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Abstract. The vulnerable part of communications between user and server is the poor authentication
level at the user’s side. For example, in e-banking systems for user authentication are used passwords
that can be lost or swindled by a person maliciously impersonating bank.

To increase the security of e-banking system users should be supplied by the elements of public
key infrastructure (PKI) but not necessary to the extent of standard requirements which are too
complicated for ordinary users.

In this paper, we propose two versions of authenticated key agreement protocol (AKAP) which
can be simply realized on the user’s side. AKAP is a collection of cryptographic functions having
provable security properties.

It is proved that AKAP1 is secure against active adversary under discrete logarithm assumption
when formulated certain conditions hold. AKAP2 provides user’s anonymity against eavesdropping
adversary. The partial security of AKAP2 is investigated which relies on the security of asymmetric
encryption function.
Key words: cryptography, identification, key agreement protocol, asymmetric encryption,
e-signature.

1. Introduction

The vulnerable part of communications between user and server is the poor authentication
level on the user’s side. For example, in e-banking systems for user authentication are used
passwords that can be lost or swindled by a person maliciously impersonating bank.

Nowadays appeared Smart-Id identification using smart phones has some advantages
compared with the bank’s supplied passwords table to the user, but nevertheless it is a
temporary measure to mitigate the increasing number of attacks to e-banking system.

Despite the fact that public key infrastructure (PKI) and certificates based identifi-
cation exists for the 5-10 years, newly appeared Smart-Id identification becomes more
popular. The reason is the complexity of PKI in traditional public key settings and the
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key escrow problem in ID-based public key settings. In this connection the alternative
certificate-based signature is proposed as an attractive public key setting, which reduces
the complexity of PKI and resolves the key escrow problem (Tseng et al., 2019).

Authors proposed a new and efficient certificate-based signature (CBS) scheme from
lattices. Under the short integer solution (SIS) assumption from lattices, the proposed CBS
scheme is shown to be existential unforgeability against adaptive chosen message attacks.

The other alternative is certificateless signature that has become a widely studied
paradigm. This paradigm has a lack of key escrow problem and certificate management
problem. But the problem of this primitive was non-resistance to catastrophic damage
caused by key exposure. New results in this field are presented in (Mei et al., 2019).

Oulined above perspective solutions are in the investigation and developing stage so
far.

The one of currently available solutions can be the cryptographic chip implemented
in the user’s smartphone or in his credit card. This cryptographic chip could be supplied
by the bank to the user with public key cryptosystem (PKC) parameters and supporting
software. This software can be used to more secure authentication and communication
session creation using authenticated key agreement protocol (AKAP).

In this case smart phone can provide much more functions to the customer. For exam-
ple, it can be used as e-purse for off-line payments (Muleravicius et al., 2019).

Then user may not communicate with bank for any money transfer. It is enough to com-
municate with bank for withdrawal and deposit money to and from e-purse respectively
using AKAP.

Moreover, AKAP can be combined together with biometric identification methods
which popularity is growing nowadays but not so rapid as desirable.

In general, the user has significantly less computing power than server and therefore
AKAP realization should need as small computation resources as possible.

We will consider two legal parties communication with each other, namely user Alice
and Bank and an adversary. We assume that in all cases adversary has public keys of
both parties and system parameters (SP) of a used cryptographic system. We consider the
following type of attacks:

• Eavesdropping attacks: the adversary can eavesdrop on the legal communications be-
tween parties and can obtain the transcript of several interactions between them. As
a consequence, the adversary can decrypt secret messages or compromise the secret
key.

• Active attacks: the adversary uses the interaction to try and learn something that will
let it impersonate Alice to the Bank and the Bank to Alice. Suppose Alice runs an
identification protocol with the Bank over the internet. An active adversary controls
the channel and can block or inject messages at will. The adversary waits for Alice to
run the identification protocol with the Bank and relays all protocol messages from one
side to the other. Once the identification protocol completes successfully, the adversary
sends requests to the Bank that appear to be originating from Alice. The bank honors
these requests, thinking that they came from Alice. In effect, the adversary uses Alice
to authenticate to the Bank and then “hijacks” the session to send his own messages to
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the Bank. As a consequence of these attacks, the adversary can decrypt secret messages
exchanged between parties or compromise their secret keys.

Active attacks are more powerful than eavesdropping attacks. They come up when
Alice tries to login from a local infected computer. The malware infecting the computer
could display a fake login screen and fool Alice into interacting with it, thus mounting an
active attack.

One of the very “popular” kinds of attack is a Man-in-the-Middle (MiM) attack. The
HTTPS protocol is vulnerable to this kind of attack (Callegati et al., 2009). An attacker
capable of eavesdropping on traffic is also able to inject its own messages. The protocol
completely falls apart in the presence of an active adversary who controls the network.
The main reason is the lack of authentication. Alice sets up a shared secret, but she has
no idea with whom the secret is shared. The same holds for the Bank. An active attacker
can abuse this to expose all traffic between Alice and the Bank. This attack works against
any key exchange protocol that does not include authentication. Moreover, neither KAP,
nor identification protocols alone are secure against the MiM attack (Boneh and Shoup,
2020).

In 2015.03.17 Euronews made a report that on-line banking might be full of holes
like Swiss Emmental cheese, http://www.euronews.com/2015/03/17/internet-banking-a-
hacker-s-ideal-target/.

The reasons of this situation which has not significantly changed so far are outlined
above, therefore, the measures must be implemented to protect the user especially against
active adversary attacks.

To realize secure AKAP it is required to have a combination of several cryptographic
primitives: key agreement protocol, identification protocol, digital signature, and asym-
metric encryption.

To provide secure communications between Alice and the Bank it is required that Alice
prove to the Bank her identity and that the Bank prove to Alice its identity. One party
proving one’s identity is named a Prover – P and the other party verifying this proof is a
Verifier – V. Hence, to create secure communications both parties should be both P and
V to each other. This kind of identification is called mutual identification.

Secure identification protocols are based on the interaction between the P and V. They
use a technique called challenge-response identification (Just, 2011) together with other
protocols including key agreement protocol (KAP) thus yielding authenticated key agree-
ment protocol (AKAP).

The aim of this paper is to present integrated AKAP between two parties: user Alice
and the Bank using well known cryptographic primitives with provable security. AKAP
should have the following properties:

• Secure mutual authentication between Alice and the Bank and session key agreement.
• Effective realization especially on the user’s side.
• Alice’s anonymity against eavesdropping and active adversary.

Security analysis of proposed AKAP is presented referencing to security assumptions
of cryptographic primitives used in our construction.

http://www.euronews.com/2015/03/17/internet-banking-a-hacker-s-ideal-target/
http://www.euronews.com/2015/03/17/internet-banking-a-hacker-s-ideal-target/
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Effective realization means that computations and communications should be mini-
mized. It is also desirable that the number of system parameters should be minimized as
well. The number of these parameters depends on the selection of suitable cryptographic
protocols. Several cryptographic protocols and schemes are having the same system pa-
rameters such as ElGamal cryptosystem (ElGamal, 1985) together with the same private
and public keys:

• Diffie–Hellman key Agreement protocol (DH-KAP),
• ElGamal encryption (ElG-Enc),
• ElGamal signature (ElG-Sig),
• Schnorr identification protocol (S-Id),
• Schnorr signature (S-Sig).

These protocols are realized using the same discrete exponent functions dexp() in mul-
tiplicative cyclic groups of finite order. Some of them can be realized in elliptic curve
groups. We will consider numerical groups, where operations are performed modulo large
prime number p.

Two protocols AKAP1 and AKAP2 are considered. AKAP1 is a simpler protocol that
does not provide user’s anonymity. AKAP2 provides user’s anonymity by adding addi-
tional encryption in the first communication round.

In the list above we have two signature schemes, namely ElGamal and Schnorr. We
present here some analyses allowing us to choose a unique scheme better matching our
requirements. The signature scheme we use as an additional authentication means from
the Bank’s side. It is an optional measure since the Bank has a qualified e-signature certifi-
cate and can be authenticated by the user’s browser and during the execution of SSL/TLS
protocol.

ElGamal signature scheme (ElGamal, 1985) is based on the discrete exponent func-
tion.

The original paper did not include a hash function as a system parameter. The message
m was used directly in the algorithm instead of H(m). This enables an attack called an
existential forgery, as described in the paper of Pointcheval and Stern (Pointcheval and
Stern, 2000).

ElGamal signature scheme (ElGamal, 1985) is vulnerable to the Bleichenbacher attack
(Bleichenbacher, 1996).

This attack is avoided by using groups Gq of prime order q. The main drawback of
ElGamal signature is that it has considerable long keys.

Due to these considerations, we choose the Schnorr signature in our construction. It is
a new variant of the ElGamal signature which overcomes the drawbacks, namely: a long
signature size and Bleichenbacher attack.

Schnorr identification and signatures (Schnorr, 1990, 1991) constitute one of the most
fundamental public-key cryptosystems.

Pointcheval and Stern (1996, 2000) have shown that it is provably secure, assuming the
hardness of the discrete logarithm (DL) problem in the Random Oracle Model (Bellare
and Rogaway, 1993; Neven et al., 2009; Seurin, 2012).
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Schnorr identification protocol is based on the exchange of challenge-response conver-
sations between prover P and verifier V when P is seeking to prove to V some parameters
associated with his/her identity. In our case the prover is Alice and the verifier is the Bank.
The process of proof is based on the exchange of messages between P and V and is called
conversation. In Schnorr identification protocol conversation consists of three rounds:

1. P computes a commitment and sends it to V.
2. V generates a challenge and sends it to P.
3. P computes a response and sends it to V.

Both P and V are actively involved in the conversation, and the timing and ordering of
the messages are critical. The active adversary playing the role of a prover must generate
the first message before it sees the challenge generated by V.

To achieve the security of the AKE protocol against the active adversary, one must
carefully intertwine the processes of identification and anonymous key exchange. The ad-
versary actively impersonates a legitimate verifier. For example, the adversary may clone a
banking site and wait for a user being a prover P to visit the site. When it occurs P runs the
identification protocol with the adversary. As a result, the adversary repeatedly interacts
with P on the behalf of verifier V and sends the prover arbitrary messages of its choice.
After several such interactions, the adversary turns around and attempts to authenticate
himself as the prover to a legitimate verifier V. Identification protocol is secure against
active attacks if the adversary still cannot fool the legitimate verifier V.

In this paper we define security assumptions and provide security proof of AKAP1
against an active adversary. Security proof is based on transforming S-Id to AKAP1 which
represents the so called sigma protocol (Boneh and Shoup, 2020). Unfortunately, the sim-
ilar security proof for AKAP2 is not possible since AKAP2, being a more complex pro-
tocol, does not satisfy sigma protocol’s conditions. But nevertheless, AKAP2 seems to be
more secure than AKAP1. Hence, so far the security of AKAP2 can be based only on the
security of its cryptographic components listed above.

The other objective of this paper is to try to extend these results to the other conjec-
tured one-way functions (OWF) having some similarity with used here dexp() function.
For example, new conjectured OWF based on so called matrix power function (MPF)
was proposed earlier in our papers (Sakalauskas et al., 2008, 2017; Sakalauskas and Mi-
halkovich, 2014, 2017; Sakalauskas, 2018). In Sakalauskas and Mihalkovich (2018) it is
proved that inversion of MPF corresponds to NP-complete problem. This proof was based
on the result presented in Sakalauskas (2012).

The structure of the paper is the following. To be self-contained, in Section 2 we present
some mathematical background and describe cryptographic protocols and functions used
in our construction. In Section 3 we present AKAP1 and AKAP2 description. Section 3
is dedicated to security analysis. In Section 4 conclusions and a look to the future work
are presented.
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2. Preliminaries

We are dealing with a cyclic group Gq of prime order q with generator g. In our case Gq

is a subgroup of the cyclic multiplicative group of integers Z∗
p = {1, 2, . . . , p − 1} where

p is prime and multiplication is performed modulo p. Prime p is of n bit length, where n

is a security parameter.
Since q is a prime factor of p − 1, then according to Lagrange’s theorem and its

consequences all elements of Gq are generators. Then for all g in Gq the following identity
holds

gq = 1 mod p. (2.1)

This identity allows checking if number g ∈ Z∗
p, g �= 1 is a generator in Gq .

Let g ∈ Gq be a generator and x be an integer 1 � x � q − 1, then discrete exponent
function dexp() in Gq is defined as follows:

d exp(x) = gx mod p = a, a ∈ Gq. (2.2)

The inverse function to dexp() is a discrete logarithm function d logg(a) and is defined
as follows:

d logg(a) = x mod(q − 1), (2.3)

where generator g is a discrete logarithm function’s base defined in (2.2).
If g is a generator in Gq then function dexp() is one-to-one and performs the following

mapping

dexp : Zq−1 → Gq, (2.4)

where Zq−1 = {0, 1, 2, . . . , q − 1} is a ring of integers with addition and multiplica-
tion modulo q. This mapping plays a very important role in security considerations of
cryptographic protocols based on dexp() function.

The necessary but not sufficient security assumption for all protocols presented above
is discrete logarithm assumption and associated discrete logarithm problem (DLP).

Definition 2.1. Discrete Logarithm Problem – DLP is to find x in (2.2) when g, p and
a are given.

Definition 2.2. Discrete logarithm assumption. We say that the discrete logarithm (DL)
assumption holds for Gq if the probability to find x in (2.2) when g, p and a are given is
negligible.

We will need a notion of one-way function (OWF) which we define in the following
non-formal way.

Definition 2.3. Let F : A → B be a function. Function F is said to be one-way if: 1) for
given x ∈ A, it is computationally easy to compute y = F(x), which corresponds to the
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direct F value computation; 2) for given y ∈ B, it is computationally hard to compute
(at least single) x ∈ A such that F(x) = y, which corresponds to the inverse F value
computation.

Conjecture 2.4. The discrete exponent function is a candidate OWF.

Indeed, the computation of gx mod p can be done efficiently even for large numbers
commonly referred to as square-and-multiply algorithms. But its inverse value computa-
tion corresponds to DLP and is reckoned as hard using classical (non-quantum) comput-
ers. But nevertheless, due to Shor (1997) DLP can be solved in polynomial-time using
quantum algorithms running on quantum computers.

For example, when p and q are sufficiently large and suitably chosen primes the dis-
crete logarithm problem in the group Gq being a subgroup of Zq−1 is believed to be hard
to compute. Prime p should be at least 2048-bits, and q should be at least 256-bits.

All cryptographic primitives presented in the introduction are using the same sys-
tem parameters SP = (p, g), namely large (secure) prime number p and generator g

of group Gq .
To generate random and uniformly distributed parameters for cryptographic protocols

we use a special notation. For example, if we uniformly choose a random element r from
the set S then we write:

r = rand(S). (2.5)

We assume that SP are generated by the Bank. The Bank generates a prime number p

of at least 2048 bits length, i.e. |p| = 2048. Prime p should be suitably chosen in such a
way that (p − 1) should have a prime divider q of 256 bit length, i.e. |q| = 256. Then the
Bank finds a generator g of defined above group Gq .

According to ElGamal cryptosystem, the Bank randomly generates its private key
PrKB = y, where

y = rand(Zq), y ∈ Zq, 1 < y < q. (2.6)

Then corresponding to its private key the public key PuKB = b, is computed

b = gy mod p, b ∈ Gq. (2.7)

System parameters SP = (p, g) and the Bank’s PuKB = b are openly distributed
among all the Bank’s customers including Alice.

When user Alice opens her account in the Bank, then during the registration phase she
receives SP = (p, g) and the Bank’s PuKB = b.

In addition, there are two opportunities for Alice to complete the registration operation.
Either she receives the Bank’s generated public and private key pair PrKA = x, PuKA =
a, for her, where

x = rand(Zq), x ∈ Zq, 1 < x < q, (2.8)
a = gx mod p, (2.9)
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or she generates this key pair by herself using special certified application software sup-
plied by the Bank. In the latter case Alice keeps secret her PrKA = x from everyone
(including the Bank).

In both cases all parameters mentioned above are kept in certain storage devices (e.g.
USB token, SIM card, Smart phone apps, etc.) together with the certified application pro-
gram.

Every user including Alice has system parameters SP = (p, g), the Bank’s PuKB = b,
her PuKA = a and her PrKA = x.

In our model the Adversary can know two alternative sorts of information: either sys-
tem parameters SP = (p, g), the Bank’s PuKB = b and user’s public key, e.g. PuKA = a

or he may know only SP and PuKB . In the latter case, PuKA is not openly transmitted
during AKAP.

To be self-contained we present here a description of protocols and functions used for
AKAP construction.

2.1. Diffie–Hellman Key Agreement Protocol (DH-KAP)

Let Alice be the initiator of the DH-KAP protocol with the Bank. It is executed in two
communications between Alice and the Bank:

1. Alice generates a random secret number u = rand(Zq), 1 < u < q − 1 and using
SP = (p, g) computes a non-secret session parameter

kA = gu mod p. (2.10)

Alice sends kA to the Bank.
2. After receiving Alice’s message, the Bank generates a random secret number v =

rand(Zq), 1 < v < q − 1 and using SP = (p, g) computes his session parameter

kB = gv mod p. (2.11)

The Bank sends kB to Alice.

After this open data exchange, Alice and the Bank compute their common agreed secret
key kAB = kBA = k, kAB = (kB)u mod p = (g)vu mod p = kBA = (kA)v mod p =
(g)uv mod p = k.

So Alice and the Bank can create a secure channel for encrypted communications
between each other.

If |p| = 2048 bits and |q| = 256 bits, then the maximal number of exponentiation
operations from 2 ∗ 2048 = 4096 is reduced to 2 ∗ 256 = 512 for each party to compute
the agreed key k.

Unfortunately, the discrete logarithm assumption by itself is not enough to ensure that
the Diffie–Hellman protocol is secure. The following definition and assumption of Com-
putation Diffie–Hellman (CDH) problems are required.
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Definition 2.5. CDH problem in Gq is to compute guv when gu and gv are given.

Definition 2.6. CDH assumption in Gq states that it is infeasible to compute guv when
gu and gv are given.

To compromise DH-KAP the eavesdropper has to solve the CDH problem which is
stronger than DLP. Some evidence still suggests that this is a reasonable assumption in
groups where the DL assumption holds but CDH does not. In DH-KAP, an eavesdropper
observes gu and gv exchanged as part of the protocol, and the two parties both compute the
shared key guv . A fast means of solving the CDH problem would allow an eavesdropper
to violate the privacy of the Diffie–Hellman key exchange by compromising the agreed
secret key.

The stronger assumption for the non-ephemeral agreed key is decisional DH, (DDH)
assumption (Boneh, 1998).

Definition 2.7. The DDH assumption states that given gu and gv for u = rand(Zq) and
v = rand(Zq) the value guv has the same distribution as any element w = rand(Zq), i.e.
guv is computationally indistinguishable from w when p and q are sufficiently large.

We assume that the agreed key in DH-KAP is not ephemeral and is different from
session to session. Therefore it is not required to provide forward secrecy of this key.
Moreover, in the case of challenge-response protocols parties are communicating in a
very restricted time interval. Hence, according to these restrictions security of DH-KAP
does not require DDH assumption.

But nevertheless, in AKAP2 we use ElGamal encryption where DDH assumption is
required to provide user’s anonymity.

DH-KAP is realized in SSL/TLS protocols included in the HTTPS protocol. DH-KAP
is vulnerable to an active adversary attack known as a Man-in-the-Middle (MiM) attack
(Callegati et al., 2009). This attack is executed in the following way:

1. Alice randomly generates a secret number u in the interval 1 < u < p − 1. She
computes a session parameter kA = gu mod p and sends kA to the Bank.
Then Adversary intercepts kA and terminates message transmission to the Bank. Ad-
versary impersonating the Bank against Alice randomly generates a secret number z

in the interval 1 < z < p − 1, computes a session parameter kZ1 = gz mod p and
sends kZ1 to Alice. Analogously, Adversary impersonating Alice against the Bank ran-
domly generates a secret number w in the interval 1 < w < p −1, computes a session
parameter kZ2 = gw mod p and sends kZ2 to the Bank.

2. Alice presuming that message kZ1 is received from the Bank, computes the agreed
secret key kAZ = (kZ1)

u mod p.
Adversary computes the same secret key kZA = (kA)z mod p.

3. The Bank presuming that kZ2 is received from Alice, randomly generates a secret num-
ber v in the interval 1 < v < p − 1. It computes a session parameter kB = gv mod p

and sends kB to Alice but this message is intercepted by Adversary. The Bank computes
the agreed secret key kBZ = (kZ2)

v mod p as well.
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Adversary computes the same secret key kZB = (kB)w mod p.

Evidently, kAZ = kZA = k1 and kBZ = kZB = k2 and hence, Adversary is able to
decrypt any messages sent between Alice and the Bank. Moreover, Adversary can send to
Alice his own messages encrypted with the key k1 which can be decrypted by Alice and
vice versa. Alice and the Bank do not suspect that Adversary impersonates both of them.

This attack can be prevented using AKAP.

2.2. ElGamal Encryption

Let m be a message to be encrypted by Alice and sent to the Bank. To obtain unambiguous
encryption m must satisfy the following inequality 1 < m < q. Encryption is performed
using SP = (p, g) and the Bank’s PuK = b. Encryption is executed in the following way.

Alice chooses at random k, 1 < k < q and computes

e = mbk mod p, (2.12)

d = gk mod p. (2.13)

The ciphertext is c = (e, d) which is sent to the Bank.
For decryption the Bank uses the same system parameters SP = (p, g) and its private

key PrK = y. Then

m = ed−y mod p. (2.14)

To be short we omit the validity proof of this identity. Further we use the following
symbolic notation for encryption Enc() and decryption Dec() functions

c = (e, d) = Enc(b,m), m = Dec(y, c). (2.15)

This cipher we denote by the pair (Enc, Dec). The semantic security of ElGamal cipher
is based on the following theorem (Tsiounis and Yung, 2006).

Theorem 2.8. The semantic security of the ElGamal encryption is actually equivalent to
the decision Diffie–Hellman (DDH) problem.

2.3. Schnorr Identification Protocol (S-Id)

We assume that the Bank has Alice’s PuK = a as her identity. Alice must prove that she
knows her PrK = x, corresponding to her PuK = a associated with her identity. PrkA = x

is called a witness and corresponding Puk = a = gx mod p is called a statement. This
protocol is initiated by Alice and has the following three communications.

1. Alice generates a random secret number u = rand(Zq) and using SP = (p, g) com-
putes commitment l in the following way

l = gu mod p, l ∈ Gp. (2.16)
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Alice sends l to the Bank.
2. The Bank generates a random challenge h = rand(Zq) and sends h to Alice.
3. After receiving h Alice computes her response r having her private key x together

with previously generated secret number u:

r = u + xh mod q, r ∈ Zq. (2.17)

After the third communication the Bank verifies if the following identity holds

gr = lah mod p. (2.18)

If it is the case, the Bank trusts that Alice proved the knowledge that she possesses a
private key PrK = x corresponding to her public key PuK = a.

To be short we omit the validity proof of (2.18) identity.
In general, Alice is prover P proving that she knows a secret, namely her private key x,

not revealing it and the Bank as a verifier V is either accepting this proof if (2.18) identity
holds, or rejecting it otherwise. So SID is called proof-of-knowledge.

Proof-of-knowledge must satisfy three properties:

1. Completeness: if the statement is true, the honest verifier V, that is one following the
protocol properly, will be convinced of this fact by an honest prover P.

2. Soundness: if the statement PuK = a is false, no cheating prover P can convince the
honest verifier V that he knows the secret, except with some small probability.

3. Zero-knowledge: if the statement PuK = a is true, no verifier learns anything other
than the fact that the statement is true. In other words, just knowing the statement
but not the secret is sufficient to be convinced that the prover knows the secret. This
is formalized by showing that every verifier has some simulator that, given only the
statement to be proved but without any access to the prover, can produce a conversation
that “looks like” an interaction between the honest prover and the verifier in question.

An interaction between P and V is performed when P knows PrK = x and V knows
PuK = a. This interaction we denote by P(x) and V(a) respectively generating a conver-
sation (l, h, r) ∈ Gq × Zq × Zq . This conversation is an accepting conversation for a if
(2.18) holds.

Proposition 2.9. If the challenge space was small then Schnorr’s identification protocol
is insecure.

Comment 2.10. Let cardinality of challenge space Zq be N , i.e. |Zq | = N . Then, in
its impersonation attempt, an adversary could use the simulator to prepare an accepting
conversation (l, h, r), send l to V, and then hope that the challenge chosen by V is equal
to its prepared challenge h. If so, the adversary could then respond with r, and so make V
accept. Thus, Schnorr’s identification protocol is broken with advantage 1/N ; therefore,
the challenge space Zq must be super-poly in order to ensure security. In our case it is
N = 2q .



288 A. Kilciauskas et al.

For further security considerations of our AKAP, the following notions should be in-
troduced.

Let Gen be a key generation algorithm with input of certain system parameters SP and
outputting private and public key pair (PrK, PuK). Then arbitrary identification protocol
Id can be represented by the following triplet: Id = (Gen, P, V).

For example, in S-Id described above input to Gen is SP = (p, g) and its output is a
pair of private and public keys (x, a) according to (2.8), (2.9). Then symbolically S-Id =
(Gen, P, V). Recall that according to DL assumption Gen is one-way-function (OWF).

The following theorem we present without proof (Boneh and Shoup, 2020).

Theorem 2.11. Under the one-wayness assumption for Gen, and assuming |Zq | = N is
super-poly, Schnorr’s identification protocol is secure against eavesdropping attacks.

In S-Id the one-wayness assumption for Gen means that the DL assumption is valid.
It is an open question as to whether Schnorr’s identification protocol is secure against

active attacks. So far there are no known effective, active attacks, but there is also no proof
that rules out such an attack under the DL assumption.

Later we present a modification of S-Id, that is proven secure against active attacks
under the DL assumption. Some introduction of the following notions is needed to provide
this proof (Boneh and Shoup, 2020).

Definition 2.12. Let Id = (Gen, P, V) be an identification protocol. We say that Id is
honest verifier zero knowledge, or HVZK for short, if there exists an efficient probabilistic
algorithm Sim called a simulator such that for all possible outputs (PrK, PuK) of Gen, the
output distribution of Sim on input PuK is identical to the distribution of a transcript of a
conversation between P on input (PrK, PuK) and V on input (PuK).

The term “honest verifier” conveys the fact this simulation only works for conversations
between P and the actual, “honest” verifier V, and not some arbitrary, “dishonest” verifier,
such as may arise in an active attack on the identification protocol.

In our construction we propose mutual identification between Alice and the Bank.
When the Bank is taking the role of Verifier we assume that the Bank is Honest Veri-
fier due to the following assumptions. Firstly, we can assume that the Bank can prove its
identity to the user more easily since the Bank has a public key certificate which can be
recognizable by the user’s browser. Secondly, during the identification protocol the Bank
is using encrypt and sign procedures to confirm its identity.

Theorem 2.13. Schnorr’s identification protocol is HVZK.

Proof. Simulator Sim in generating a conversation (l, h, r) and does not need to generate
the messages of the conversation in a given order, as in a real conversation between P and
V. Sim can generate the messages in reverse order. On input PuKA = a, Sim computes r =
rand(Zq), h = rand(Zq) and l = gr/ah. Then Sim outputs the conversation (l, h, r). We
must prove that it is an acceptable conversation. It means that the output of Sim on input
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PuKA = a has the right distribution. The main observation is that in a real interaction, h

and a are independent, and are uniformly distributed in Zq . Moreover, for given h and a,
the value l is uniquely determined by the equation gr = lah mod p since according to (2.4)
dexp() function is one-to-one. Then l has the same distribution as the output distribution
of the simulator Sim. �

2.4. Schnorr Signature Scheme (S-Sig)

Let m be a message in Zq to be signed by the Bank and sent to Alice. Parties are using
cryptographic secure H-function to create and verify the signature on the message digest
obtained by this function. For signature creation the Bank uses system parameters SP =
(p, g) and the Bank’s PrK = y. Let H-function be a mapping H: Gq × Zq → Zq .

The Bank chooses at random z, 1 < z < q and computes first component t of his
signature:

t = gz mod p. (2.19)

The Bank computes H-value h and second component s of his signature:

h = H(m, t), (2.20)
s = z + yh mod q. (2.21)

The Bank’s signature on h is σ = (s, t). Then the Bank sends m and σ to Alice.
After receiving m and σ = (s, t), Alice, according to (2.20), computes h and verifies

if

gs = tbh mod p. (2.22)

Symbolically we denote this verification function by

Ver(b, σ, h) ∈ {True, False}. (2.23)

This function yields True if (2.22) is valid.
Referencing to Seurin (2012), Boneh and Shoup (2020) the following theorem can be

formulated.

Theorem 2.14. If H is modelled as a random oracle and Schnorr’s identification scheme
is secure against eavesdropping attacks, then Schnorr’s signature scheme is also secure
against eavesdropping attacks.

3. AKAP Protocols

We present here two modifications of AKAP, namely AKAP1 and AKAP2 taking three
communications between Alice and the Bank. AKAP1 is partially disclosing the user’s
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anonymity by openly sending her PuKA. In the case of AKAP1, the eavesdropping adver-
sary can see that certain communications with the Bank are performed by the same person
using the same PuK.

AKAP2 is providing user’s anonymity without disclosing any user’s personal infor-
mation by realizing randomized encryption of the user’s PuK during every session.

All parties including the adversary share the common information, namely system
parameters SP = (p,g) and the Bank’s PuKB = b. In addition, we also assume that
the adversary may know public keys of users. So, in our model adversary knows two
alternative sorts of information: either system parameters SP and the Bank’s PuKB or SP,
PuKB and users public keys, (e.g. PuKA).

When Alice is a prover P then she uses protocol P(x, a) with input parameters (x, a)

and the Bank uses the verification protocol V(a) respectively. We assume that the Bank is
the trusted party and therefore it can prove its identity to users by its signature and PuKB

certificate realized in the lower level protocols such as SSL/TLS. But nevertheless, we
supply AKAP1 and AKAP2 by extra identification of the Bank by signing its challenge
sent to the user.

AKAP1
Alice and the Bank shares system parameters SP = (p, g), PuKA = a and PuKB = b.

1. Alice chooses a random number u = rand(Zq) and computes commitment l in the
following way

l = gu mod p, l ∈ Gq. (3.1)

Alice sends (l, a) to the Bank.
2. After receiving (l, a) the Bank verifies if the user with his/her public key a is included

in its customers’ database and belongs to Alice. If it is ok, then the Bank seeks Alice
to prove that she knows to correspond her private key x.

The Bank chooses a random number v = rand(Zq) and computes challenge h in
the following way

h = gv mod p, h ∈ Gq. (3.2)

The Bank signs challenge h using his PrKB = y by Schnorr signature scheme obtaining
signature σ

σ = Sig(y, h) = (s, t). (3.3)

The Bank sends (h, σ ) to Alice.
3. Alice verifies the validity of signature σ on challenge h with the Bank’s PuKB = b.

If it is ok, Alice computes a secret session key kAB according to Diffie–Hellman key
exchange protocol

kAB = hu mod p. (3.4)



Authenticated Key Agreement Protocol Based on Provable SCF 291

Having her secrets u and x Alice computes the following response

r = u + xh + a mod (p − 1). (3.5)

Alice sends (r) to the Bank.

At this stage AKAP1 communications are finished.
After receiving r the Bank verifies if Alice knows her private key x corresponding to

her public key a, which is registered in the Bank’s database. The verification equation is
the following:

gr = lahga mod p. (3.6)

If the last equation is valid, then the identification procedure is passed successfully.
The Bank computes the common session secret key kBA according to Diffie–Hellman key
exchange protocol

kBA = lv mod p. (3.7)

Obviously at this moment parties agreed on their common session key k = kAB = kBA

and parties can continue communication using created secure channel with agreed secret
key k.

The difference between convenient Schnorr identification protocol and AKAP1 is that
there is an additional variable ga in a verification equation (3.6). This will allow us to
prove that S-Id is secure against an active adversary.

The second protocol is AKAP2 providing Alice’s anonymity against an eavesdropping
adversary. In this case, Alice’s Puk = a is encrypted and the adversary cannot distinguish
if either the same person or two different persons are communicating with the Bank when
he is eavesdropping and analysing any two different communications.

AKAP2

1. Alice chooses a random secret number u = rand(Zq) and computes commitment dA

dA = gu mod p, l ∈ Gq. (3.8)

This commitment is also a partial key for DH-KAP.
To reduce computations Alice uses dA to encrypt her PuKA = a by ElGamal encryp-
tion scheme to the recipient, the Bank, by computing

eA = abu mod p, (3.9)

The ciphertext is cA = (eA, dA). In our case dA plays a triple role: commitment, partial
key and second component of ciphertext cA.
The ciphertext (cA) is sent to the Bank.
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2. After receiving cA the Bank decrypts cA using the Bank’s PrKB = y and obtains
Alice’s PuKA = a

a = eA(dA)−y mod p. (3.10)

The Bank verifies if the user with his/her public key is included in its customers’
database and belongs to Alice. If Yes, then the Bank seeks Alice to prove that she
knows her corresponding private key x. Otherwise, protocol is terminated.
The Bank chooses a random secret number v = rand(Zq) and computes challenge h

h = gv mod p, h ∈ Gq. (3.11)

The Bank encrypts h by ElGamal encryption scheme to recipient Alice by choosing a
random secret number z = rand(Zq) and computing ciphertext c = (e, d)

e = haz mod p, d = gz mod p. (3.12)

To confirm its identity the Bank signs component e by choosing a random secret num-
ber w = rand(Zq) and computing Schnorr signature σ = (s, t) using its PrKB = y

t = gw mod p, s = w + ye mod q. (3.13)

The Bank sends (c, σ ) to Alice.
3. Alice verifies the validity of signature σ on value e with the Bank’s PuKB = b with

verification function Ver(b, σ, e) in (2.23).
If it is the case, then Alice decrypts c using her PrKA = x thus obtaining challenge h

h = ed−x mod p. (3.14)

Alice computes the common secret session key kAB

kAB = hu mod p. (3.15)

Then Alice completes AKAP2 by computing her response r

r = u + xh + a mod q. (3.16)

Alice sends (r) to the Bank.

At this stage AKAP2 communications are finished.
After receiving r the Bank verifies if Alice is the correct prover. He verifies if the

following identity holds

gr = dAahga mod p. (3.17)
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If it is the case, then the Bank computes the common session secret key kBA

kBA = dAv modp. (3.18)

At this stage parties agreed on the common secret key k = kBA = kAB , performed
mutual identification and can proceed communications by creating the secret channel.

4. AKAP Protocol Security Analysis

We show that AKAP1 is secure against active attack under the DL assumption by trans-
forming the Schnorr identification protocol to Schnorr Sigma we denoted as AKAP1 pro-
tocol. A brief introduction to Sigma protocols is needed. Let X and A be finite sets and R

is a binary relation R ⊆ X × A on X × A. Then referencing to Boneh and Shoup (2020)
we have the following definition.

Definition 4.1. Binary relation R ⊆ X × A is effective if X and A are efficiently recog-
nizable finite sets. Elements of X are called witnesses for elements of A and elements of
A are called statements.

Let X = Zq and A = Gq then R ⊆ Zq × Gq and (x, a) ∈ R, when a = gx mod p.
Then element PrKA = x ∈ Zq is a witness and element PuKA = a ∈ Gq is a statement.

Lemma 4.1. Binary relation defined by

R = {
(x.a) ∈ Zq × Gq

∣∣ gx = a mod p
}
, (4.1)

is an effective binary relation.

Proof. Deciding that x is in Zq is trivial. Let a ∈ Z∗
p then to decide if a ∈ Gq is required

to verify the identity (2.1). If it is the case, then a ∈ Gq since dexp() function is one-to-one
and all elements in Gq (except 1) are generators. Then for every statement a ∈ Gq there
exists a unique witness x.

However, we have to find the witness x such that gx = a mod p corresponds to solving
the DLP.

AKAP1 is realizing a conversation (l, h, r) where l is a commitment, h-challenge and
r-response. �

Definition 4.2. A Sigma protocol for effective relation R ⊆ Zq × Gq is a pair of (P, V)
protocols satisfying the following conditions:

• P is an interactive protocol algorithm called the prover, which takes as input a witness-
statement pair (x, a) ∈ R and computes P(x, a).

• V is an interactive protocol algorithm called the verifier, which takes as input a statement
a ∈ Gq , computes V(a) and outputs accept or reject.
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P and V interactions are carried out in a similar way as they are presented in Section 2.

– To start the protocol, P computes commitment l and sends it to V;
– Upon receiving P’s commitment l, V chooses a challenge h at random from a finite

super-poly challenge space C, and sends h to P;
– Upon receiving V’s challenge h, P computes a response r , and sends r to V;
– Upon receiving P’s response r , V outputs either accept or reject, which must be com-

puted strictly as a function of the statement a and the conversation (l, h, r). In particular,
V does not make any random choices other than the selection of the challenge h. All
other computations are completely deterministic.

To transform S-Id to AKAP1 we include an input a witness-statement pair (x, a) ∈ R

to compute P(x, a) for the prover.
We will prove that the AKAP1 protocol satisfies Sigma protocol’s conditions. No-

tice that the prover P in S-IP takes as an input just the witness x, rather than the wit-
ness/statement pair (x, a), as formally required in the definition of any Sigma protocol.
Therefore the conversation (l, h, r) is changed to the conversation (l, a, h, r).

Sigma protocol must satisfy the following conditions:

Completeness: V(a) always outputs accept for all (x, a) ∈ R, when P(x, a) and V(a)

interact with each other.
Soundness: guarantees that no prover P that doesn’t know the witness x can succeed in

convincing the verifier V.

The following theorem is presented without a proof (Boneh and Shoup, 2020).

Theorem 4.3. S-SP provides knowledge soundness.

To proceed we must transform Definition 2.17 of HVZK to the definition of special
HVZK (Boneh and Shoup, 2020).

Definition 4.4. Let (P, V) be a Sigma protocol for R ⊆ X × A with challenge space C.
We say that (P, V) is special honest verifier zero knowledge, or special HVZK if there
exists an efficient probabilistic algorithm Sim called a simulator that takes as input (a, h),
and satisfies the following properties:

• for all inputs (a, h), algorithm Sim always outputs a pair (l, r) such that (l, h, r) is an
accepting conversation for a;

• for all (x, a) in R, if anybody computes h = rand(Zq) and (l, r) = Sim(a, h), then
(l, h, r) has the same distribution as that of a transcript of a conversation between
P(x, a) and V(a).

The differences between HVZK and special HVZK are the following: first, the simu-
lator takes the challenge h as an additional input; second, it is required that the simulator
produce an accepting conversation even when the statement a does not have a witness x.
These two properties are the reason for the introduction of the notion of special HVZK.
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Theorem 4.5. AKAP1 is a special HVZK.

Proof. Let input to the simulator Sim be (a, h). Then Sim computes r = rand(Zq),
ah mod p, ga mod q mod p and l = gr/(ahga mod q) mod p. Then computed conversation
parameters (l, h, r) are accepting parameters since they have the same distribution as ac-
tual conversation of (P, V). �

The following theorem we present without proof is required (Boneh and Shoup, 2020).

Theorem 4.6. Let (P, V) be a Sigma identification protocol for an effective relation R

with super-poly challenge space. Assume that (P, V) provides knowledge soundness and
is special HVZK. Furthermore, assume that the key generation algorithm Gen for R is
one-way. Then Sigma identification protocol with parameters (Gen, P, V) is secure against
active attacks.

Referencing to our considerations above and Theorem 4.6. We can prove the following
result.

Theorem 4.7. AKAP1 is secure against active attacks.

Proof. In Lemma 4.1 we proved that relation R in (4.1) is an effective binary relation. The
challenge space C is super-poly since |C| = 2q . Referencing to Theorem 4.3 AKAP1 pro-
vides knowledge soundness and referencing to Theorem 4.5 AKAP1 is HVZK. Under the
DL assumption and conjectured one-wayness of dexp() function key generation algorithm
Gen for R is one-way. �

Unfortunately, the similar result can not be proved for the AKAP2 protocol. The main
reason is that it is not a Sigma protocol since the user’s PuKA = a is encrypted during the
first move of the protocol and can be decrypted only by a designated verifier V which is
a Bank. In this case an active adversary has no access to the user’s public key. Therefore,
the theorems formulated above for Sigma protocols are not valid.

The security of AKAP2 we consider in the context of security of its components.
The user’s anonymity protection is based on the security of the ElGamal encryp-

tion scheme. According to Theorem 2.12, the compromising of anonymity is equiva-
lent to DDH problem solution. If SP has secure values then DDH assumption holds and
anonymity is not compromised. In this case an eavesdropping adversary cannot distin-
guish any two conversations either they are originated from the same user or from the two
different users.

The other characteristic of AKAP2 is that challenge h in AKAP1 is encrypted and
signed. This encrypt and sign paradigm avoids the chosen-ciphertext attack and is CCA-
secure encryption (Boneh and Shoup, 2020).
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5. Discussions and Further Works

Two authenticated key agreement protocols AKAP1 and AKAP2 based on Diffie–Hellman
KAP, Schnorr identification, Schnorr signature, and ElGamal encryption are presented.

It is proved that AKAP1 is secure against an active adversary under the discrete loga-
rithm (DL) assumption.

To increase the security of AKAP1 the modified AKAP2 is proposed. Since this proto-
col does not satisfy sigma protocols conditions, the security proof of AKAP2 is restricted
to only two components providing user’s anonymity and CCA-secure encryption of veri-
fiers (Bank’s) challenge which is used also to agree on the common secret key.

Referencing to these results it is an intriguing idea to construct AKAP based on other
similar assumptions instead of classical DL assumption, namely based on NP-complete
problems. New conjectured one-way-function based on so called matrix power function
(MPF) was proposed earlier in our papers (Sakalauskas et al., 2008, 2017; Sakalauskas
and Mihalkovich, 2014, 2017; Sakalauskas, 2018). MPF has some similarities with dis-
crete exponent function. In Sakalauskas and Mihalkovich (2018) it is proved that inversion
of MPF corresponds to a NP-complete problem. This proof was based on the result pre-
sented in Sakalauskas (2012). So far, the only key agreement protocol and asymmetric
encryption scheme were realized using MPF but we think that the other protocols suitable
for AKAP construction can be realized as well. Hence we expect that referencing to the
results presented in this paper we could construct new AKAP based on MPF and prove its
security using a similar methodology to the one presented in this paper.
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