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Abstract. This paper investigates the problem of partitioning a complete weighted graph into com-
plete subgraphs, each having the same number of vertices, with the objective of minimizing the sum
of edge weights of the resulting subgraphs. This NP-complete problem arises in many applications
such as assignment and scheduling-related group partitioning problems and micro-aggregation tech-
niques. In this paper, we present a mathematical programming model and propose a complementary
column generation approach to solve the resulting model. A dual based lower bounding feature is
also introduced to curtail the notorious tailing-off effects often induced when using column gener-
ation methods. Computational results are presented for a wide range of test problems.
Key words: graph partitioning, column generation, complementary column generation, mixed-
integer programming.

1. Introduction and Motivation

In this paper, we study the problem of partitioning a complete weighted graph into com-
plete subgraphs, each having the same number of vertices, with the objective of mini-
mizing the total edge weights of the resulting subgraphs. This problem, denoted by GPP,
is formally stated in Section 1.1 below, and Section 1.2 then presents some motivating
examples.

1.1. Statement of Problem GPP

Consider a complete-weighted graph G(V,E), where V and E, respectively, denote the
set of vertices and edges of the graph G. Let v = 1,2, . . . , |V | index the vertices of V ,
and for v1, v2 ∈ V with v1 �= v2, let (v1, v2) ∈ E denote the edge joining v1 and v2 in G.
Let w(v1, v2) > 0 denote the weight associated with the edge (v1, v2). Let nn be a pos-
itive integer and suppose that α = |V |

n
is integer-valued. Hence, the set V can be par-

titioned into n subsets, each of which is composed of α vertices. Let P denote the set
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of all distinct subsets of V , each of which has αα vertices, and let Vp denote the pth
such vertex subset, ∀p = 1,2, . . . , |P |. An n-partition of V is a collection of n vertex
subsets from P , say V p1,V p2 , . . . , V pn , satisfying

⋃n
i=1 Vpi

= V , and Vpi
∩ Vpj

= ∅,
∀i, j ∈ {1, . . . , n} with i �= j . Let Q denote the set of all such n-partitions, indexed by
q = 1, . . . , |Q|, where the qth n-partition is given by {Vpk(q), k = 1, . . . , n}. For any Vp ,
p ∈ P , let wp = ∑

vi ,vj ∈Vp

i<j

w(vi, vj ), and accordingly, let cq ≡ ∑n
k=1 wpk(q) represent

the cost of the qth n-partition for any q ∈ Q. Problem GPP then seeks an n-partition
q∗ ∈ Q such that cq∗ � cq , ∀q ∈ Q.

1.2. Motivating Examples

We provide two motivating examples for Problem GPP, where we have used specific num-
bers in lieu of generic notation for the purpose of illustration.

Example 1. Consider a firm that operates four work centres and needs to assign three
employees to each centre (from a total of 12 available employees). For i = 1, . . . ,12, let
ei denote the ith employee. Each employee quantifies ranked preferences for working with
the other 11 employees from the set {1, . . . ,11}, where a lower number rank indicates a
higher preference. We construct a complete weighted graph having 12 vertices, where
vertex vi corresponds to employee ei , ∀ i = 1, . . . ,12, and where the weight associated
with the edge joining vertices vi and vj , i, j ∈ {1, . . . ,12}, i �= j , represents the sum of
the preferences of employees ei and ej to work with each other. The problem of interest,
then, is to partition the underlying graph into four complete subgraphs, each having three
vertices, so that the total weight of the resulting complete subgraphs is minimal, thereby
achieving a best aggregate preference.

Example 2. Consider a firm having 15 business branches that seeks to assign one of the
available supervisors to each cluster of five branches. Since a supervisor assigned to any
given cluster needs to frequently travel between the branches within the clusters, it is de-
sired that the sum of the distances between the branches of a given cluster should be small.
This problem can likewise be modelled as a complete graph partitioning problem having
15 vertices, each of which represents a branch, and with n = 3, where the edge weight
associated with any pair of vertices is given by the distance between the corresponding
branches.

1.3. Contribution and Organization

This paper proposes a column generation framework to solve Problem GPP with three en-
hancing features: (a) a complementary column generation scheme that uses a pricing prob-
lem to generate batches of columns; (b) a dual-based lower bound that can be employed to
curtail the notorious tailing-off effects typically associated with column generation, and
(c) the generation of a collection of vertex partitions that serves to determine a starting
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basis for the proposed column generation framework, as well as assists in computing good
quality feasible solutions.

The remainder of this paper is organized as follows. Section 2 presents literature related
to the studied problem. In Section 3, we develop an integer mathematical programming
model, denoted by GPM, for Problem GPP, which attempts to directly select a minimal
cost n-partition. We then design an enhanced column generation approach (ECGH) in
Section 4 to solve the linear relaxation of Model GPM, based on which we propose a
heuristic procedure in Section 5 to solve Model GPM. Computational results are presented
in Section 6, and we conclude the paper in Section 7 with a summary and some remarks,
as well as future research extensions.

2. Related Literature

Several graph partitioning problems have been studied in the literature, which are moti-
vated by applications in microaggregation (Domingo-Ferrer and Mateo-Sanz, 2002), po-
litical districting (Mehrotra et al., 1998), video clustering (Schaeffer, 2007), telecommu-
nication and VLSI design (Karypis et al., 1999), biological or social networks (Fan et al.,
2009), and data mining (Zha et al., 2001). Typically such problems arise in the context of
clustering, which is an unsupervised classification and the clusters must sometimes satisfy
certain additional threshold criteria (Fan and Pardalos, 2012). The general graph partition-
ing problem aims to partition the vertex set of a graph into several disjoint subsets with
the objective of minimizing the sum of edge weights between the disjoint subsets (Fan and
Pardalos, 2010). This is an NP-complete combinatorial optimization problem (Garey et
al., 1976) and different techniques were employed to solve it (Hager and Krylyuk, 1999).
The case when the graph is partitioned into equal or different by 1 cardinalities for all par-
titions was solved either by linear programming (Lisser and Rendl, 2003) or semidefinite
programming (Karisch and Rendl, 1998; Lisser and Rendl, 2003). Quadratic program-
ming (Hager and Krylyuk, 1999, 2002) and semidefinite programming (Wolkowicz and
Zhao, 1996) requires that the cardinalities of all partitions are known a priori. Fan and
Pardalos (2010) extended this work by formulating a zero-one quadrating programming
problem without the input of cardinalities of the required partitions. The objective of the
problem studied in the current paper is to minimize the sum of edge weights of the result-
ing partitions while that in the general graph partitioning problem is to minimize the sum
of edge weights between the disjoint partitions.

In the following, we discuss a number of applications that are addressed using different
types of graph partitioning paradigms. Micro-aggregation is a technique used by statisti-
cal agencies, where some statistical information needs to be disclosed, while the related
specific individual information must remain classified. Published data needs to be there-
fore presented in a manner such that: (a) the classified data cannot be concluded from
the published data, and (b) the deleted unclassified data is minimized. Domingo-Ferrer
and Mateo-Sanz (2002) used a graph partitioning approach to solve this problem. Politi-
cal redistricting is another application of graph partitioning, where boundaries of districts
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need to be drawn within the states to attain certain characteristics and to avoid partisan
political goals. Mehrotra et al. (1998) designed a graph partitioning political redistricting
model with the motivation that (a) differences in populations for any two different districts
should be minimized in order to adhere to the one-person-one-vote principle; (b) districts
should be contiguous, and (c) districts should be geographically compact. Graph parti-
tioning is also used in video scene clustering (Tan and Lu, 2003) to index, browse, and
retrieve video data. In this context, a graph G(V,E) is constructed as follows, where each
vertex v ∈ V represents a scene and an edge e ∈ E between two vertices indicates the sim-
ilarity obtained from some defined relations of the colours of two scenes. The objective
is to partition G with the goal of maximizing similarity in the individual partitions where
the number of partitions is not restricted.

In telecommunication technology, graph partitioning is employed to subdivide a trans-
mission network into clusters in order to maximize the routed traffic within the clusters
(Laguna, 1994). Park et al. (2000) addressed the problem of clustering a telecommunica-
tion network into local networks and hub locations. Xiao et al. (2007) developed a graph
partitioning model to cluster mobile units within mobile servers. In this case, a graph
G(V,E) is constructed where v ∈ V represents a mobile unit and each edge e ∈ E repre-
sents a communication link between two units, and where the weight assigned to the edge
depends on some technical parameters including the bandwidth and the distance between
the two vertices. Laguna (1994) used a graph partitioning model to enhance several design
features and to overcome limitations of optical fiber networks within the telecommunica-
tion industry.

Graph partitioning has also been used to tackle scheduling problems. Carlson and
Nemhauser (1966) developed a clustering model for a scheduling problem that involves
several activities and facilities, where the problem is to cluster activities and then to as-
sign them to the facilities so as to minimize interaction costs, given the cost of assigning
pairs of activities to a facility. Salido et al. (2007) employed graph partitioning in railway
scheduling to generate optimal schedules for trains, taking into consideration connection
points, railway types, and train capacities, among other restrictions.

There exist several other such examples of graph partitioning problems that have been
studied in the literature, e.g. see Ji (2004). These include the clique partitioning prob-
lem (Grotschel and Wakabayashi, 1989; 1990), the graph equipartitioning problem (Con-
forti and Rao, 1990a, 1990b), the capacitated graph partitioning problem (Mehrotra and
Trick, 1998), the maximum balanced connected q-partition (Chlebikova, 1996; Salgado
and Wakabayashi, 2004), and the minimum edge-cut graph partitioning problem (Donath
and Hoffman, 1973; Goldschmidt and Hochbaum, 1988), among others. All of the above
graph partitioning problems are NP-hard (Ji, 2004). In particular, similar to the problem
considered in the present paper, the k-way graph equipartitioning problem is to parti-
tion the vertex set V into k subsets of equal size, with the objective of minimizing the
total weight of edges that have both end-points in the same partitioned subset. Mitchell
(2001) formulated a mathematical model for the k-way graph equipartitioning problem,
investigated its polyhedral structure and presented a branch-and-cut algorithm to solve the
resulting model. The algorithm in Mitchell (2001) was used to realign the National Foot-
ball League (NFL). Results for partitioning 32 teams into eight groups with the objective
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of minimizing the overall travel time among teams within each group were reported in
Mitchell (2003). The sports realignment problem studied in Mitchell (2001, 2003) was re-
visited later along with other similar contextual problems by Xiaoyun and Mitchell (2005)
who modelled the realignment of NBA, NHL, and NFL as k-way equipartition problems.
A branch-and-price scheme with cutting plane features was designed and implemented to
solve the resulting k-way equipartitioning problems, where the pricing problem was mod-
elled as an integer program. Computational results indicated that the branch-and-price-
and-cut scheme of Xiaoyun and Mitchell (2005) performed well on small-sized instances
(with about 40 vertices). However, for larger test instances, the solution of the pricing
problem turned out to be cumbersome to solve. Nonetheless, for such problems, the root
algorithm was found to yield relatively good quality feasible solutions. The algorithm in
Xiaoyun and Mitchell (2005) was also used to solve certain micro aggregation problems.
The authors concluded that the performance of their proposed branch-and-price-and-cut
approach was comparable to that of the price-and-cut method of Mitchell (2001, 2003).

3. Formulation of Model GPM

In this section, we formulate a model for Problem GPP, denoted GPM, which directly
attempts to select a minimum-cost collection of n valid partitions from the set P in order
to constitute an n-partition.

Model formulation
Define the following set of binary decision variables:

xp =
{

1 if partition p ∈ P is selected,

0 otherwise.

For a given partition p ∈ P , we define the following set of parameters that indicate
whether a vertex v ∈ V belongs to the associated vertex subset Vp or not:

λv,p =
{

1 if v ∈ Vp,

0 otherwise.

Note that the values of the parameters λv,p are known a priori based on informa-
tion derived from the corresponding subset Vp . Then, the following model determines
a minimum-cost n-partition:

GPM: Minimize
∑
p∈P

wpxp,

subject to∑
p∈P

λv,pxp = 1, ∀v ∈ V, (3.1)
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∑
p∈P

xp = n, (3.2)

xp ∈ {0,1}, ∀p ∈ P.

The objective function of GPM minimizes the overall weight of edges associated with the
selected n-partition. Constraint (3.1) assures that each v ∈ V belongs to exactly one valid
partition. The required number of valid partitions (n) is enforced by Constraint (3.2). The
continuous relaxation of Model GPM, denoted by GPM, is given as follows:

Minimize
{∑

p∈P

wpxp : (3.1) and (3.2), where xp � 0,∀p ∈ P

}
.

Note that xp � 1 is implied by (3.1). The following structural result indicates that Con-
straint (3.2) can be deleted from the above model without affecting the solution, even in
the continuous sense.

Proposition 1. Constraint (3.2) is implied by Constraint (3.1) within Model GPM.

Proof. Since |V | = αn, summing (3.1) over all v ∈ V , we get
∑

v∈V

∑
p∈P λv,pxp = αn.

But since
∑

v∈V λv,p = α because |Vp| = α, ∀p ∈ P , this implies that
∑

p∈P αxp = αn,
or that (3.2) holds. �

Notwithstanding Proposition 1, we retain Constraint (3.2) in the model because of the
lower bounding facility it provides for GPM, which enables a useful practical stopping
criterion when solving the latter problem (see Proposition 2 below).

Note that Model GPM attempts to directly select a minimal cost n-partition, i.e. a mini-
mal cost collection of n valid partitions from the set P . An alternative modelling approach
to solve Problem GPP is to designate decision variables that assign vertices to different
subsets and to designate constraints to ensure the cardinality of each subsets. This mod-
elling approach is the subject of a follow-on paper, where we will attempt to employ a
Lagrangean-based decomposition scheme in concert with symmetry defeating strategies
to solve Problem GPP. As it will be seen later, the formulation of Model GPM enabled us
to devise a column generation algorithm to heuristically solve Problem GPP, which is the
focus of the current paper.

4. An Enhanced Column Generation Approach to Solve Model GPM

In this section, we exploit the special column structure of GPM in order to solve its con-
tinuous LP relaxation GPM via a column generation procedure (e.g. see Barnhart et al.,
1998), along with three enhancing features as discussed below. Suppose that at some iter-
ation of the revised simplex method for solving GPM, we have a basic feasible solution.
Let {ξ ≡ (ξv, v ∈ V ), ξ0} denote the corresponding complementary dual solution, where
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ξ and ξ0 are the dual variables associated with Constraints (3.1) and (3.2), respectively.
We can then find a candidate entering nonbasic variable xp that has the smallest (most
negative) reduced cost by solving the following auxiliary subproblem, where πv equals
one if vertex v ∈ V is selected for inclusion within Vp and is zero otherwise:

SP : Minimize
∑

vi ,vj ∈V

i<j

w(vi, vj )πvi
πvj

− ξT π − ξ0,

subject to:
∑
v∈V

πv = α, and πv ∈ {0,1}, ∀v ∈ V.

Note that the resulting vector ππ ≡ (πv, v ∈ V ) corresponds to a valid partition, say
p ∈ P , where λv,p = πv , ∀v ∈ V , and where the first term of the objective function rep-
resents wp for the generated entering column. To solve Problem SP, each product rela-
tionship πvi

πvj
that appears in the objective function can be linearized by substituting a

continuous variable γvi ,vj
instead, while incorporating the following constraints, noting

that πvi
and πvj

are required to be binary-valued and that the w-parameters are positive
(see Sherali and Warren, 1998):

γvi ,vj
� πvi

+ πvj
− 1 and γvi ,vj

� 0, ∀vi, vj ∈ V, i < j. (4.1)

Hence, letting τ ∗(M) denote the optimal objective function value of any model M ,
if Mτ ∗(SP) � 0, then no nonbasic variable is a candidate to enter the basis, and an optimal
solution to Problem GPM is at hand. Otherwise, if τ ∗(APlb) < 0, we will have obtained
a candidate entering variable xp for GPM from the optimal solution obtained for SP as
noted above, and we then introduce this column into the basis and reiterate.

4.1. Enhancing Features

Next, we discuss three enhancing features that can improve the solvability of Problem
GPM by mitigating the tailing-off effect that is often induced by the classical column
generation approach.

A) Duality based lower bounding termination criterion

The following proposition, whose proof readily follows from Proposition 1 in Ghoniem
and Sherali (2009) (we include a specialized proof below for the sake of completeness),
portends an optimality gap via the solution of Problem SP that will enable us to conve-
niently terminate the solution of Problem GPM within some percentage of optimality.

Proposition 2. At any iteration of the column generation process to solve Problem GPM,
the solution to Problem SP provides a dual feasible solution to GPM with a duality gap
of −nτ ∗(SP) � 0.
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Proof. Let (ξ , ξ0) be the complementary dual solution to the restricted version of GPM
at any iteration, where this restricted problem provides an upper bound of

∑
v∈V

ξv + nξ0 (4.2)

on the value τ ∗(GPM). Moreover, from the corresponding problem SP, we get

τ ∗(SP) = min
p∈P

{
wp −

∑
v∈V

λv,pξv − ξ0

}
,

which implies that
∑
v∈V

λv,pξv + [ξ0 + τ ∗(SP)] � wp, ∀p ∈ P,

or that (ξ , ξ0 + τ ∗(SP)) is dual feasible to GPM, thus establishing a lower bound on the
value τ ∗(GPM), with a dual objective function value of

∑
v∈V

ξv + n
[
ξ0 + τ ∗(SP)

]
. (4.3)

From (4.2) and (4.3), we therefore infer that this dual feasible solution yields a duality gap
of −nτ ∗(SP) � 0. �

B) Generation of complementary columns

Instead of generating a single negative reduced-cost column as done above in the clas-
sical column generation (CG), the complementary column generation (CCG) of Ghoniem
and Sherali (2009) advocates the generation of multiple columns at each iteration to form
a feasible n-partition (as possible, unless an infeasible subproblem is encountered) as
described next. Let π = {πv, v ∈ V } be a solution to Problem SP, based on which, let
� = {v : πv = 1}. Let V � be initialized as a set that contains the partition that includes
the vertices in �, and let X� be initialized as a set that contains the variable in GPM2
corresponding to the partition in V �. We then resolve Problem SP with the additional re-
quirements that πv = 0, ∀v ∈ �. Let π new = {πv

new, v ∈ V } denote the resulting solution.
Next, the set of prohibited indices � is augmented by setting � ← �∪{v : πv

new = 1} and
the sets V

� and X� are updated accordingly. The foregoing step is repeated until � = |V |
or an infeasible subproblem is encountered. The variables in X� along with their respec-
tive partitions from V � will serve to augment a restricted version of Model GPM that
will be used in the next subsection within a column generation framework to solve GPM.
Note that when � = |V |, the set V � consists of a batch of columns that collectively con-
stitute a feasible solution to Model GPM. Moreover, even if an infeasible subproblem is
encountered in the foregoing process, the set of partitions generated thus far can be used
to fruitfully augment the current restricted version of Model GPM.
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C) Determining a starting basis for Model GPM

Note that Model GPM is highly degenerate because it has |V | + 1 rows, but any basic
feasible solution corresponding to a feasible binary solution involves only |V |

α
= n non-

zero binary x-variables. This will likely exacerbate the initial oscillations of dual solutions
within the column generation procedure, which typically slows the convergence of the
algorithm. Various dual stabilization approaches have been discussed in the literature to
mitigate this phenomenon, see, for example, Bazaraa et al. (2010). Instead of using such
dual stabilization techniques, we simply try to diminish the occurrence of oscillations
by the generation of additional columns (as discussed next) in order to restrict the dual
solution space, which thereby essentially contributes toward the dual stabilization process.

With this motivation, we determine 3n + |V | partitions of V as follows, which can
then be used along with suitable artificial variables (at zero values) to determine a starting
basis for GPM:

a) Set V 1 = {v1, v2, . . . , vα},V 2 = {vα+1, vα+2, . . . , v2α}, . . . , V n = {v(n−1)α+1,

v(n−1)α+2, . . . , vnα}, noting that {V 1,V 2, . . . , V n} constitutes a valid n-partition.
b) For v = 1, . . . , |V |, we construct |V | partitions, denoted by V n+v , as follows. Consider

the subgraph of G that contains only the least weight (α − 1) edges incident to v. Let
V n+v be the set of vertices that contains v as well as the other (α −1) vertices adjacent
to v via the selected (α − 1) edges. Note that the vertex partitions V n+1, . . . , V n+|V |
are not necessarily mutually exclusive.

c) Pick v ∈ {1, . . . , |V |} and initialize V n+|V |+1 = {v}. Find v1 ∈ V/V n+|V |+1 such that
w(v, v1) = minv∈V/V n+|V |+v {w(v, v)}. Let V n+|V |+1 = {v, v1}. Find v2 ∈ V/V n+|V |+1

such that w(v, v2) + w(v1, v2) = minv∈V/V n+|V |+v1 (w(v, v) + w(v1, v)) and proceed
in this fashion until V n+|V |+1 contains α vertices. Pick v1 ∈ V/V n+|V |+1 and let
V n+|V |+2 be the set of vertices from V/V n+|V |+1 that contains v1 along with (α − 1)

vertices chosen as discussed in the process of constructing V n+|V |+1. Continue in
this manner until n vertex partitions are constructed, which collectively constitute an
n-partition.

d) Determine the least cost vertex partition by solving Problem SP with a modified ob-
jective function given by Minimize

∑
vi ,vj ∈V

i<j

w(vi, vj )πvi
πvj

. The resulting solution

determines a valid partition; denote this V 2n+|V |+1. Next, we resolve Problem SP with
the aforementioned modified objective function while updating the set of vertices to
exclude all the vertices in V 2n+|V |+1. We proceed in this manner until we construct n

vertex partitions that collectively constitute a valid n-partition.

Hereafter, we will refer to the foregoing three enhancing complementary column gen-
eration features discussed in this section as CCG features.

4.2. Enhanced Column Generation Algorithm to Solve GPM

An enhanced column generation algorithm that incorporates the above three features, de-
noted by ECGA, is presented next to solve GPM. The best known lower and upper bounds
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derived in this process for solving GPM as described below are denoted by LB∗ and UB∗,
respectively.

Algorithm ECGA

Initialization Step

Let X0 be the set of x-variables associated with the vertex partitions V i , i =
1, . . . ,3n+|V |, as determined above, along with suitable artificial variables incorporated
within the constraints of Model GPM (to determine a starting basis). Consider a restricted
version of GPM, denoted by GPM0, which contains the variables in X0. Solve GPM0

directly using CPLEX, to determine an initial basic feasible solution to Model GPM. If
the set of basic variables contains any artificial variables at optimality, then iteratively
solve Problem SP to generate columns for GPM until the residual artificial variables are
eliminated. Set i = 1 and let X1 be the set of (non-artificial) variables in the current col-
umn generation master program. Select a suitable optimality tolerance ε1, set LB∗ = −∞,
UB∗ = ∞, i = 1 and proceed to the Main Step.

Main Step
Construct a restricted version of GPM, denoted by GPMi , which only involves the

variables in Xi and solve GPMi . Let {ξ, ξ0} denote the corresponding complementary
dual solution for GPMi . Set UB∗ = τ ∗(GPMi ) = {∑v∈V ξv +nξ0}. Solve the subproblem
SP, and let π∗ be the optimal solution obtained. Set LB∗ = max{LB∗,

∑
v∈V ξv + n[ξ0 +

τ ∗(SP)]}.
a) If τ ∗(SP) � 0, stop; the optimal solution obtained for GPMiGPMi is also optimal for

GPM.
b) Trigger the CCG feature to determine X�. Set Xi+1 = Xi ∪ X� and let i ← i + 1. If

(100 UB∗−LB∗
UB∗ ) � ε1, stop; we have an optimal solution for GPM within an optimality

tolerance of ε1 %. Otherwise, repeat the Main Step.

4.3. Analysis of Algorithm ECGH

a) Algorithm ECGA establishes an upper bound UB∗ on GPM that decreases monoton-
ically at each iteration of ECGA. Also, at each iteration of ECGA, the lower bound
LB∗ for GPM is updated based on the solution to Problem SP. At the end of Algorithm
ECGA, the best provable lower bound on Model GPM is given by

LB∗(GPM) = τ ∗(GPM) if τ ∗(SP) � 0, and
LB∗(GPM) = LB∗, otherwise.

b) When the CCG Features is triggered at a given iteration of Algorithm ECGA, the set
X� consists of a batch of columns that collectively lend themselves toward composing
a feasible solution to Model GPM. The process of generating complementary columns
judiciously includes multiple sets of feasible solutions whose composition is likely
to enhance the possibility of encompassing optimal or near-optimal solutions when
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solving the last restricted problem of GPM as a binary restricted problem as used in the
procedure described in Section 5 below. Moreover, the additional columns generated
provide a further restriction on the dual search space, which induces dual stabilization.

c) The duality-based lower bound established in Proposition 2 offers a helpful ε1-based
termination criterion that serves to circumvent the notorious tailing-off trend often as-
sociated with column generation procedures. Hence, both of the above features, along
with the generation of 3n + |V | columns to initialize Algorithm ECGA, are instru-
mental in designing an effective heuristic approach for solving GPM with a provable
optimality tolerance at termination as described in the next section.

d) Note that at any iteration of ECGA columns that are already (explicitly) present in the
restricted master program (GPMi ) price out with nonnegative reduced costs, and there-
fore these columns are automatically excluded from the solution to Problem SP (except
at termination when τ ∗(SP) � 0). However, the inclusion of constraints in Problem SP
that explicitly exclude all such columns provides valid cuts that might serve to tighten
the continuous relaxation of this problem and, hence, enhance its solvability. For this
purpose, letting V ⊆ V be the set of vertices that characterize the partition correspond-
ing to any column that is currently in GPMi , we add the following constraint to Problem
SP for each such column:

∑
v∈V

πv � (α − 1). (4.4)

e) Although, the formulation of Model GPM incorporates all potential partitions as repre-
sented by the xp variables, the initial step of the proposed column generation heuristic
(ECGH) contains only a small subset of the xp variables, then more valid partitions
(xp variables) are added iteratively until a heuristic solution is attained. In fact, this is
the main advantage of adopting a column generation framework, where initially only
a subset of the columns are present in the solution, and more columns are added sub-
sequently until a heuristic solution is obtained.

5. A Heuristic Procedure for Solving GPM

In this section, we present a heuristic approach to solve Model GPM, denoted by ECGH,
which is a sequential variable-fixing procedure that constructs a feasible n-partition in a
sequential fashion in order to solve Problem GPP. Essentially, this procedure generates an
n-partition by augmenting fixed partitions from solutions to GPM obtained via the ECGA
method outlined in the foregoing section.

To describe this procedure, cconsider an optimal solution to GPM obtained via ECGA.
Let S1

b be the index set of the basic variables that equal one when ECGA terminates, and
let Sf

b be the set of fractional basic variables at optimality. (Note that if S
f
b = ∅, we have an

n-partition at hand, and we stop with this solution as optimal for GPM.) Initialize the set

 = S1

b . Hence, V pi ∩V pj = ∅, ∀pi,pj ∈ 
 with i �= j , because otherwise, if there exists
some v ∈ V pi ∩ V pj , then equation (3.1) corresponding to vertex v would be violated.
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Note that |
| � n, or else, we would have an n-partition, where n > n, which involves αn

vertices from V , contradicting the fact that |V | = αn.
The following Variable-Fixing Step will be used with our proposed enhanced column

generation heuristic described subsequently.

Variable-Fixing Step
Let x be the optimal solution obtained for GPM and let xmax = max

p∈S
f
b

{xp}, and

determine � = {p ∈ S
f
b : xp = xmax}, wmin = min{wp : p ∈ �}, and � = {p ∈ � : wp =

wmin}. Pick p̂ ∈ � and update 
 ← 
 ∪ {p̂}. Let � = {p ∈ P : V p ∩ V p1 = ∅,∀p1 ∈ 
},
and correspondingly, define V � = {v ∈ V : v /∈ ⋃

p∈
 V p}.
Based on the above variable-fixing step, we let GPM� to be a modified version of

GPM obtained by: (a) restricting the set of partitions P to �, and (b) replacing V by V �

in (3.1). This problem is given as follows:

GPM� : Minimize
∑
p∈�

wpxp

subject to∑
p∈�

λv,pxp = 1, ∀v ∈ V �, (5.1)

∑
p∈�

xp = n − |
|, (5.2)

xp ∈ {0,1}, ∀p ∈ �.

We can now solve GPM� using ECGA as before, based on the remnant set of vertices,
and repeat the process until an n-partition is obtained. The proposed heuristic (ECGH)
for generating an n-partition is stated formally below, noting that whenever |
| = n, we
have at hand an n-partition that is described by the set of valid partitions {p ∈ 
}.

Heuristic ECGH

Initialization
Set 
 = ∅
 = ∅, � = P , and V � = V .

LP-Step
Solve GPM� using ECGA, and let X denote the resulting solution. Determine the

index sets S1
b and S

f
b . If S

f
b = ∅S

f
b = ∅, then update 
 ← 
 ∪ S1

b and stop, since |
| = n,
then stop; otherwise, proceed to the Variable-Fixing Step.

Variable-Fixing Step (This step is described above).

Final Step
Let 
 ← 
 ∪ {p̂}. If |
| = n; otherwise, update � and V �, and repeat the LP-Step.
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Table 1
Test problems for model GPM.

Test Problem TP1 TP2 TP3 TP4 TP5 TP6
(|V |, n) (12, 4) (18, 3) (20, 5) (20, 2) (24, 2) (30, 3)
Test Problem TP7 TP8 TP9 TP10 TP11 TP12
(|V |, n) (30, 2) (36, 3) (36, 2) (40, 8) (40, 5) (40, 4)
Test Problem TP13 TP14 TP15 TP16 TP17 TP18
(|V |, n) (50, 25) (50, 10) (50, 5) (60, 15) (60, 10) (72, 18)
Test Problem TP19 TP20 TP21 TP22 TP23 TP24
(|V |, n) (72, 12) (84, 28) (84, 21) (84, 14) (100, 25) (100, 20)

Remark 3.

a) At each iteration of ECGH, the set 
 is augmented by at least one valid partition in a
feasible fashion, and the number of elements in 
 cannot exceed n. Consequently, the
algorithm terminates finitely whenever |
| = n, yielding a desired n-partition.

b) In the “Variable-Fixing Step”, note that V p̂ ∩ V p = ∅V p̂ ∩ V p , ∀p ∈ 
, because oth-
erwise, (3.1) would be violated for some v ∈ V . Hence, we maintain a partitioning of
the vertices while augmenting the set 
 according to 
 ← 
 ∪ {p̂}.

6. Computational Results

In this section, we present computational results for the proposed complementary column
generation approach for solving Model GPM. We use a set of 24 test problems described in
Table 1 for GPM, where TPi , i = 1, . . . ,24, represents the i-th test problem. For all the test
instances, the weights associated with the edges are randomly generated using a random
function within the interval [1,1000]. All computational results have been performed on
a Core™ i7 Processor, CPU 4.00 GHz computer having 4 GB of RAM and using the
CPLEX Commercial Package (version 12) as the optimization solver.

Below, we summarize the notation that will be used in this section.

• ε1: Optimality gap tolerance for implementing Algorithm ECGH to solve GPM.
• ε2: Optimality gap tolerance for solving SP.

• LB∗(GPM) =
{

τ ∗(GPM) if τ ∗(SP) � 0,

LB∗, otherwise.
• τ ∗(ECGH): The best objective function value obtained for Model GPM using Heuristic

ECGH.
• ρ: 100

(
τ∗(ECGH)−LB∗(GPM)

τ∗(ECGH)

)
% = Percentage optimality gap for the best solution ob-

tained for Model GPM via Heuristic ECGH.
• TECGA: The total solution time for solving GPM using Algorithm ECGA.
• TECGH: The total solution time for solving GPM using Heuristic ECGH.

We begin by presenting computational results pertaining to solving Model GPM using
Heuristic ECGH based on a set of 24 test problems having up to 100 vertices with different
partitioning requirements. Tables 2 and 3, respectively, present our computational expe-
rience in solving Model GPM with and without the CCG Features. Note that because the
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Table 2
Results for solving GPM and GPM using the CCG features.

Test
problem
TPi I

LB∗(GPM) TECGA
(seconds)

τ∗(GPM) TECGH
(seconds)

ρ

%
(ε1, ε2)

1 48.0 0.35 51.0 1.48 5.882353 (0, 0)
2 1379.0 3.05 1392.0 4.65 0.933908 (0, 0)
3 2879.0 4.01 2883.0 4.84 0.138744 (0, 0)
4 3144.0 5.75 3145.0 6.59 0.031797 (0, 0)
5 12459.0 14.36 12459.0 16.67 0.000000 (0, 0)
6 51806.0 35.34 52526.0 50.83 1.370750 (0, 0)
7 91242.0 1042.42 92273.0 1123.08 1.117337 (0, 0)
8 66484.0 16.31 66484.0 17.84 0.000000 (0, 0)
9 85758.0 23.14 85760.0 25.28 0.002332 (0, 0)
10 92042.0 23.27 93059.0 24.35 1.092855 (0.00001, 0)
11 10825.79 1795.3 11473.34 1825.81 5.643954 (0.00001, 0)
12 73011.0 25.84 73063.0 27.67 0.071171 (0.001, 0)
13 3614.0 24.09 3820.0 26.05 5.392670 (0.005, 0)
14 44231.0 23 44555.0 24.12 0.727191 (0.005, 0)
15 42106.0 24.08 43611.63 25.48 3.452359 (0.005, 0)
16 61479.0 25.14 63020.0 28.8 2.445255 (0.005, 0)
17 23002.0 26.06 23737.0 28.64 3.096432 (0.005, 0)
18 3418.0 26.94 3674.0 29.06 6.967882 (0.005, 0)
19 5239.0 28.45 5417.0 30.59 3.285952 (0.05, 0)
20 16812.09 1904.34 17521.0 1987.16 4.045895 (0.2, 0)
21 65132.0 13060 67245.0 13239.3 3.142241 (0.2, 0)
22 51076.0 6462.82 58177.2 9974.89 12.206171 (0.2, 0.1)
23 3671.0 16462.8 3894.0 16591.9 5.726759 (0.2, 0.1)
24 48552.0 17328.5 52278.0 18148.5 7.127281 (0.2, 0.1)
AVG 35808.75 2432.72 36729.92 2635.98 3.08

weights associated with Problem GPP are randomly generated, repeated implementations
of Heuristic ECGH might produce different objective function values, optimality gaps and
run-times for a given test problem. Also, observe that in Proposition 2, we have assumed
that Problem SP is solved using ε2 = 0, in which case we have the provable lower bound
given either by τ ∗(GPM) if τ ∗(SP) � 0 or otherwise by LB∗. However, when using a tol-
erance ε2 > 0 while solving Problem SP, we can modify Proposition 2 to assert that the
established duality gap is given by −nτ ∗(SP)+nε2 � 0, with LB∗ ← LB∗ −nε2. The use
of this lower bounding scheme is instrumental in curtailing the tailing-off effect associated
with column generation. Hence, for each test problem, we first set ε1 = ε2 = 0 and try to
solve Model GPM within some specified time. In case a solution is not obtainable, we then
set ε2 = 0 and set ε1 to some sufficiently small value and gradually increment it until we
reach a solution within the specified time. For test instances that remain unsolved, we set
ε2 to a sufficiently small positive value and increment it until we obtain a solution within
the specified time. From our preliminary computational experiments, we noticed that solv-
ing Problem SP even with the default cutting plane feature of CPLEX was cumbersome
in some test instances, especially those having a relatively large number of vertices, while
the time to update the solution to GPM was in most cases just a few seconds.
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Table 3
Results for solving GPM and GPM without the CCG features.

Test
problem
TPi I

LB∗(GPM) TECGA
(seconds)

τ∗(GPM) TECGH
(seconds)

ρ

%

1 24.0 2 57.0 5 57.89
2 1409.0 26 1417.0 28 0.56
3 3466.0 42 3466.0 42 0
4 10837.5 1756 10837.5 1756 0
5 46625.0 805 46625.0 805 0
6 44930.0 1183 44930.0 1183 0
7 90099.0 571 90099.0 571 0
8 69459.0 10819 69459.0 10819 0
9 136174.0 5379 136174.0 5379 0
10 16922.66 284 17068.0 492 0.85
11 40307.99 2656 40802.0 4025 1.21
12 58437.42 9349 59157.0 10691 1.22
13 1837.0 15 1837.0 15 0
14 21389.0 1015 21703.44 2055 1.45
15 70301.44 476272 71545.0 481129 1.74
16 16571.33 838 17094.0 1042 3.06
17 37442.45 7014 38060.0 8222 1.62
18 3304.0 1178 3528.0 1693 6.35
19 3410.13 10640 3528.0 14012 3.34
20 11292.95 1207 12492.0 1376 9.60
21 23051.92 6769 23824.0 17679 3.24
22 53427.27 85003 54761.0 225112 2.44
23 145.59 8323 145.59 9457 0
24 271.41 34284 290.91 36578 6.70
AVG 31714.00 27726.25 32037.52 34756.92 4.22

In order to better understand the efficiency of the CCG Features and its contribution
toward enhancing the solution quality for Model GPM, we experimented with solving this
model using Heuristic ECGH both with and without the CCG Features. As shown in Ta-
bles 2 and 3, the incorporation of the CCG Features reduced the average solution time for
solving Model GPM by 11-fold and for solving Model GPM by 12-fold. This substantial
reduction in the average solution times is attained by virtue of mitigating the tailing-off
effect at termination. The average optimality gap at termination when solving Model GPM
with and without the enhancing features are given by 3.08% and 4.22%, respectively. Al-
though the higher average optimality gap obtained for the latter is skewed because of the
relatively high optimality gap of 57.89% obtained when solving problem TP1 (without
this test case, the average optimality gap is given by 1.88%), but still the significant reduc-
tion in the average solution time when using the CCG Features strengthens the robustness
of the proposed column generation approach.

In the remainder of this section, we focus and analyse results obtained using the CCG
Features. To provide insights into the performance of our approach for solving Model
GPM, we partition our test problems into three sets, denoted by S1, S2 and S3, based on
the number of vertices ranging up to 36, 84, and 100, respectively. Tables 4 and 5 pro-
vide results for these partitioned subsets of problems. As expected, with an increase in
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Table 4
Ssummary of run-times and optimality gaps for model GPM.

Problem
set

Test
problems

Max
number of
vertices

Least
TECGH

Largest
TECGH

Ave
TECGH

Least
ρ

%

Largest
ρ

%

Ave
ρ

%

S1 TP11, . . . ,TP110 36 1.48 1825.81 260.75 0 5.88 1.35
S2 TP111, . . . ,TP121 84 24.12 13239.30 2348.93 0.07 6.96 3.48
S3 TP122, . . . ,TP124 100 9974.89 18148.50 13587.56 5.72 12.22 8.35

Table 5
Tolerances for model GPM and problem SP.

Problem
set

Least
ε1

Largest
ε1

Average
ε1

Least
ε2

Largest
ε2

Average
ε2

S1 0 0 0 0 0 0
S2 0.00001 0.02 0.0400 0 0 0
S3 0.2 0.2 0.2 0.1 0.1 0.1

the number of vertices, both the total run-time for solving Model GPM using ECGH and
the resulting optimality gap at termination increased. Test problems from the set S1 (with
n � 36) were solvable without using any termination tolerances for solving either GPM
or Problem SP, and in this case the least, largest, and average optimality gaps obtained
were given by 0%, 5.88%, and 1.35%, respectively. For test problems from S2 (having
n � 84), we solved Model GPM using a range of incrementally increasing gap tolerances.
In this case, the least, largest, and average optimality gaps obtained were given by 0.7%,
6.96%, and 3.45%, respectively. For test problems in S3 (having n � 100), using the afore-
mentioned modified lower bounding result, the least, largest, and average optimality gaps
obtained were given by 5.72%, 12.22%, and 8.35%, respectively.

7. Summary, Conclusions and Future Research

This paper examines a graph partitioning problem that is concerned with the partition-
ing of a complete weighted graph G(V,E) into n complete subgraphs each having the
same number of α vertices, with the objective of minimizing the total weight of edges in-
cluded in the subgraphs. This problem has many applications in various contexts such as
assignment-related group partitioning problems, micro aggregation in statistics, telecom-
munication, and political redistricting. To solve this problem, we formulated a mixed-
integer program, denoted by GPM, which directly attempts to select a minimum-cost col-
lection of n valid partitions from the entire set of valid partitions in order to constitute an
n-partition. Exploiting the structure of Model GPM, we then designed a column genera-
tion heuristic (ECGH) that incorporates the following three enhancing features for solving
this model: (a) a lower bounding facility based on solving the pricing subproblem, which
helps to curtail the tailing off effect typically associated with column generation; (b) a com-
plementary column generation feature that attempts to generate multiple columns at each
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iteration to constitute a feasible n-partition, and (c) the generation of initial columns for
Model GPM that serve to provide a starting basis as well as to restrict the dual solution
space, thereby contributing toward dual stabilization.

Detailed computational results were presented for solving Model GPM. These results
demonstrated that the CCG Features proposed for enhancing the traditional column gen-
eration framework yielded comparable quality solutions (3% optimality on average) with
respect to the standard classical column generation approach while reducing the average
run-time for solving Models GPM and GPM by 11-fold and 12-fold, respectively. Based
on our computational results, we propose investigating further algorithmic strategies for
dealing with relatively larger problems. In particular, solving Problem SP within algo-
rithm ECGH was especially cumbersome in test instances of Problem GPP that involve a
relatively large number of vertices. In fact, we were able to obtain reasonable solutions for
up to 100 vertices for Model GPM, but for problems having 150 vertices, we were unable
to solve even the linear programming relaxation of Problem SP after two days of run-time.
Hence, we recommend exploring some alternative ways for solving Problem SP, including
a polyhedral analysis coupled with more effective heuristic solution approaches.

Another extension worth exploring for solving Model GPM is as follows. Let GPMLR
be the current restricted version of Model GPM obtained from the final iteration of Algo-
rithm ECGH. We can then solve GPMLR to optimality as a 0-1 program directly using a
commercial package such as CPLEX by utilizing some suitable specialized decomposition
scheme as necessary, in order to obtain a good quality feasible solution to Model GPM.
This might be particularly attractive because of the complementary column generation
strategy implemented within the solution process (Ghoniem and Sherali, 2009). More-
over, this solution approach can further provide facility to consider equity issues within
the vertex partitioning scheme through the addition of suitable side-constraints, which are
difficult otherwise to accommodate within the column generation modelling and solution
process. In the future, we also aim to explore alternative modelling approaches for Prob-
lem GPP that attempt to directly generate the required partitions and use decomposition
schemes such as Lagrangian relaxation while incorporating necessary equity.
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