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Abstract. In this paper, we present an effective algorithm for solving the Poisson–Gaussian total
variation model. The existence and uniqueness of solution for the mixed Poisson–Gaussian model
are proved. Due to the strict convexity of the model, the split-Bregman method is employed to solve
the minimization problem. Experimental results show the effectiveness of the proposed method for
mixed Poisson–Gaussion noise removal. Comparison with other existing and well-known methods
is provided as well.
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1. Introduction

Image acquisition is an ubiquitous technology, found for example in photography, med-
ical imagery, astronomy, etc. Nevertheless, in almost all situations, the image-capturing
devices are imperfect: some unwanted noise is added to the signal. Therefore, the obtained
images are post-processed by numerical algorithms before being delivered to the users;
those algorithms have to solve the image restoration problem.

In the image restoration problem, an original image u is corrupted by some random
noise η, resulting in a noisy image f . Our task is to reconstruct u, knowing both f and the
distribution of η. Of course, there is in general no way to find the exact image u; image
restoration algorithms rather yield a good approximation of u, usually noted u∗. To do so,
they exploit a priori knowledge on the image u.

Various distributions have been considered for the noise, e.g. Gaussian (Rudin et al.,
1992; Pham and Kopylov, 2015), Poisson (Chan and Shen, 2005; Le et al., 2007), Cauchy
(Sciacchitano et al., 2015), as well as some mixed noise models, e.g. mixed Gaussian-
Impulse noise (Yan, 2013), mixed Gaussian–Salt and Pepper noise (Liu et al., 2017),
mixed Poisson–Gaussian (Calatroni et al., 2017; Pham et al., 2018; Tran et al., 2019).
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A growing interest in Poisson–Gaussian probabilistic models has recently arisen
(Chouzenoux et al., 2015). The mixture of Poisson and Gaussian noise occurs in sev-
eral practical setups (e.g. microscopy, astronomy), where the sensors used to capture im-
ages have two sources of noise: a signal-dependent source which comes from the way
light intensity is measured; and a signal-independent source which is simply thermal and
electronic noise. Gaussian noise is just additive, so it cannot properly approximate the
Poisson–Gaussian distributions observed in practice, which are strongly signal-dependent.

In general, the mixed Poisson–Gaussian noise model can be expressed as follows:

f = P(u) + W, (1)

where f is observed image, u is the unknown image, P(u) means that the image u is
corrupted by Poisson noise, and W ∼ N (0, σ 2) is a Gaussian noise with zero mean and
variance σ .

Recently, several approaches have been devoted to the mixed Poisson–Gaussian noise
model (Foi et al., 2008; Jezierska et al., 2011; Lanza et al., 2014; Le Montagner et al.,
2014). Many algorithms for denoising images corrupted by mixed Poisson–Gaussian noise
have been investigated using approximations based on variance stabilization transforms
(Zhang et al., 2007; Makitalo and Foi, 2013) or PURE-LET based approaches (Luisier et
al., 2011; Li et al., 2018). Variational models based on the Bayesian framework have been
also proposed for removing and denoising and deconvolution of mixed Poisson–Gaussian
noise (Calatroni et al., 2017). This framework is perhaps a popular approach to mixed
Poisson–Gaussian noise model. Authors in De Los Reyes and Schönlieb (2013) proposed
a nonsmooth PDE-constrained optimization approach for the determination of the correct
noise model in total variation image denoising. Authors in Lanza et al. (2014) focused on
the maximum a posteriori approach to derive a variational formulation composed of the
total variation (TV) regularization term and two fidelities. A weighted squared L2 norm
noise approximation was proposed for mixed Poisson–Gaussian noise in Li et al. (2015), or
an efficient primal-dual algorithm was also proposed in Chouzenoux et al. (2015) by inves-
tigating the properties of the Poisson–Gaussian negative log-likelihood as a convex Lips-
chitz differentiable function. Recently, authors in Marnissi et al. (2016) proposed a vari-
ational Bayesian method for Poisson–Gaussian noise, using an exact Poisson–Gaussian
likelihood. Similarily, authors in Calatroni et al. (2017) proposed a variational approach
which includes an infimal convolution combination of standard data delities classically as-
sociated to one single-noise distribution, and a TV regularization as regularizing energy.
Generally, image restoration by variational models based on TV can be a good solution to
the mixed Poisson–Gaussian noise removal with the following formula (Calatroni et al.,
2017; Pham et al., 2019):

u∗ = arg min
u∈S(�)

∫
�

|∇u| + λ1

2

∫
�

(u − f )2 + λ2

∫
�

(u − f logu), (2)

where f is the observed image, � ⊂ R
2 is a bounded domain, and S(�) is the set of

positive functions from � to R; finally, λ1, λ2 are positive regularization parameters (see
Chan and Shen, 2005, for details on this method).
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However, in some cases, intermediate solutions of (2) obtained during the execution
of algorithms may contain pixels with negative values. To avoid this problem, authors
in Pham et al. (2018) proposed a modified scheme of gradient descent (MSGD) that guar-
antee positive values for each pixel in the image domain.

In this work, we focus on the model (2) and consider the following model:

u∗ = arg min
u∈S(�)

E(u), (3)

E(u) =
∫

�

α(x)
∣∣∇u(x)

∣∣dx + λ1

2

∫
�

(
u(x) − f (x)

)2
dx

+ λ2

∫
�

(
u(x) − f (x) logu(x)

)
dx,

where f is the observed image, λ1 and λ2 are positive regularization parameters, S(�) =
{u ∈ BV(�) : u > 0} is closed and convex, with BV(�) being the space of functions
� → R with bounded variation; and finally α(x) is a continuous function in S(�).

The function α(x) is used to control the intensity of the diffusion, which is an edge
indicator for spatially adaptive image restoration (Barcelos and Chen, 2000). Typically,
the function α(x) is chosen as follows:

α(x) = 1

1 + l · |v(x)|2 ,

where l is a threshold value and v(x) = |∇Gσ (x)∗f |, in which ∗ denotes the convolution
with Gσ (x) = 1

2πσ 2 exp
(− x2

2σ 2

)
, i.e. the Gaussian filter with standard deviation σ .

The main contributions of this paper are the following. We give an elementary proof of
the existence and uniqueness of model (3). Moreover, we check that the functional E(·) is
convex, which enables us to use larger time-step parameters during gradient descent when
solving (3). We introduce the influence function α(x), which acts as an edge-detection
function, to get the model (3) in order to improve the ability of edge preservation and
to control the speed of smoothing. In addition, we propose a new method to solve (3)
that perceptibly improves the quality of the denoised images. By changing the time-step
parameter, users can either get faster denoising with comparable results to previous meth-
ods, or better quality denoising with comparable running times. Our method is a technical
improvement over the split-Bregman algorithm. We report experimental results for the
aforementioned method, for various parameters in the noise distribution. The quality of
denoising is measured with the SSIM and PSNR metrics. If we tune the time-step parame-
ter to get similar quality result as the original split-Bregman method, we get faster running
times.

The rest of the paper is organized as follows. In Section 2, we describe the Poisson–
Gaussian model and introduce the notation used in this work. In Section 3, we prove the
existence and uniqueness of the solution. In Section 4, using the split-Bregman algorithm,
we present the proposed optimization framework. Next, in Section 5, we show some nu-
merical results of our proposed method and we compare them with the results obtained
with other existing methods. Finally, some conclusions are drawn in Section 6.
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2. Preliminaries

We recall the principle behind equation (2). Note that the contents of this section are
not a rigorous proof; we simply provide a bit of context around the equation, why it was
considered in the first place, and one possible reason for its practical efficiency. We also
state our assumptions on both the initial image and the noise along the way.

Our goal is to recover the original image u, knowing the noisy image f . Our strategy
is to find the image u which maximizes the conditional probability P(u|f ). Bayes’s rule
gives:

P(u|f ) = P(f |u)P (u)

P (f )
. (4)

The probability density function of the observed image f corrupted by Gaussian noise
PN (respectively, by Poisson noise PP ) is:

PN (f |u) = 1

σ
√

2π
exp

(
− (u − f )2

2σ 2

)
, PP (f |u) = uf exp (−u)

f ! ,

where σ is the variance of the Gaussian noise. As we explained in the introduction, the
two sources of noise are independent of each other, so the distribution of the mixed noise
may be expressed as:

Pmixed(f |u) = uf exp(−u)

f !
1√

2πσ
exp

(
− (u − f )2

2σ 2

)
.

We assume that the values of the pixels in the original image are independent, and that the
noise is also independent on each pixel. (However, we do not assume that the noise and
the original image are independent of each other.) Suppose that f has size M × N , and
let I = {1, . . . ,M} × {1, . . . ,N} denote the domain of f . For i in I , we write fi the pixel
of f at position i (and similarly ui the pixel of u at position i). Then,

Pmixed(f |u) =
∏
i∈I

(ui)
fi e(−ui)

fi ! s exp

(
− (ui − fi)

2

2σ 2

)

with s = (
√

2πσ)−1. Maximizing Pmixed is equivalent to minimizing − logPmixed, so let
us compute the quantity − log(Pmixed(f |u)):∑

i∈I

ui − fi log(ui) + log(fi !) + y(ui − fi)
2, (5)

for some constant y > 0. In the above equation, u varies but f is constant. Since our goal
is to minimize the whole expression, we can ignore the term log(fi !) altogether.

Now we assume that P(u) follows a Gibbs prior (Le et al., 2007):

P(u) = 1

z
exp

(
−

∫
|∇u|

)
, (6)
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where z is a normalization factor. We need to make a couple of comments here. First,
u is not a function R

2 → R, but rather a discrete array of pixels; thus the integral in that
expression is going to be translated to a sum, while ∇u will be translated as a linear approx-
imation. Second, this assumption appears to contradict the previous one, that the pixels
of the original image are independent of one another. However, the assumption on P(u)

is local: each pixel depends (weakly) on the neighbouring pixels only, so we do not lose
much by assuming independence. This turns out to yield good results in practice (Chan
and Shen, 2005).

We now have all the ingredients to maximize P(u|f ). By equation (4), this amounts
to minimize the expression − log(P (f |u)) − log(P (u)), so we can plug in equations (5)
and (6) to get:

u∗ = arg min
u

∑
i∈I

1

z
|∇ui | + y(ui − fi)

2 + (
ui − fi log(ui)

)
, (7)

and we can view this expression as a discrete approximation of the functional E(·) defined
as:

E(u) =
∫

�

|∇u|dx + λ1

2

∫
�

(u − f )2dx + λ2

∫
�

(u − f logu)dx, (8)

with λ1 = 2yz and λ2 = z. (We multiplied by z, which is positive and constant, so the
minimum is the same.) Intuitively, the last two terms are data fidelity terms, which ensure
that the restored image u is not “too far” from the original image u (taking the distribution
of the noise into account). By contrast, |∇u| is a smoothness term, which guarantees that
the reconstructed image is not too irregular (this is where our a priori knowledge on the
original picture lies). The parameters λ1 and λ2 will have to be determined experimentally
later on.

In the following sections, we introduce some theoretical results about the existence
and uniqueness result for solution of (3).

3. Existence and Unicity of the Solution

Motivated by Aubert and Aujol (2008), Dong and Zeng (2013), we have the following
existence and uniqueness results for the optimization problem (3). We prove that (3) has
an unique solution in two steps: first, we show that E(·) is a convex functional; then,
we show that E(·) has a lower bound. These two facts together imply the existence and
uniqueness of the minimizer of E(·).

Theorem 1. The functional u 	→ E(u), where E is defined in (3), is strictly convex.

Proof. Let us set: h(u) = λ1
2 (u − f )2 + λ2(u − f logu). The first and the second order

derivative of h are:

h′(u) = λ1u
2 − u(λ1f − λ2) − λ2f

u
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and

h′′(u) = λ1u
2 + λ2f

u2 .

Since f is a positive, and u ∈ S(�), we have: h′′(u) > 0, i.e. h(u) is strictly convex.
Moreover, the TV regularization is convex, thence E(u) is also strictly convex. �

Theorem 2. Let f ∈ S(�) ∩ L∞(�), then the problem (3) has an exactly one solution
u ∈ BV (�) and satisfying:

inf
�

f � u� sup
�

f.

Proof. Let us denote that a = inf(f ), b = sup(f ), and

Edata(u) = λ1

2

∫
�

(u − f )2dx + λ2

∫
�

(u − f logu)dx.

Fixing x ∈ � and denoting the data fidelity term with h on R
+, where

g(t) = λ1

2

(
t − f (x)

)2 + λ2
(
t − f (x) log t

)
.

Easily, we have that the first order derivative of g satisfies:

g′(t) = (
t − f (x)

)(
λ1 + λ2

t

)
.

The function g decreases if t ∈ (0, f (x)) and increases if t ∈ (f (x),+∞). Therefore,
for every V � f (x), we have

g
(
inf(t,V )

)
� g(t).

Hence, if V = b, we have

Edata
(
inf(u,V )

)
� Edata(u).

Furthermore, from Kornprobst et al. (1999), we have:
∫
�

|∇ inf(u, b)| � ∫
�

|∇u|.
Hence, E(inf(u, b)) � E(u). In the same way, we have: E(sup(u, a)) � E(u), where
a = inf(f ). Thence, we can assume a � un � b, the sequence {un} is bounded in L1(�).

Since {un} is a minimizing sequence, we know that E(un) is bounded. Hence, also the
regularization term

∫
�

|∇u| is bounded and {un} is bounded in BV (�).
There exists u∗ ∈ BV (�) such that up to a subsequence, we have that un converges

weakly to u∗ ∈ BV (�) and un converges strongly to u∗ ∈ L1(�). We have S(�) is closed
and convex. Using 0 < a � u∗ � b, the lower semicontinuity of the total variation and
Fatou’s lemma, we get that u∗ is a minimizer of the problem (3). �
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4. Numerical Method

4.1. Discretization Scheme

Our scheme allows to perform both deblurring and denoising simultaneously. To do so,
we need to compute:

u∗ = arg min
u∈S(�)

E(u), (9)

E(u) =
∫

�

α(x)|∇u|dx + λ1

2

∫
�

(Ku − f )2dx + λ2

∫
�

(Ku − f logKu)dx,

where K is a blurring operator (convex), f is the observed image, S(�) is the set of
positive functions defined over � with bounded total variation, and λ1, λ2 are positive
regularization parameters. This functional u 	→ E(u) is still strictly convex, because K is
assumed to be convex.

The images we are handling are discrete, i.e. matrices of pixel values rather than func-
tions from R

2 → R. Therefore we have to choose a discretization scheme for numerical
computations. If u is a image, we write uj,k for the pixel at coordinates (j, k) in u. We
define the following quantities:

∇1uj,k = uj+1,k − uj−1,k, ∇2uj,k = uj,k+1 − uj,k−1,

∇uj,k = (∇1uj,k,∇2uj,k), |∇uj,k| =
√

(∇1uj,k)2 + (∇2uj,k)2 + ε2,

where ε is a small positive number, added to avoid divisions by 0 in the implementation
of the algorithms. Finding a minimum for the problem (2) can be achieved via the steepest
gradient descent method

δE(u)

δuj,k

= div
( ∇uj,k

|∇uj,k|
)

− λ1K
T (Kuj,k − fj,k) − λ2

(
K − fj,k

uj,k

)
.

The operator divergence div
( ∇u

|∇u|
)

is defined by

(∇11u)(∇2u)2 − 2(∇1u)(∇2u)(∇12u) + (∇22u)(∇1u)2

((∇1u)2 + (∇1u)2 + ε2)3/2
,

where

∇11uj,k = ∇1(∇1uj,k) = uj+1,k − 2uj,k + uj−1,k,

∇22uj,k = ∇2(∇2uj,k) = uj,k+1 − 2uj,k + uj,k−1,

∇12uj,k = ∇1(∇2uj,k) = uj+1,k+1 + uj−1,k−1 − uj+1,k−1 − uj−1,k+1.
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Thus, for a small parameter δt > 0, a solution of the minimization problem (2) may be
computed by

u(t+1) − u(t)

δt
= div

(
α(x)

( ∇u(t)

|∇u(t)|
))

− λ1K
T (Ku − f ) − λ2

(
K − f

u

)
.

When the time-step parameter δt becomes small, the convergence speed becomes so slow
that larger images are proceeded with poor efficiency. There are many methods (Cham-
bolle, 2004; Micchelli et al., 2011; Boyd et al., 2010) which can be used for the minimiza-
tion problem in (2). In this paper, we extend the split-Bregman algorithm (Goldstein and
Osher, 2009) to solve the minimization problem.

4.2. Proposed Algorithm

First, let us first review the split-Bregman algorithm (Goldstein and Osher, 2009). Suppose
that we have a scalar γ and two convex functionals �(·) and G(·); and that we need to
solve the following constrained optimization problem:

find arg min
u,d

‖d‖1 + γ

2
G(u), (10)

s.t. d = �(u).

We convert (10) into an unconstrained problem:

find arg min
u,d

‖d‖1 + γ

2
G(u) + ρ

2
‖d − �(u) − b‖2

2, (11)

where ρ is a penalty parameter (a positive constant) and b is a variable related to the split-
Bregman iteration algorithm (to be explicited later). The solution to problem (11) can be
approximated by the split-Bregman Algorithm (Goldstein and Osher, 2009):

u(k+1) = arg min
u

γ

2
G(u) + ρ

2

∥∥d(k) − �(u) − b(k)
∥∥2

2,

d(k+1) = arg min
d

‖d‖1 + ρ

2

∥∥d − �
(
u(k+1)

) − b(k)
∥∥2

2,

b(k+1) = b(k) + �
(
u(k+1)

) − d(k+1).

Now we return to the problem (9). We define

G(u) = λ1

2
(Ku − f )2 + λ2(Ku − f logKu) and �(u) = α∇u.

We set ν = Ku; then, based on equation (11), the split-Bregman problem for (9) is defined
as:

arg min
u,d

(
‖d‖1 + γ

2
G(ν) + ρ1

2
‖ν − Ku − c‖2

2 + ρ2

2

∑
i=1,2

‖di − α∇iu − bi‖2
2

)
, (12)
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where the parameters ρ1, ρ2 and γ are positive, d = (d1, d2), b = (b1, b2) and ∇u =
(∇1u,∇2u).

The split-Bregman method for solving (12) is described as follows:

u(k+1) = arg min
u

ρ1

2

∥∥ν(k) − Ku − c(k)
∥∥2

2 + ρ2

2

∑
i=1,2

∥∥d
(k)
i − α∇iu − b

(k)
i

∥∥2
2,

ν(k+1) = arg min
ν

γ

2
G(ν) + ρ1

2

∥∥ν − Ku(k+1) − c(k)
∥∥2

2,

d
(k+1)
i = arg min

d

‖di‖1 + ρ2

2

∥∥di − α∇iu
(k+1) − b

(k)
i

∥∥2
2,

c(k+1) = c(k) + Ku(k+1) − ν(k+1),

b
(k+1)
i = b

(k)
i + α∇iu

(k+1) − d
(k+1)
i .

There are three subproblems to solve: u, ν and d .

Subproblem 1. The u subproblem is a quadratic optimization problem, whose optimality
condition reads:(

ρ1K
T · K + ρ2α

∑
i=1,2

∇T
i ∇i

)
u(k+1)

= ρ1K
T
(
ν(k) − c(k)

) + ρ2

∑
i=1,2

∇T
i

(
d

(k)
i − b

(k)
i

)
, (13)

under considering periodic boundary conditions. Note that left-hand-side matrix in (13)
includes a Laplacian matrix (∇T

1 ∇1 + ∇T
2 ∇2 = −�) and is strictly diagonally dominant.

Following Wang et al. (2008), equation (13) can be solved efficiently with one fast Fourier
transform (FFT) operation and one inverse FFT operation as:

u = F−1
( F(r)

ρ1F(KT ) ·F(K) − ρ2F(α) ·F(�)

)
, (14)

where

r = ρ1K
T
(
ν(k) − b

(k)
1

) + ρ2

∑
i=1,2

∇T
i

(
d

(k)
i − b

(k)
i

)
,

F and F−1 are the forward and inverse Fourier transform operators.

Subproblem 2. The optimality condition for the ν subproblem is given by

γ

2

(
λ1(ν − f ) + λ2

(
1 − f

ν

))
+ ρ1

(
ν − Ku(k+1) − c(k)

) = 0.
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This equation can be rewritten as:(
γ

2
λ1 + ρ1

)(
ν(k+1)

)2 −
(

γ

2
λ1f − λ2

γ

2
+ ρ1

(
Ku(k+1) + c(k)

))
ν(k+1) − γ

2
λ2f

= 0.

The positive solution is given by

ν(k+1) = S(k) +
√(

S(k)
)2 + γ λ2f

γ λ1 + 2ρ1
, (15)

where

Sk = λ1γf − λ2γ + 2ρ1(Ku(k+1) + b
(k)
ν )

2(γ λ1 + 2ρ1)
.

Subproblem 3. The solution of the d subproblem can readily be obtained by applying the
soft thresholding operator (see Micchelli et al., 2011). We can use shrinkage operators to
compute the optimal values of d1 and d2 separately:

d
(k+1)
i = shrink

(
α∇iu

(k+1) + b
(k)
i ,

1

ρ2

)
. (16)

The problem (16) is solved as:

d
(k+1)
i = α∇iu

(k+1) + b
(k)
i

|α∇iu(k+1) + b
(k)
i |

· max

(∣∣α∇iu
(k+1) + b

(k)
i

∣∣ − 1

ρ2
,0

)
. (17)

The algorithm. The complete method is summarized in Algorithm 1. We need a stopping
criterion for the iteration; we end the loop if the maximum number of allowed outer it-
erations N has been carried out (to guarantee an upper bound on running time) or the
following condition is satisfied for some prescribed tolerance ς :

‖u(k) − u(k−1)‖2

‖u(k)‖2
< ς,

where ς is a small positive parameter. For our experiments, we set tolerance ς = 0.0005
and N = 500.

5. Numerical Simulations

5.1. Implementation Issues

In this section, we show some numerical reconstructions obtained applying our proposed
method for mixed Poisson–Gaussian noise. We compare our reconstructions with other
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Algorithm 1 Adaptive split-Bregman algorithm for solving the model (9).

Initialize: u(0) = ν(0) = f ; b
(0)
i = c(0) = d(0) = 0; k = 1

while Stopping condition is not satisfied do
Compute u(k) using (14)
Compute ν(k) using (15)
Compute d

(k)
i for i = 1,2 using (17)

Update b
(k+1)
i = b

(k)
i + α∇iu

(k+1) − d
(k+1)
i

Update c(k+1) = c(k) + Ku(k+1) − ν(k+1)

k = k + 1
end while
return u

Fig. 1. Original images.

images obtained other well known methods, such as TV-L1 (Chambolle et al., 2010), the
Modified scheme for Mixed Poisson–Gaussian model (MS-MPG) (Pham et al., 2018) and
the Bregman method (Goldstein and Osher, 2009). All of the compared methods perform
image denoising with their optimal parameters. For a fair comparison, the regularization
parameters of both MS-MPG and our proposed are the same: λ1 = 0.4, λ2 = 0.6. We set
ρ1 = 1, ρ2 = 1. The parameter σ in α(x) is set to 1. The threshold value l in the function
α(x) and the parameters γ are chosen to keep the poise between noise removal and detail
preservation capabilities.

The test images1 are 8-bit gray scale standard images of size 256×256 shown in Fig. 1.
All the experiments were run on a machine with Core i7-CPU 2 GHz, SDRAM 4 GB-

DDR III 2 Ghz, Windows 10 (64 bit), and implemented in MATLAB. To compare the
efficiency of algorithms, we use the Peak Signal-to-Noise Ratio (PSNR) and the Structure
Similarity Index (SSIM) (Wang and Bovik, 2006).

1Coming from http://www.imageprocessingplace.com and https://www.siemens-healthineers.com/en-uk/
magnetic-resonance-imaging/magnetom-world/toolkit/clinical-images, accessed 25/03/2019.

http://www.imageprocessingplace.com
https://www.siemens-healthineers.com/en-uk/magnetic-resonance-imaging/magnetom-world/toolkit/clinical-images
https://www.siemens-healthineers.com/en-uk/magnetic-resonance-imaging/magnetom-world/toolkit/clinical-images
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The first metric, PSNR (db), is defined by

PSNR = 10 log10

(
MNI 2

max

‖u∗ − u‖2
2

)
,

where u,u∗ are, respectively, the original image and the reconstructed (or noisy) image,
Imax is the maximum intensity of the original image, M and N are the number of image
pixels in rows and columns.

The second metric, SSIM, is defined by

SSIM
(
u,u∗) = (2μuμu∗ + c1)(2σu,u∗ + c2)

(μ2
u + μ2

u∗ + c1)(σ 2
u + σ 2

u∗ + c2)
,

where μu, μu∗ are the means of u, u∗, respectively; σu,σu∗ , their standard deviations;
σu,u∗ , the covariance of two images u and u∗; c1 = (K1L)2; c2 = (K2L)2; L is the dy-
namic range of the pixel values (255 for 8-bit grayscale images); and finally K1 � 1,
K2 � 1 are small constants.

5.2. Numerical Results and Discussion

5.2.1. Image Denoising
Our method can perform image deblurring and denoising simultaneously. In this section,
we perform only image denoising. Noisy observations are generated by Poisson noise
with some peak Imax and by Gaussian noise with standard deviation σG to the test images.
In Figs. 2, 4 and 5, we give the results for denoising the corrupted images for different
noise levels Imax and σG = 10.

For a better visual comparison, we have enlarged some details of the restored images
in Figs. 3, 6 and 7 (we include the original images in the first column). It can be seen
that our method gives even better visual quality than other methods. Table 1 shows the
computation time in second(s) of the compared methods for Fig. 2. We see from Table 1
that the computation time of the restored images by the proposed method and the Bregman
method is about the same. However, the computational time required by the proposed
method is less than that required by the MS-MPG and TV L1. The comparison metrics
PSNR, SSIM are also computed using various noise levels and shown in Table 2 and
Table 3. The best values among all the methods are shown in bold. We give the values of
the PSNR and SSIM for the noisy and recovered images. The results shown in Tables 1,
2 and 3 prove that the proposed method is convergent and gets higher PSNR and SSIM
values than others.

5.2.2. Image Deblurring and Denoising
In this section, we perform image denoising and delurring simultaneously. In our simula-
tion, we use the Gaussian blur with a window size 9×9, and standard deviation of 1. After
the blurring operation, we corrupt the images by Possion noise Imax = 120 and σG = 15.
As in the previous experiment, we compare our results with those obtained by employing
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Fig. 2. Recovered results for the test images. (a) Noisy image with Imax = 120, σG = 10, (b) TV L1, (c) Breg-
man, (d) MS-MPG, (e) Our proposed.

Fig. 3. The zoomed-in part of the recovered images in Fig. 2. (a) First column: details of original images;
(b) Second column: details of observed images; (c) Third column: details of restored images by TV-L1 method;
(d) Fourth column: details of restored images by Bregman method; (e) Fifth column: details of restored images
by MS-MPG method; (f) Sixth column: details of restored images by our proposed method.
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Fig. 4. Recovered results for the test images. (a) Noisy image with Imax = 60, σG = 10, (b) TV L1, (c) Bregman,
(d) MS-MPG, (e) Ours.

Fig. 5. Recovered results for the test images. (a) Noisy image with Imax = 60, σG = 10, (b) TV-L1, (c) Bregman,
(d) MS-MPG, (e) Ours.
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Fig. 6. The zoomed-in part of the recovered images in Fig. 4. (a) Details of original images; (b) details of
observed images; (c) details of restored images by TV L1 method; (d) details of restored images by Bregman
method; (e) details of restored images by MS-MPG method; (f) details of restored images by our proposed
method.

Fig. 7. The zoomed-in part of the recovered images in Fig. 5. (a) Details of original images; (b) details of
observed images; (c) details of restored images by TV L1 method; (d) details of restored images by Bregman
method; (e) details of restored images by MS-MPG method; (f) details of restored images by our proposed
method.
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Table 1
Execution time for different denoising methods (in seconds)

with noise level Imax and σG = 10.

Image Method CPU time (s)
Imax = 120 Imax = 60

TV L1 4.3449 5.6730
Clock Bregman 0.9460 0.8212

MS-MPG 4.1465 4.8734
Ours 1.0945 1.1081
TV L1 5.6229 7.4171

Coco Bregman 1.0265 0.8414
MS-MPG 4.0844 5.0879
Ours 1.1239 1.2251
TV L1 4.3096 6.4129

Lamp Bregman 0.9225 0.9473
MS-MPG 4.1810 4.8758
Ours 0.9431 1.1266

Table 2
PSNR values and SSIM measures for noisy images and recovered images with Imax = 120.

Image PSNR MSSIM
Noisy TV L1 Bregman MS-MPG Ours Noisy TV L1 Bregman MS-MPG Ours

Imax = 120, σ = 10
Jetplane 18.9416 22.7203 24.1190 24.7848 25.3251 0.4045 0.7061 0.7514 0.7511 0.7748
Lake 19.6413 21.3675 22.5906 22.9972 24.4798 0.5235 0.6360 0.6812 0.7069 0.7603
Aerial 17.4471 18.9550 19.5840 19.3051 19.8806 0.5582 0.5083 0.5808 0.5711 0.7130
Clock 18.3852 24.6040 25.7945 24.8844 26.1201 0.2997 0.8339 0.8822 0.7796 0.8970
Car 19.1385 21.4694 22.1559 22.8793 24.0620 0.4848 0.6106 0.6542 0.6804 0.7256
Coco 16.9119 20.4242 20.4215 20.3426 20.6539 0.2755 0.8551 0.8798 0.8296 0.8950
Lamp 17.8770 24.2808 24.3594 24.1062 24.6339 0.2446 0.8522 0.8891 0.7889 0.8985
Poulina 18.8381 25.2567 25.7203 25.9781 26.0653 0.3250 0.7648 0.7934 0.7982 0.8074
Spine 21.0004 25.2561 24.6855 25.5349 26.1010 0.6180 0.7925 0.7763 0.7967 0.8206
Head 21.7787 24.3567 26.2348 26.9061 27.0979 0.6324 0.8033 0.8043 0.8273 0.8400
Average 18.9960 22.8691 23.5666 23.7719 24.4420 0.4366 0.7363 0.7693 0.7530 0.8132

Imax = 120, σ = 15
Jetplane 16.7150 22.2033 23.4915 23.6918 24.1415 0.3320 0.6761 0.7248 0.6959 0.7320
Lake 17.2574 20.8215 22.0827 22.2260 23.0442 0.4384 0.6021 0.6732 0.6709 0.7040
Aerial 15.8006 18.7671 19.2795 19.1060 19.4706 0.4622 0.4594 0.5740 0.5139 0.6472
Clock 16.4619 24.2165 25.3645 24.2371 25.7740 0.2440 0.8105 0.8601 0.8186 0.8805
Car 16.8589 20.9512 21.7735 22.1269 22.7608 0.4015 0.5809 0.6402 0.6338 0.6727
Coco 15.4193 20.3398 20.4109 20.1332 20.5488 0.2181 0.8265 0.8599 0.7741 0.8789
Lamp 16.0461 23.8972 23.9090 23.5169 24.3063 0.1964 0.8225 0.8695 0.7210 0.8799
Poulina 16.6627 24.9195 25.2709 25.2753 25.4142 0.2452 0.7346 0.7659 0.7491 0.7739
Spine 18.5582 23.7301 24.4015 24.3122 24.9272 0.5378 0.7418 0.7689 0.7521 0.7794
Head 19.3512 24.549 25.4199 25.8356 25.9893 0.5588 0.7567 0.7836 0.7854 0.7991
Average 16.9131 22.4395 23.1404 23.0461 23.6377 0.3634 0.7011 0.7520 0.7115 0.7748

the Bregman method, the MS-MPG and the TV L1 (see recovered results in Figs. 8, 10,
and their zoom-in part in Figs. 9, 11).
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Table 3
PSNR values and SSIM measures for noisy images and recovered images with with Imax = 60.

Image PSNR MSSIM
Noisy TV L1 Bregman MS-MPG Ours Noisy TV L1 Bregman MS-MPG Ours

Imax = 60, σ = 10
Jetplane 14.0929 21.4515 22.5116 22.3705 22.8057 0.2570 0.6396 0.6482 0.6730 0.6854
Lake 14.7190 20.1480 20.9885 20.7335 21.5586 0.3488 0.5567 0.5987 0.5945 0.6325
Aerial 13.9091 18.7122 18.9386 18.6929 19.2898 0.3465 0.4036 0.5296 0.3801 0.5635
Clock 13.9941 23.7554 24.7607 24.3166 25.0682 0.1866 0.7759 0.7865 0.7931 0.8439
Car 14.2393 20.3390 20.8993 20.8988 21.4920 0.3124 0.5417 0.5723 0.5709 0.5864
Coco 13.4373 19.9609 19.9082 20.0459 20.2665 0.1573 0.7969 0.7815 0.8218 0.8535
Lamp 13.6235 23.3118 23.2870 23.4892 23.6101 0.1466 0.7898 0.7823 0.8067 0.8568
Poulina 14.1692 24.2429 24.8768 24.8704 24.9272 0.1804 0.6901 0.7169 0.7252 0.7316
Spine 16.0910 22.749 23.3981 23.3266 23.5011 0.4597 0.6821 0.7286 0.7153 0.7308
Head 16.9718 23.667 24.2991 24.2780 24.4763 0.4970 0.7059 0.7494 0.7284 0.7550
Average 14.5247 21.8338 22.3868 22.3022 22.6996 0.2892 0.6582 0.6894 0.6809 0.7240

Imax = 60, σ = 15
Image Noisy TV L1 Bregman MS-MPG Ours Noisy TV L1 Bregman MS-MPG Ours
Jetplane 11.4314 20.5604 21.0317 21.2727 21.3729 0.1911 0.5883 0.5208 0.6247 0.6319
Lake 12.0450 19.3676 19.7789 19.9102 20.0911 0.2441 0.5053 0.5209 0.5526 0.5545
Aerial 11.6216 18.4021 18.9001 18.5632 19.1482 0.2425 0.3435 0.4216 0.3518 0.4362
Clock 11.4506 22.9914 23.6737 23.4250 24.3187 0.1365 0.7297 0.6387 0.7298 0.8123
Car 11.5354 19.6031 19.8705 20.1081 20.2498 0.2163 0.4898 0.4776 0.5254 0.5311
Coco 11.1477 19.6694 19.1809 19.7580 19.8315 0.1149 0.7432 0.6010 0.7628 0.8227
Lamp 11.1182 22.6734 22.1005 22.8145 22.9551 0.1014 0.7341 0.6151 0.7430 0.8263
Poulina 11.5927 23.4904 23.8398 23.8808 24.0040 0.1257 0.6353 0.6106 0.6818 0.6960
Spine 13.4551 20.8085 21.9682 22.0129 22.1122 0.3844 0.6115 0.6493 0.6548 0.6658
Head 14.3442 22.4799 22.4954 22.5105 22.9698 0.4370 0.6445 0.6890 0.6853 0.6991
Average 11.9742 21.0046 21.2840 21.4256 21.7053 0.2194 0.6025 0.5745 0.6312 0.6676

Table 4
PSNR values and SSIM measures for noisy and blurring images and recovered images with with Imax = 120,

σ = 15.

Image PSNR MSSIM
Noisy TV L1 Bregman MS-MPG Ours Noisy TV L1 Bregman MS-MPG Ours

Imax = 120, σ = 15
Jetplane 14.9522 18.7079 18.72012 18.0420 19.0029 0.2282 0.6384 0.6600 0.5883 0.6860
Lake 16.0535 19.6419 19.6100 19.6472 20.2675 0.2876 0.5506 0.5449 0.5654 0.6090
Aerial 15.3701 18.3325 18.8549 18.7495 18.9921 0.3107 0.4647 0.4902 0.4960 0.5030
Clock 16.1891 23.2348 23.5898 22.5893 23.7133 0.1761 0.7758 0.8196 0.6575 0.8313
Car 15.5905 19.6202 19.6600 19.3774 20.1486 0.2408 0.5375 0.5486 0.5286 0.5863
Coco 15.3829 20.1479 20.1762 19.0025 20.3572 0.1410 0.8082 0.8468 0.7524 0.8608
Lamp 15.9477 23.4005 23.6315 21.6657 23.7635 0.1296 0.8001 0.8597 0.6919 0.8679
Poulina 15.3475 19.5518 19.6801 20.2705 20.4392 0.1710 0.6871 0.7099 0.6923 0.7205
Spine 16.0476 19.1907 18.6797 18.8847 19.3544 0.3865 0.5694 0.5832 0.6051 0.6286
Head 14.9812 16.7888 16.6991 16.6044 18.3481 0.4590 0.6352 0.6562 0.6711 0.7061
Average 15.5862 19.8617 19.9301 19.4833 20.4387 0.2531 0.6467 0.6719 0.6249 0.6999
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Fig. 8. Recovered results for the test images. (a) Blurring and Noisy image, (b) TV L1, (c) Bregman,
(d) MS-MPG, (e) Our proposed.

Fig. 9. The zoomed-in part of the recovered images in Fig. 8. (a) Details of original images; (b) details of
observed images; (c) details of restored images by TV L1 method; (d) details of restored images by Bregman
method; (e) details of restored images by MS-MPG method; (f) details of restored images by our proposed
method.
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Fig. 10. Recovered results for the test images. (a) Blurring and Noisy image, (b) TV L1, (c) Bregman,
(d) MS-MPG, (e) Our proposed.

Fig. 11. The zoomed-in part of the recovered images in Fig. 10. (a) Details of original images; (b) details of
observed images; (c) details of restored images by TV L1 method; (d) details of restored images by Bregman
method; (e) details of restored images by MS-MPG method; (f) details of restored images by our proposed
method.
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In Table 4, we give the values of the PSNR and SSIM for different images and different
variational methods. The best values among all the methods are shown in bold. Comparing
the values of the PSNR and SSIM, we can clearly see that our method outperforms the
others even in presence of blur.

6. Conclusion

In this paper, we have studied a fast total variation minimization method for image restora-
tion. We propose an adaptive model for mixed Poisson–Gaussion noise removal. It is
proved that the adaptive model is strictly convex. Then, we have employed split Breg-
man method to solve the proposed minimization problem. Our experimental results have
shown that the quality of restored images by the proposed method are competitive with
those restored by the existing total variation restoration methods. The most important con-
tribution is that the proposed algorithm is very efficient.
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