45], [0.40, 0.55]) ([0.50, 0.50], [0.50, 0.50])

)
,

R̃∗
2 =

(
([0.50, 0.50], [0.50, 0.50]) ([0.25, 0.35], [0.40, 0.65]) ([0.40, 0.55], [0.30, 0.35]) ([0.30, 0.40], [0.35, 0.55])
([0.40, 0.65], [0.25, 0.35]) ([0.50, 0.50], [0.50, 0.50]) ([0.50, 0.69], [0.15, 0.23]) ([0.45, 0.55], [0.30, 0.40])
([0.30, 0.35], [0.40, 0.55]) ([0.15, 0.23], [0.50, 0.69]) ([0.50, 0.50], [0.50, 0.50]) ([0.20, 0.31], [0.45, 0.60])
([0.35, 0.55], [0.30, 0.40]) ([0.30, 0.40], [0.45, 0.55]) ([0.45, 0.60], [0.20, 0.31]) ([0.50, 0.50], [0.50, 0.50])

)
,

R̃∗
3 =

(
([0.50, 0.50], [0.50, 0.50]) ([0.30, 0.40], [0.40, 0.55]) ([0.35, 0.50], [0.30, 0.45]) ([0.55, 0.70], [0.15, 0.21])
([0.40, 0.55], [0.30, 0.40]) ([0.50, 0.50], [0.50, 0.50]) ([0.45, 0.55], [0.30, 0.35]) ([0.65, 0.78], [0.10, 0.18])
([0.30, 0.45], [0.35, 0.50]) ([0.30, 0.35], [0.45, 0.55]) ([0.50, 0.50], [0.50, 0.50]) ([0.55, 0.65], [0.20, 0.25])
([0.15, 0.21], [0.55, 0.70]) ([0.10, 0.18], [0.65, 0.78]) ([0.20, 0.25], [0.55, 0.65]) ([0.50, 0.50], [0.50, 0.50])

)
.

Step 3: Based on the above multiplicatively consistent IVIFPRs and Model 5, we derive
three experts’ weights

w1 = 0.342, w2 = 0.342, w3 = 0.316.

By formula (23), the collectively multiplicatively consistent IVIFPR R̃∗
C is aggregated.

R̃∗
C =

(
([0.50, 0.50], [0.50, 0.50]) ([0.31, 0.43], [0.34, 0.55]) ([0.40, 0.55], [0.28, 0.40]) ([0.48, 0.58], [0.18, 0.36])
([0.34, 0.55], [0.31, 0.43]) ([0.50, 0.50], [0.50, 0.50]) ([0.43, 0.60], [0.23, 0.33]) ([0.50, 0.65], [0.17, 0.32])
([0.28, 0.40], [0.40, 0.55]) ([0.23, 0.33], [0.43, 0.60]) ([0.50, 0.50], [0.50, 0.50]) ([0.37, 0.50], [0.29, 0.43])
([0.18, 0.36], [0.48, 0.58]) ([0.17, 0.32], [0.50, 0.65]) ([0.29, 0.43], [0.37, 0.50]) ([0.50, 0.50], [0.50, 0.50])

)
.

Step 4: Let the consensus threshold be θ∗ = 0.9. Using formula (28), we calculate the
consensus indices of the individual IVIFPRs, where

GCI
(
R̃∗

1

) = 0.939, GCI
(
R̃∗

2

) = 0.897, GCI
(
R̃∗

3

) = 0.920.

Because GCI (R̃∗
2) < 0.9, Model 7 is applied to improve the consensus level of R̃∗

2 .
The adjusted IVIFPR R̃

′∗
2 is shown below.

R̃′ ∗
2 =

(
([0.50, 0.50], [0.50, 0.50]) ([0.25, 0.38], [0.40, 0.56]) ([0.40, 0.55], [0.30, 0.40]) ([0.30, 0.43], [0.35, 0.40])
([0.40, 0.56], [0.25, 0.38]) ([0.50, 0.50], [0.50, 0.50]) ([0.50, 0.63], [0.15, 0.33]) ([0.45, 0.55], [0.30, 0.33])
([0.30, 0.40], [0.40, 0.55]) ([0.15, 0.33], [0.50, 0.63]) ([0.50, 0.50], [0.50, 0.50]) ([0.20, 0.38], [0.45, 0.46])
([0.35, 0.40], [0.30, 0.43]) ([0.30, 0.33], [0.45, 0.55]) ([0.45, 0.46], [0.20, 0.38]) ([0.50, 0.50], [0.50, 0.50])

)
.

Again, following Step 3, we derive the experts’ weights w′
1 = 0.335, w′

2 = 0.345,
w′

3 = 0.320. The new collective IVIFPR R̃′ ∗
C is obtained by fusing R̃∗

1 , R̃′ ∗
2 , R̃∗

3 .

R̃′ ∗
C =

(
([0.50, 0.50], [0.50, 0.50]) ([0.31, 0.44], [0.35, 0.52]) ([0.40, 0.55], [0.28, 0.41]) ([0.48, 0.59], [0.18, 0.32])
([0.35, 0.52], [0.31, 0.44]) ([0.50, 0.50], [0.50, 0.50]) ([0.43, 0.58], [0.22, 0.38]) ([0.50, 0.65], [0.17, 0.30])
([0.28, 0.41], [0.40, 0.55]) ([0.22, 0.38], [0.43, 0.58]) ([0.50, 0.50], [0.50, 0.50]) ([0.37, 0.53], [0.29, 0.38])
([0.18, 0.32], [0.48, 0.59]) ([0.17, 0.30], [0.50, 0.65]) ([0.29, 0.38], [0.37, 0.53]) ([0.50, 0.50], [0.50, 0.50])

)
.

Based on R̃
′∗
C , we use formula (28) to get the individual consensus indices, where

GCI(R̃∗
1) = 0.940, GCI(R̃′∗

2 ) = 0.920, GCI(R̃∗
3) = 0.927, which meet the consensus

threshold.
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Table 1
The ranking results based on different methods.

Methods Subjective
parameter 1

Comprehensive IVIFVs Subjective
parameter 2

Ranking
values

Ranking
order

New method None r̃1 = ([0.56, 0.57], [0.41, 0.41])
r̃2 = ([0.59, 0.59], [0.38, 0.39])
r̃3 = ([0.43, 0.43], [0.50, 0.52])
r̃4 = ([0.35, 0.35], [0.62, 0.63])

None S(r̃2) > S(r̃1) >

S(r̃3) > S(r̃4)

x2 � x1 � x3 � x4

Method in
Meng et al.
(2018)

None r̃1 = ([0.55, 0.56], [0.40, 0.40])
r̃2 = ([0.58, 0.58], [0.38, 0.38])
r̃3 = ([0.42, 0.43], [0.49, 0.51])
r̃4 = ([0.34, 0.35], [0.61, 0.61])

None S(r̃2) > S(r̃1) >

S(r̃3) > S(r̃4)

x2 � x1 � x3 � x4

Method in
Liao et al.
(2014)

None r̃1 = ([0.29, 0.52], [0.21, 0.43])
r̃2 = ([0.38, 0.58], [0.26, 0.37])
r̃3 = ([0.27, 0.41], [0.37, 0.54])
r̃4 = ([0.19, 0.38], [0.30, 0.55])

None S(r̃2) > S(r̃1) >

S(r̃3) > S(r̃4)

x2 � x1 � x3 � x4

ξ = 0 r̃1 = ([0.18, 0.24], [0.54, 0.72])
r̃2 = ([0.22, 0.32], [0.62, 0.63])
r̃3 = ([0.10, 0.17], [0.78, 0.80])
r̃4 = ([0.06, 0.16], [0.78, 0.80])

q ∈ [0, 1] T (r̃2) > T (r̃1) >

T (r̃3) > T (r̃4)

x2 � x1 � x3 � x4

Method in
Wan et al.
(2016)

ξ = 1 r̃1 = ([0.19, 0.29], [0.55, 0.70])
r̃2 = ([0.17, 0.30], [0.68, 0.68])
r̃3 = ([0.10, 0.20], [0.74, 0.78])
r̃4 = ([0.05, 0.16], [0.77, 0.83])

q ∈ [0, 1] T (r̃1) > T (r̃2) >

T (r̃3) > T (r̃4)

x1 � x2 � x3 � x4

ξ = 0.5 r̃1 = ([0.18, 0.27], [0.58, 0.70])
r̃2 = ([0.18, 0.31], [0.67, 0.67])
r̃3 = ([0.09, 0.18], [0.75, 0.80])
r̃4 = ([0.06, 0.17], [0.76, 0.80])

q ∈ [0, 0.555)

q = 0.555
q = (0.555, 1]

T (r̃1) > T (r̃2) >

T (r̃3) > T (r̃4)

T (r̃1) = T (r̃2) >

T (r̃3) > T (r̃4)

T (r̃2) > T (r̃1) >

T (r̃3) > T (r̃4)

x1 � x2 � x3 � x4
x1 ∼ x2 � x3 � x4
x2 � x1 � x3 � x4

Step 5: With R̃
′∗
C and formula (5), the following overall IVIFVs of the four CC vendors

are derived:

r̃1 = ([0.56, 0.57], [0.41, 0.41]), r̃2 = ([0.59, 0.60], [0.38, 0.39]),
r̃3 = ([0.43, 0.43], [0.50, 0.52]), r̃4 = ([0.35, 0.35], [0.62, 0.63]).

Step 6: By the score function for IVIFVs, we obtain

S(r̃1) = 0.155, S(r̃2) = 0.210, S(r̃3) = −0.080, S(r̃4) = −0.275.

Therefore, the ranking order is x2 � x1 � x3 � x4.
From the ranking results, the object x2 should be chosen as the best CC vendor.
To facilitate the comparison between the proposed method and previous ones, we fur-

ther explore the solution for this example by using several other methods (Liao et al., 2014;
Wan et al., 2016; Meng et al., 2018). The ranking results based on different methods are
listed in Table 1.

As can be seen from Table 1, the ranking orders of four CC vendors in the first three
methods are the same. Due to the different values of two subjective parameters, diverse
ranking orders of the four objects are derived by Wan et al.’s method (Wan et al., 2016).

In addition, all of the above four GDM methods are based on the multiplicative con-
sistency of IVIFPRs. Through the application process of these methods in Example 3, the
comparison of them can be seen in Table 2.
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Table 2
Comparison of different methods.

Methods Is it independent of
the object labels?

Dose it study the
incomplete case?

Does it consider how
to determine the
weights of the DMs?

Does it study
the consensus?

New method Yes Yes Yes Yes
Method in Meng et al. (2018) Yes Yes Yes Yes
Method in Liao et al. (2014) No Yes No Yes
Method in Wan et al. (2016) No No Yes No

Table 2 shows that there are many similarities between the new method and Meng et
al.’s method (Meng et al., 2018), and both methods can avoid some limitations of other
existing methods. However, since the two methods are based on different multiplicative
consistency concepts for IVIFPRs, there are also some differences between them.

Remark 2. By the comparison between the proposed method and Meng et al.’s method
(Meng et al., 2018) in solving Example 3, we further summarize the similarities and dif-
ferences between them.

The similarities between Meng et al.’s method (Meng et al., 2018) and the proposed
method include:

(i) Both of them are based on consistency and consensus analysis to solve GDM prob-
lems with IVIFPRs, which can ensure the rationality of ranking results.

(ii) The multiplicative consistency definitions proposed by the two methods are indepen-
dent of compared objects.

(iii) Both of them can deal with IVIFPRs with missing values, especially the situation
where preference information of some objects is completely unknown.

Compared with Meng et al.’s method (Meng et al., 2018), the proposed method has the
following advantages:

(i) Without the transformation between IVIFPRs and the associated QFIPRs, the new
method is simpler than Meng et al.’s method.

(ii) The multiplicative consistency definition proposed in the new method is more flex-
ible than that in Meng et al.’s method. It is noticeable that the former is based on
Definition 3, while the latter is based on Definition 2.

(iii) Programming-model-based methods for improving the consistency and consensus
level permit different judgments to have different adjustments, while Meng et al.’s
method adjusts all judgments without considering their differences. Besides, the pro-
posed method can ensure the minimum total adjustment, while Meng et al.’s method
cannot.

7. Conclusions

To solve the problem of choosing the appropriate CC vendors in SMEs, this paper pro-
posed a multiplicative consistency and consensus-based method for GDM with IVIFPRs.
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The consistency concept defined in this paper is flexible and is independent of the compar-
ison order of objects. The situation that there is incomplete information about DMs’ pref-
erence is also discussed. Based on the new multiplicative consistency concept, a program-
ming model is established to deal with inconsistent IVIFPRs. Compared with the iterative
method, the programming model-based method can achieve the minimum adjustment of
original preference information. In addition, programming models are constructed to de-
termine the DMs’ weights and improve individual consensus in the circumstance of GDM.
The advantage of the programming model-based method for consensus improvement is
to endow different IVIFVs with different adjustments and retain more original preference
information. A practical decision-making example of a SME in China is given to show
the feasibility and efficiency of the proposed method. However, there are also some limi-
tations of the proposed method. The pairwise comparison method based on the subjective
cognition of experts is directly adopted to obtain the priority of objects, which makes the
decision result lack the objective explanation under the specific evaluation index. In addi-
tion, some models involve non-linear constraints which may increase the processing time
of the software.

In this paper, PRs with IVIFVs is studied. The main characteristic is that this type of
PRs reflects the DMs’ uncertain preferred and non-preferred degrees of one object over
the other. In future research, we can further study PRs with other types of fuzzy infor-
mation such as hesitate fuzzy information (Narayanamoorthy et al., 2019), picture fuzzy
information (Si et al., 2019), neutrosophic information (Liu et al., 2018) and interval-
valued intuitionistic linguistic information (Tang et al., 2019, 2020). Moreover, this paper
only analyses the application of the proposed method in the selection of CC vendors. In
general, this method is suitable for dealing with complex MCDM problems with IVIF-
PRs such as QFD (Liu et al., 2017; Yu et al., 2018), project investment scheme selection
(Wu et al., 2019) and information system development program selection (Kirmizi and
Kocaoglu, 2019).
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