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Abstract. The Industry 4.0 and smart city solutions are impossible to be implemented without using
IoT devices. There can be several problems in acquiring data from these IoT devices, problems
that can lead to missing values. Without a complete set of data, the automation of processes is not
possible or is not satisfying enough. The aim of this paper is to introduce a new algorithm that
can be used to fill in the missing values of signals sent by IoT devices. In order to do that, we
introduce Shepard local approximation operators in Riesz MV-algebras for one variable function
and we structure the set of possible values of the IoT devices signals as Riesz MV-algebra. Based
on these local approximation operators we define a new algorithm and we test it to prove that it can
be used to fill in the missing values of signals sent by IoT devices.
Key words: IoT devices, signal processing, Shepard local approximation operators, local
approximation operators, approximation algorithms, Riesz MV-algebras, vectorial MV-algebras.

1. Introduction

As part of the new industry revolution, the so-called Industry 4.0 www (2016), the au-
tomation of processes takes a more and more crucial role (Wollschlaeger et al., 2017).
The process automation is based on near real time data collected by IoT devices. There are
several challenges in developing applications to automate processes based on IoT devices
(Heinis et al., 2017; Kamienski et al., 2017), one of them is to ensure sets of complete and
validated data. Missing data can be caused by many things, but most of the times it is due
to a malfunction of an IoT device or a communication problem between the IoT device
and the processing applications. There is a continuous focus on finding new methods to
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fill in the missing data using various mathematical methods (Zhao and Zheng, 2017; Ruan
et al., 2017; Leturiondo et al., 2017; Xu et al., 2017), methods that can be used to develop
software modules that act as input validators for industrial automated control systems. In
reality, the signal collected by IoT devices creates a discrete-time signal from a continuous
process, called sample (Rajeshwari and Rao, 2008). The method we propose in this paper
can be applied on both signals and samples. If signals are considered, in order to fill in
some missing data, a sample can be considered in the temporal vicinity of the missing
value and the proposed method can be applied on it. Considering this, further in the paper
we will refer to signals.

In this paper, new Shepard local approximation operators are introduced in Riesz MV-
algebras (Bede and Di Nola, 2004; Di Nola et al., 2003), and based on the Riesz MV-
algebra structure of IoT devices signals, a new algorithm that can fill in the missing data
is defined and tested to prove that it is suitable for the role it was designed. Since several
kernels can be used by the Shepard local approximation operators, the most known ones
will be used in numerical experiments, considering several parametrizations, in order to
determine which are suitable for real applications. In order to have a comprehensive view
about the performance of the proposed method, in the numerical experiments the signal-
to-noise ratio (SNR) was also determined.

In Noje et al. (2003) it was proved that RGB model has the structure of vectorial MV-
algebras. The same algebraic structure is used in this paper to model IoT devices signals.
This leads us to the idea of further applications of the new proposed method in image
processing, like image zooming or reconstruction of missing parts of images.

2. Materials and Methods

In 1958, multivalued algebras, shortly named MV-algebras, were introduced by Chang
(1958; 1959) as the algebraic structures corresponding to the ∞-valued Lukasiewicz
logic.

Definition 1. An MV-algebra is a structure A = (A,⊕,¬,0A) if and only if the follow-
ing axioms are fulfilled:

(A,⊕,¬,0A) is an abelian monoid, (1)

¬¬x = x, (2)

x ⊕ ¬0A = ¬0A, (3)

¬ (¬x ⊕ y) ⊕ y = ¬ (¬y ⊕ x) ⊕ x. (4)

In a MV-algebra A, the constant 1A and the binary operations � and � can be defined
as follows:

1A = ¬0A, (5)
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x � y = ¬(¬x ⊕ ¬y), (6)

x � y = x � ¬y. (7)

Also we can define a distance function d : A × A → A as follows:

d(x, y) = (x � y) ⊕ (y � x). (8)

This distance, as it is defined, is a metric and plays a very important role in image and
signal processing.

By introducing an additional external operation, in 2003, the concept of Vectorial MV-
algebras (Noje and Bede, 2003), shortly named VMV-algebras, was defined. It is an alge-
braic structure that is used in image processing (Noje and Bede, 2001; Noje et al., 2003;
Noje, 2002). Let consider an MV-algebra A and an external operation defined as follows:

• :R+ × A → A. (9)

Definition 2. The MV algebra A is an VMV-algebra if and only if the following axioms
are fulfilled:

1 • x = x,∀x ∈ A, (10)

(a + b) • x = a • x ⊕ b • x,∀x ∈ A and ∀a, b ∈R+, (11)

a • (b • x) � (a · b) • x,∀x ∈ A and ∀a, b ∈R+, (12)

d(a • x, a • y)� a • d(x, y),∀x, y ∈ A and ∀a ∈ R+. (13)

VMV-algebras inspired new algebraic structures, MV-modules and Riesz MV-
algebras, structures that were introduced and studied in Bede and Di Nola (2004), Di
Nola et al. (2003).

Definition 3. An MV-algebra A is a truncated MV-module over the unital latticeal ring
(R, v) if an external operation • : R+ × A → A is defined, such that the following prop-
erties are fulfilled for ∀α,β ∈ R+ and ∀x, y ∈ A.

(α + β) • x = α • x ⊕ β • x, (14)

α • (x ⊕ y) = α • x ⊕ α • y, if x � ¬ y, (15)

α • (β • x) = (α · β) • x, if α,β ∈ [0, v]. (16)

If property

v • x = x, (17)

is also fulfilled, then A is an unital MV-module over unital ring (R, v).
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Definition 4. If an MV-algebra is a truncated unital module over (R,1), it is a Riesz
MV-algebra.

In Di Nola et al. (2003), it was proved that in any Riesz MV-algebra the following
properties are fulfilled:

α • (β • x) � (α · β) • x, (18)

d(α • x,α • y) � α • d(x, y), (19)

0 • x = 0, (20)

α • 0 = 0, (21)

x � y ⇒ α • x � α • y, (22)

α � β ⇒ α • x � β • x, (23)

α • (x ⊕ y)� α • x ⊕ α • y, (24)

for any x, y ∈ A and α,β ∈ R+.
It was also proved that any Riesz MV-algebra is an VMV-algebra, but the reciprocal

statement is not true.

Example 1. If we consider a Boolean algebra A and we define α • x = x,∀x ∈ A and
α ∈ R+, it is easy to prove that all axioms of VMV-algebras are fulfilled, but since 0•x = x

the third axiom of Riesz MV-algebras is not fulfilled, thus A is not a Riesz MV-algebra.
There are examples of VMV algebras that are also Riezs MV-algebras, like the RGB model
(Noje and Bede, 2001; Noje et al., 2003; Noje, 2002) and the fuzzy sets.

Local approximation operators (Bittner, 2002; Lazzaro and Montefusco, 2002; Renka,
1988a; Zuppa, 2004) are used in data processing (Renka, 1988b, 1988c). Two variable
Shepard local approximation operators, operators with application in image processing
and similar structure data, were introduced (Shepard, 1968).

In Bede and Di Nola (2004) it was proved that Riesz MV-algebras are algebraic and
topological structures for data processing, because any method developed in the classical
numerical analysis is applicable in Riesz MV-algebras if the Riesz MV-algebras operations
are used.

Based on this statement, we introduce Shepard local approximation operators on Riesz
MV-algebras. Let us consider a Riesz MV-algebra A, and a function f : [0, n] → A and a
Shepard kernel (Shepard, 1968), which is a strictly decreasing function K : [0,1] → R+.
Also, we consider the set

B(x, r) = {y ∈ [0, n] | |x − y| � r}. (25)

Definition 5. A Shepard local approximation operator is a function S : [0, n] → A de-
fined as follows:
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S(f, x) = ⊕xi∈B(x,r)

K
( |x−xi |

r

)
∑

xi∈B(x,r) K
( |x−xi |

r

) • f (xi), (26)

where ⊕ and • are the Riesz MV-algebra operations.

Considering the statement that any method developed in the classical numerical anal-
ysis is applicable in Riesz MV-algebras if the Riesz MV-algebras operations are used, it is
easy to see that all properties of local Shepard approximation operators hold.

3. Results

For industrial applications, the signals received from IoT devices are processed using com-
puters. If we consider the numerical data types used to store information in computer
memory, if they are stored using t bits, it means that the possible values for data are in
the interval [0,2t − 1]. Some of the operations are partial operations, for instance + is
a partial operation. This leads us to consider that a suitable algebraic structure for these
data types is Riesz MV-algebra.

3.1. Shepard Local Approximation Operators for IoT Device Signal Processing

It was proved that the structure ([0,2t − 1],⊕,¬,0) is an MV-algebra (Noje and Bede,
2001), if the following definitions are used:

x ⊕ y =def min(2t − 1, x + y), (27)

¬ x =def 2t − 1 − x, (28)

∀x, y ∈ [0,2t − 1].
We consider the external operation • : R+ × [0,2t − 1] → [0,2t − 1], defined as fol-

lows:

a • x =def min(2t − 1, a · x), (29)

∀a ∈R+ and ∀x ∈ [0,2t − 1].
It was proved that the structure ([0,2t − 1],⊕,¬,0,•) is a vectorial MV-algebra and

it is easy to see that it is also a Riesz MV-algebra (Noje, 2002).
If we use the above definition of ⊕ and • operations and the formula of the Shepard

local approximation operator from Definition 5, we can define an algorithm that can be
used to fill in the missing data of signals received from IoT devices.

In this paper we consider the most known kernels:

K(u) = 1

u2λ
, Shepard kernel, (30)

K(u) = e−λu2
, Exponential kernel, (31)



136 D. Noje et al.

K(u) =
(

sin (qπu)

sin (πu)

)2λ

, Shepard–Jackson kernel, (32)

where λ is a parameter that can influence the performance of obtained results, and q is the
degree of the Shepard–Jackson kernel. Several other types of kernels can be considered
(Jun-Bao et al., 2014; Xiuyuan et al., 2016; Xiaodan and Bohu, 2001), but testing the
method using these three is enough to prove its efficiency.

3.2. The Missing Data Fill-in Algorithm and Testing Results

We consider that the data sent by an IoT device on regular time intervals is a time-based
function

f : [0, n] → [0,2t − 1]. (33)

We also consider that 0 is the moment when the first signal was sent, and that 1 is
the length of the time interval when a new signal is transmitted by an IoT device. In the
formula of Definition 5, xi are the time intervals when new data was received and x are
the time intervals when no data was received and that has to be approximated.

The fill-in algorithm has the following steps:

1. A kernel has to be selected;
2. The parameter λ is set;
3. If Shepard–Jackson kernel if used, the degree q of the kernel is set;
4. The radius r , that influence how many received values are considered in the approxi-

mation of missing values, is set;
5. All missing values are approximated.

In order to be able to determine the dependency of the algorithm accuracy depend-
ing on the kernel used and on parametrization, several experiments were performed. In
each experiment all kernels and several random parametrizations were considered. We
selectedf (x) = x sin(πx

20 ) as test function and a set of 30 signals that should be received.
Several values were supposed to be missing and were approximated. To reduce the code
complexity, we considered a situation where each z number of values is missing. A con-
tinuous function was considered, since one of the purposes of this algorithm is to be used
to approximate missing values collected by IoT sensor system designed to monitor the
ethanol fermentation during the bioethanol and wine production.

The aim of this paper is to determine which kernel of the three considered is producing
better results. The performance comparison of the new method introduced in this paper
using the three considered kernels and several parametrizations has been done using the
formula

P =
∑

x∈[0,n]

∣∣f (x) − S(f, x)
∣∣, (34)

because we are interested in the overall cumulated error.
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Table 1
Approximation errors when each second value is missing using formula (P).

Parametrization Shepard kernel Exponential kernel Shepard–Jackson kernel

r = 5, λ = 2, q = 15 4.33074 17.7671 90.8879
r = 3, λ = 10, q = 15 3.94205 3.9453 33.3609
r = 5, λ = 10, q = 15 3.94205 4.87258 90.8879
r = 10, λ = 10, q = 15 3.94205 15.685 93.3031
r = 10, λ = 10, q = 60 3.94205 15.685 233.883

Table 2
Approximation errors when each third value is received using using formula (P).

Parametrization Shepard kernel Exponential kernel Shepard–Jackson kernel

r = 5, λ = 2, q = 15 33.5505 26.5892 181.714
r = 3, λ = 10, q = 15 38.5835 35.4093 69.8386
r = 5, λ = 10, q = 15 38.5835 17.8535 182.038
r = 10, λ = 10, q = 15 38.5835 23.5176 227.683
r = 10, λ = 10, q = 60 38.5835 23.5176 296.172

Table 3
Approximation errors when each second value is missing using formula (SNR).

Parametrization Shepard kernel Exponential kernel Shepard–Jackson kernel

r = 5, λ = 2, q = 15 861.081277 89.34913291 2.630481509
r = 3, λ = 10, q = 15 958.1572323 957.2236846 18.79983289
r = 5, λ = 10, q = 15 958.1572323 739.1964225 2.630481509
r = 10, λ = 10, q = 15 958.1572323 113.0449305 3.490112323
r = 10, λ = 10, q = 60 958.1572323 113.0449305 0.683421307

We can raise the question: what results does this new method produce compared to
other existing methods? For this reason we decided to also calculate the Signal-to-noise
ratio (SNR) (Johnson, 2019; González and Woods, 2008), but we will not go deeper in its
analysis, this being the target of a later work.

SNR =
∑

x∈[0,n] S(f, x)2

∑
x∈[0,n] (f (x) − S(f, x))2

. (35)

3.3. Numerical Results

In this experiment we consider two situations: one is when each second value is missing,
and the other is when each third value is received. Also, several parametrizations are con-
sidered. After running the tests, we get the approximation errors listed as follows (Tables 1,
2, 3, 4).

As we can see, by using Shepard and exponential kernels we get the best results. This
result leads us to further consider only the usage of Shepard and exponential kernels as
suitable for applications. In what follows, we present the pattern of approximated values
printed over the original function for two different situations.
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Table 4
Approximation errors when each third value is received using using formula (SNR).

Parametrization Shepard kernel Exponential kernel Shepard–Jackson kernel

r = 5, λ = 2, q = 15 47.08291553 43.50653079 1.39908321
r = 3, λ = 10, q = 15 37.82563498 43.90402941 11.7046936
r = 5, λ = 10, q = 15 37.82563498 106.9724316 1.393220187
r = 10, λ = 10, q = 15 37.82563498 53.8759769 0.769694034
r = 10, λ = 10, q = 60 37.82563498 53.8759769 0.574528505

Fig. 1. The pattern of approximated values in the case when each second value is missing. For r = 3, λ = 10
using Shepard/exponential kernel.

Fig. 2. The pattern of approximated values in the case when each third value is received. For r = 5, λ = 10
using Shepard/exponential kernel.

3.3.1. The Pattern of Approximated Values in the Case when Each Second Value is
Missing. Parametrization: r = 3, λ = 10 (Fig. 1)

In the considered example, the approximated values generated using the Shepard and ex-
ponential kernels deliver very similar results considering both the error of approximation
and shapes of the original and the approximated functions. It has to be mentioned that we
get a very small advantage by using the exponential kernel.

3.3.2. The Pattern of Approximated Values in the Case when Each Third Value is
Received. Parametrization: r = 5, λ = 10 (Fig. 2)

In this second example, the approximated values generated using the Shepard and expo-
nential kernels deliver very different results both considering the error of approximation
and the shapes of the original and the approximated functions. The shape of the function
obtained using the exponential kernel fits much better to the shape of the original function
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than the shape of the function obtained using the Shepard kernel. Considering this, we can
state that by using the exponential kernel we get a very clear advantage, especially when
a large amount of data is missing.

4. Conclusion

As mentioned above, we further consider only the usage of Shepard and exponential ker-
nels for industrial applications. The results are influenced the most by value of λ when
Shepard kernel is used, but there does not exist a clear dependence of approximation er-
ror on parametrization when exponential kernel is used. Thus, methods should be fur-
ther developed to determine the proper set of parameters for each of the kernels. This
parametrization may depend also on the shape of the function that has to be approximated
and on the volume of missing data. In this optimization process, other error measuring
methods can be considered, depending on the real industrial process that is to be mod-
elled.

Another research direction is to introduce Shepard local approximation operators to
approximate two-dimension functions, and a more general case for multi-dimension func-
tions, since in most of the cases, a value of a production system is influenced by several
parameters, not only by one (Noje et al., 2019).

The structure ([0,2t − 1],⊕,¬,0,•) that models the model of IoT devices signals is
also the structure that models the RGB model (Noje et al., 2003). This leads us to the
idea of further applications of the new proposed method in image processing, like image
zooming or reconstruction of missing parts of images.
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