
INFORMATICA, 1993, Vol.4, No.3-4, 384-398

COMPUTER-AIDED TEST PROGRAM
DESIGN SYSTEM (CATPDS) IN ATLAS

Vytautas STUIKYS and Eugenij TOLDIN

University of Technology
3028 Kaunas, StudentlJ St. 50, Lithuania

Abstract. The configuration and essential features of the Computer-Aided
Test Program Design System (CATPDS) which generates test programs in an
adapted ATLAS subset for analogue units under test are discussed. The require­
ments for that class of systems are formulated and how to meet these require­
ments is proposed. The formal model to describe the process of an interactive
test program generation and incremental translation is presented.

Key words: integrated Computer-Aided System, interactive program gen­
eration, test program, analogue unit under test (UUT), the ATLAS language.

1. Introd uction. In most automated test systems the devel­
opment of test programs for units under test (UUT) is required.
These test programs are typically developed by engineers. In order
to improve the test program development process, the design tools
are needed. The Computer-Aided Test Program Design System
(CATPDS) is an example of that category of tools. CATPDS is a
subsystem of the more common system, called CATS (Computer­
Aided Testing System). The main features of CATPDS are as
follows:

a) test programs are generated by the system in an adapted
ATLAS (IEEE Standard ATLAS Test Language! 1981) subset and
prepared for execution on CATS;

b) CATPDS is oriented to use for functional testing ,of analogue
UUT; ,

c) the key program of CATPDS is the Test Program Generator

V. Stuikys and E. Toldin 385

(TPG), which provides facilities for syntax error-free test program
design in an interactive mode;

d) the system includes other closely integrated facilities, such
as translators, editors etc.;

e) the user of CATPDS may choose three levels of a test pro­
gram generation process (statement, frame and frame's library) ;

f) the user may receive a test program written in original
ATLAS, i.e., in English or in Russian representation of the same
ATLAS program;

g) CATPDS is independent upon physical test instruments of
the automated test system and has an emulation facility for test
program debugging;

h) the test program design process is combined with on-line
help facilities and specific messages to prompt or warn the operator
are used;

i) the test program generation process is based on menu-driven
application;

k) CATPDS is implemented in the environment of MS DOS
PC.

The variety of such kind systems is developed now. Among
them the paper (Michael, 1979) in which the computer guided gen­
eration of test programs is proposed must be mentioned. Some
ideas how to build an interactive tool based on an ATLAS-like lan­
guage are described in (Ponomariov, Frumkin, Gusinskij, 1984).
CATPDS is compared with the SMART system (ARINC Specifi­
cation 608-1, 1989). The lack of CATPDS lies in configurating ca­
pabilities but our system has several possibilities for test program
generation, i.e., the statement, frame and frame's library levels.

2. Requirements for test programming tools (TPT).
The global requirement which should be assumed by the designer
of TPT is as follows: a developed tool has to support the program
design and execution processes more efficiently then it is done in
the conventional systems.

On the basis of developed and i~vestigated several tools for test
systems (Ginkas, Stuil-ys, 1983; Stuikys, Toldin, 1988) (CATPDS

386 Computer-aided test program design system

is the last one) we can reformulate this common requirement ill

more detail as presented below.

1. A tool is to be built as a system in which the following facil­
ities are closely integrated: an interactive test program generator,
translator, editor, linker, emulator and executor.

2. Each statement of a source test program produced by TPG
of the tool must be syntax error-free. Some semantic errors also
could be detected by TPG.

3. When an interactive facility for the source test program
generation is incorporated in a tool the incremental translation
scheme at the first translation stage is needed to use.

4. Some others translation schemes (batch, independent) are
applicable in the same tool.

5. To assure a more efficiency some source test program design­
ing levels are needed when TPG is used. We propose the following
levels of the test program written in ATLAS: a statement, frame
and frame's library.

6. To achieve greater flexibility various editors, such as textual,
syntax-oriented, screen are to be integrated into the same system.

7. Flexible user interfaces must be designed through the entire
test program development stages, including debugging and execu­
tion.

8. A tool is to be independent upon changes and extentions in
a source high level language. "

9. A tool is to be independent upon the physical instruments
of the test system.

10. It is a very useful property when some modules of a tool can
be easily transported from one computer to another (the property
of mobility).

11. Due to the wide spread of ATLAS as a standard test lan­
guage over the world, it is useful to have a facility which could
enable to change an original ATLAS program "to other natural lan­
guage representation of the same test program.

12. The formal models for describing processes which are to
be implemented in a tool on the development stage are desirable.

V. Stuikys and E. Toldin 387

Some requirements shall be needed in a near future. These
may be as follows.

13. To enhance the intelligence level of a tool.
14. The previous efforts to carry in a standard for the usage

of some modules (translators, for example) could be realised more
fully.

A majority of requirements mentioned above are evident. The
others, although are comprehensible, need a more detail discussion.

In the next section we shall discuss only those requirements
which are related to initial stages of the test program design, i.e.,
generation and translation.

3. How can designer meet proposed requirements. The
need to build an integrated test programming tool lies in the in­
hierent relation of some processes which are to be incorporated into
the tool and a necessity to achieve the functional capabilities of the
system. The internal integration could be entered by such means
as the use of

- a common database,
- common control procedures,
- an internal feedback between different modules.
How to enter the integration we shall illustrate with an ex­

ample of a database as follows. The main part of the database
is the information about the source language syntax. In the case
When TPG is incorporated in TPT this information, for example,
could be represented in the form of menu tables as shown in Fig. 1.
These menu tables can be successfully used also at the program
translation stage.

The essential feature of TPG is that a test program produced
by the tool is syntax error-free. This requirement may be achieved
in the following way. When an error occurs via the statement
generation session, it must be immediately detected and deleted.
To ensure this some .checking facilities are needed. These checking
facilities can be interpreted as a part of an incremental translator.

The incremental translation is required when a statement is
produced not manually but by the Generator use due to the fol-

388 Computer-aided test program design system

[Menu tables of
higher level

Fig. 1. Menu tables for goto-statement.

1i!L~
L~~-.J

lowing reasons:
- to detect errors immediately,
- to create an intermediate representation of a test program

after it is translated,

- to make proper further processing of a translated program.
Methods how to check the correctness of produced items of a

test program via a generation session are well-known. In our case
we would like to emphasize the most significant property that not
the entire information produced by the Generator must be checked
when an incremental translation scheme is used. This checking
is being done only to the part of items which is created manually
via generation session (for example, pin names, numbers, variables,
etc.). We suppose the menu tables of the database are constructed
correctly and appropriate separators can be formed by the Gener­
ator automatically,

So, the proposed approach is less complicated then the con­
ventional ones.

The next note must be made about the program representation
form after it being translated~ This form we named the Intermedi-

V. Stuikys and E. Toldin 389

ate Gode (IG), a role of which is very wide as it is stated below.

** A source test program may be saved ih the Ie representation
and the textual form of that program may be reproduced from Ie
only when it is needed. Such reproduction process we called a
retranslation.

** When ATLAS is used as a test programming language the
common form of Ie may be proposed in order to provide the stan­
dardization facilities and enhance the test program's mobility.

** We propose further processing of Ie in such a manner: to
convert Ie into the C language representation and from this stage
use the conventional en.vironment. Due to the wide spread of the C
language compilers the proposed approach assures the test program
transportability in the scale of the mini and personal computers
environment.

4. Formal description of interactive test program gen­
eration. As test programming tools continue to increase in com­
plexity, so do the interface requirements that support the corre­
sponding user interaction. Due to this reason it is very useful for
the designer to have a precise description and transparent under­
standing of these processes which are to be incorporated into the
tool. To promote such understanding in this section a m<;ldel which
describes an interactive test program generation and incremental
translation is presented.

Some approaches to describe program generation were pro­
posed earlier. Among them: a syntax-oriented edition in (Medina­
Mora, 1981), a procedure to produce a program from a formal
syntax tree representation (Swartz, Delisle~Begwani, et.al.,1984).
The Program Synthesizer (Teitelbaum, Reps, 1981) uses the tem­
plates as a model to produce a program written in PL/CS. The
test program generation for logic units on the basis of a s suc­
cessive selection items from menu tables was discussed ill (Gross,
Gerg, 1983). The menu-driven systems were classified and models
to describe them formally were proposed in (Arthur, 1987).

Our model is based on an automata theory (Lewis, Rozen­
crants, 1979). According to that model a test program is generated

390 Computer-aided ,test program design system

gradually, in statf'lIlf'nt-by-statement manner. Moreover, a state­
ment is produced also in step-by-step manner as described in the
following.

When a system, i.e., a generator, produces some item of the
statement, it is said that a system is in an adequate state. Some
kinds of states are distinguished. The initial, current and terminal
states are determined. It is assumed that each state is associated
with an adequate menu table.

When the system is in current state the current menu table is
displayed and the appropriate response is made by the user. Each
response causes the corresponding operations in the system and the
system moves to the next state.

Menu tables and states for the DECLARE statement of the
ATLAS subset are shown in Fig. 2.

A move to the next state depends upon the response and the
current state. In such model the legal and invalid moves can be
easily determined. Let

s = {so, S1> ••. ,Se, ... , sd

be the set that represents states of the system.
Let

denote the set of menu tables and

A = {ao, al,"" ae ,.··, ad

denote the operations which are to be performed by the system.
User responses are represented by the set

Then the transition function T that maps elements of S x R
into elements S, i.e., T: S -+ S x R can be defined.

The user moves from the current state Se (initially s, == so)
to the state Se+! by issuing response Te. A move is defined by the

V. Stuikys and E. Toldin 391

Menu table in state S '0 Menu table in state S 'J

response menu item res~onse menu item
-

ro DECLARE r6 enter variable
name

ra exit

Menu table in state S '\ Menu table in state S 4

response menu item

f1 INTEGER
response menu item

f2 DECIMAL r7 enter array name

fl DIGITAL
r, exit

r4 CONN

rs i MSGCHAR

Menu table in state S2

response menu item

f1 STORE

fl LIST

Fig. 2. Menu tables for DECLARE statement.

relation T(Be, r e) = Be+l. If a response is invalid, the transition fUI~C­
tion T maps the current state into itself and an error message is
displayed.

So, a behaviour of the generating system can be modelled by
the following automata:

W = (so,S,R,T,Bt),

where the current state Be is in one-to-one correspondence with the
pair (mc,ae); So,Se,St E S; Bt is the terminal state.

This model for the DECLARE statement is detailed in Fig. 3.
There the transition function is represented by the transition ma­
trix. Spaces in the matrix imply invalid moves. For example, if

392

(m;,ao):So

(ml'a):SI

(m2,~):S2

(m3,a3):S3

(m4,aJS4

(-,as):Ss

Oomputer-aided test program design system

fO fi [2 f3 f4 fs f6 f7

{

SI

S2 S2 S2 S2 S 2

S3 S4

S3

S4

SxR-----

fa

I

Ss
I S5

"-I
Fig. 3. Model of DECLARE statement generation process.

the response re is selected when the system is in the state Be, it is
assumed as an illegal response. The system saves the state Se and
an appropriate message is displayed.

Some notes must be made about responses and operations.
Here is a difference between the response r6 or r7 (see Fig. 2) and
any other response from the li~t (rl, ... ,rs). It lies in the computa­
tional operations which .are caused by these responses. The oper­
ation al, for example, caused by the response rl implies retrieving
and modifying the source and intermediate code files. As for opera­
tions a3 or a4 which are caused by responses r6 or r7, more sophisti­
cated processing is required. This processing being also the integral
part of an incremental translation includes more deep checking of
data which were entered by the user response.

It must be outlined that the last checking can be described by
similar models which are well-known in compiling theory.

So, the syntax error-free statement generation and translation
·processes may be described as a permissible sequence of states with
operations prescribed in advance, when the generation is initiated
in the initial state, then transitions and corresponding operations
are performed while the terminal state is achieved.

V. Stuikys and E. Toldin 393

5. Architecture of CATPDS. The CATPDS architecture
IS shown in Fig. 4. The system consists of the following parts:
database, control module, test program generating subsystem, pin
connection table editor, convertor, emulating and debugging mod­
ule, independent translator, executive code and test instrument
libraries. The main files are also denoted. Among them the inter­
mediate code, test program in the C language representation and
an executable code could be mentioned.

Test program can be designed by the Generation Subsystem
or developed independently.

5'.1. Database. The database is specially developed for that
tool. The essential part of the database is menu tables. The scale
of that part of the database depends on the syntax of the adapted
ATLAS subset. In our case the ATLAS subset is ori~nted to use
in analogue circuits testing, so about forty statements were imple­
mented in database. This status may be easily changed due to
incorporated refining and adding procedures.

Files created by the system may be also assumed as a part of
the database. '.

5.2. Control module. The control module assures the inter­
action between the entire modules of the system. The main control
functions, such as the maintenance of system regimes, database
support, the user interface assurance, etc. are integrated into that
module. More specific control functions are incorporated in sepa­
rate modules.

5.3. Test program generation subsystem. As stated pre­
viously, the main function of that module is to provide facilities for
a test program design in such a manner that the produced program
would be syntax error-free (see Fig. 5). To assure this feature the
generating process is implemented on the base of the model which
was described in Section 4.

The advantage of our system lies not only in the property men­
tioned above but also in an integration of such functions as the in­
teractive generation, incremental translation and edition with on-

Data
base

Menu
tables

TP
Intermeriate

code

Independent
t1iinslator

Test pro{TaITIS

TP
Gen«ation
subsystem

Convertor

TP in C I---+-----i
I~

form

User

CONTROL
MODIl.E

.'

Pin's connectiJn
tabe
edtor

CorNentionai envirom1ent

c
cornpiJer Litter

Pre~ing
swsystem

Fig. 4. Configuration of Test program preparation system.

CATS·
-~'-.. Runring

I subsystem

I
EtmJati~ II
and~

TP
executive

fixary

Test~,
driver's
ilm

I

I
I

Executive
TP

c..>

'" oj>.

~
~
c: -" ';'
Q

it a. ...
" ~
~ a
IQ

a
;3
~

" ..
~.

'" ~
1>
;3

V. Stuikys and E. Toldin 395

© Kaunas University of Technology GENERA TOR VI. 9

00010 BEGIN, PROGRAM (EXAMPLE)$
00015 FOR UUT, X'UOA', MODES (SAMA)$
00020 DECLARE, INTEGER, STORE, 'AA'S
00025 DECLARE, DECIMAL, LIST ...

Enter list name
"- I

EXAMPLE
MAS (1 0)

For "DECLARE" statement the number in parentheses
denotes the maximal number of items of that array

Please enter :

Fig. 5. Interface of test program generation subsystem.

line help facilities into one system. The interactive test program
generating process requires some edition facilities, such as killing
the last produced statement, etc. The editor which is implemented

that system performs also the test program reproducing from its
a.me representation (see Fig. 6) .

..... BEGIN, ATLAS PROGRAM $

..... FOR UUT, x. MODES $

..... DECLARE, INTEGER, STORE $

..... DEFINE, PROCEDURE RESUL T (.)$

..... DECLARE, DECIMAL, STORE $

..... CALCULATE = $

..... END $

..... TERMINATE, ATLAS PROGRAM $

Fig. 6. Test program in frame representation.

396 Computer-aided test program design system

At last, the subsystem makes further test program pro(:essing
via the system more easily and properly. As a result the interme­
diate code file is produced. The possibilities how to achieve these
properties were discussed more briefly in Section 3.

5.4. Convertor. The program which produces the test pro­
gram C language representatio~ form from the intermediate code
we called a convertor. The need of such program arises due to the
requirement to achieve the mobility of test programs via the use of
the conventional C language environment.

5.5. Emulating and debugging facilities. The emulating
facilities provide a capability for executing the test program in an
off-line mode, i.e., without the running subsystem. Some debug­
ging facilities are implemented into Test Program Executive Li­
brary (see Fig. 4) .The others may be incorporated by the user at
the test program development stage by means of the ATLAS subset
and controlled via this module.

6. Test program design by CATPDS. The test program
design process is initiated by opening the source program file and
filing up the pin connection table. The latter indicates on which
pins testing procedures must be performed and measuring results
be received. The pin table filling is initiating only, then on the test
program generation stage it'may be changed or added by the pin's
connection table editor.

In practice, to design a test program the user can choose some
possibilities. The first one is that when a program is created in
statement-by-statement manner. This situation is named as the
statement generation mode. The second possibility is defined as
follows. Initially the ATLAS test program frame is created. Next
the frame is converted into an applicable test prQgram form by
editing means which are incorporated in the TPG subsystem. This
is called a design moc:}eon the frame level.

Finally, the third possibility ils performed by using the ATLAS
test program frame library. The library must be developed by the
user in advance. In the following the items of the library can be read

V. Stuikys and E. Toldin 397

in an appropriate sequence and be connected to form the common
file.

The next action is to reduce the frame to the ~pplicable repre­
sentation. The last possibility is called the test program generation
in the frame library level.

When the source test program is created the next processing
stage must be selected by the user and the control module enables
it to move via the system.

7. Conclusions. The essensial feature of our system is a wide
possibility to generate the source test program written in an AT­
LAS subset. The syntax error-free test program may be created in
an interactive mode by the Generator. The Generator itself ensures
three levels of the test program generation process: the statement,
frame and frame's library. The source program which was prepared
ealier by the use of CATPDS·.with successive modifications made
manually or produced in an independently way also may enter the
system.

To achieve test program mobility and ensure more· efficiency
in test program processing, the multi-level translation scheme is
implemented, i.e. the generation process is combined with the in­
cremental translation at the first stage; at the next the conversion
of an intermediate code which is produced by the Generator to the
C language is made and then the conventional compilation is used.

The tool is built as an integrated system where the advanced
interfaces are used practically at each program processing stage.

REFERENCES

Arthur, J.D. (1987). Toward a Formal SpecificatiimofMenu-Based Systems. The
Journal of Systems and Software, 7, 73-82.

Ginkas, and M.L., V.A.. Stuikys (1983). Automation of 'hybrid circuits testing.
Measuring Engineering, 5, 6-7 (in Russian).

Gross, a.B., and J.S. Gerg (1983)~ AutoIQ.atic ATLAS program generator
(AAGP) for the advanced electronic warfare test set. A UTOTESTCON, 4,
286-291.

IEEE Standard ATLAS Ted Language. (1981). IEEE std. 416.

398 Computer-aided test program design system

Lewis, F., Rozencrants and D. Ste'arns (1979). Compiler's Design Theory. Mir,
Moscow. 653pp. (in Russian).

Medina-Mora, R. (1981). An incremental programming environment. IEEE
Trans. of Software Engineering, SE-7(6), 472-482.

Michael, U. (1979). Computer guided generation of test programs for analogues
products. Automatic Testing'79, Paris. 125-146.

POllomariov, N.N., I.S. Frumkin, I.S. Gusinskij and et al. (1984). The Design
External Tools for Automatic Testing of Radioelectronic Equipments. Radio
and Communication, Moscow. 295pp. (in Russian).

Schwartz, M.D., N.M. Delisle and. V.S. Begwani (1984). Incremental compila.tion
in magpie. SIGPLAN Notices, 19(6), 122-131.

Standard modular AVIONICS repair and test system SMART, (1989). ARJNC
Specification 608-1, September 1. "

Stuikys, V.A., and E.J. Toldin (1988). Interactive generator-tool for test pro­
gram design in high level test language. Digital Methods and Design Tools
and Testing of Electronics Circuits, 4, Tallinn. 157-160.

Teitelbaum, T., and T. Reps (1981). The Cornell program synthesizer: A syn­
tax-directed programming environment. ACM, 24(9), 563-573.

Received April 1993

v. Stuikys rec~ved the M.S. degree in electrical and com­
puter engineering from Kaunas Politechnical Institute in 1963, and
Candidate of Sciences degree from Kaunas Politechnical Institute,
Lithuania, 1970. He is currently the associate professor in the Com­
puter Department at Kaunas University of Technology, Lithuania.
His current research interests include interactive program gener­
ation for problem-oriented sy5t~ms, expert systems, Computer­
Aided Design and manufacturing.

E. Toldin received M.S. degree in Computer engineering f;om
Kaunas Polite~hnical In~.titute in 1980, and Candidate of Sci~nce
from Kaunas Politechni~ Institute, Lithuania, in 1987. He is cur­
rently the associate prDfessor in the Computer Department ~t Kau­
nas University of Technology, Lithua.nia. His current research in­
terests include analogue cir.cuit testing, test program genera.tion,
data base and programming.

