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Abstract. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a very com-
mon and useful method for solving multi-criteria decision making problems in certain and uncertain
environments. Single valued neutrosophic hesitant fuzzy set (SVNHFS) and interval neutrosophic
hesitant fuzzy set (INHFS) are developed on the integration of neutrosophic set and hesitant fuzzy
set. In this paper, we extend TOPSIS method for multi-attribute decision making based on single
valued neutrosophic hesitant fuzzy set and interval neutrosophic hesitant fuzzy set. Furthermore,
we assume that the attribute weights are known, incompletely known or completely unknown. We
establish two optimization models for SVNHFS and INHFS with the help of maximum deviation
method. Finally, we provide two numerical examples to validate the proposed approach.
Key words: hesitant fuzzy set, neutrosophic set, single valued neutrosophic hesitant fuzzy set,
interval neutrosophic hesitant fuzzy set, multi-attribute decision making, TOPSIS.

1. Introduction

Decision making is a popular field of study in the areas of Operations Research, Man-
agement Science, Medical Science, Data Mining, etc. Multi-attribute decision making
(MADM) refers to making choice of an alternative from a finite set of alternatives. For
solving MADM problem, there exist many well-known methods such as TOPSIS (Hwang
and Yoon, 1981), VIKOR (Opricovic and Tzeng, 2004), PROMETHEE (Brans et al.,
1986), ELECTRE (Roy, 1990), AHP (Satty, 1980), DEMATEL (Gabus and Fontela,
1972), MULTIMOORA (Brauers and Zavadskas, 2006, 2010), TODIM (Gomes and
Lima, 1992a, 1992b), WASPAS (Zavadskas et al., 2014), COPRAS (Zavadskas et al.,
1994), EDAS (Keshavarz Ghorabaee et al., 2015), MAMVA (Kanapeckiene et al., 2011),
DNMA (Liao and Wu, 2019), etc. Wu and Liao (2019) developed consensus-based proba-
bilistic linguistic gained and lost dominance score method for multi-criteria group decision
making problem. Hafezalkotob et al. (2019) proposed an overview of MULTIMOORA for
multi-criteria decision making for theory, developments, applications, and challenges. Mi
et al. (2019) surveyed on integrations and applications of the best worst method in decision
making. Among those methods, TOPSIS method has gained a lot of attention in the past
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decade and many researchers have applied the method for solving MADM problems in dif-
ferent environments (Zavadskas et al., 2016). The weight information and attribute value
generally carry imprecise value for MADM in uncertain environment, which is effectively
dealt with fuzzy sets (Zadeh, 1965), intuitionistic fuzzy sets (Atanassov, 1986), hesitant
fuzzy sets (Torra, 2010), and neutrosophic sets (Smarandache, 1998). Chen (2000) intro-
duced the TOPSIS method in fuzzy environment and considered the rating value of the
alternative and attribute weight in terms of triangular fuzzy number. Boran et al. (2009)
extended the TOPSIS method for multi-criteria group decision making under the intu-
itionistic fuzzy set to solve supplier selection problem. Ye (2010) extended the TOPSIS
method with interval valued intuitionistic fuzzy number. Xu and Zhang (2013) proposed
TOPSIS method for MADM under the hesitant fuzzy set with incomplete weight informa-
tion. Fu and Liao (2019) developed TOPSIS method for multi-expert qualitative decision
making involving green mine selection under unbalanced double hierarchy linguistic term
set.

Neutrosophic set is a generalization of the fuzzy set, hesitant fuzzy set and intuition-
istic fuzzy set. It has three membership functions – truth membership, falsity member-
ship and indeterminacy membership functions. This set has been successfully applied
in various decision making problems (Peng et al., 2014; Ye, 2014; Kahraman and Otay,
2019; Stanujkic et al., 2017). Biswas et al. (2016a) proposed TOPSIS method for multi-
attribute group decision making under single valued neutrosophic environment. Biswas
et al. (2019a) further extended TOPSIS method using non-linear programming approach
to solve multi-attribute group decision making. Chi and Liu (2013) developed TOPSIS
method based on interval neutrosophic set. Ye (2015a) extended the TOPSIS method for
single valued linguistic neutrosophic number. Biswas et al. (2018) developed the TOPSIS
method for single valued trapezoidal neutrosophic number and Giri et al. (2018) pro-
posed the TOPSIS method for interval trapezoidal neutrosophic number by considering
unknown attribute weight.

In decision making problem, decision makers may sometime hesitate to assign a sin-
gle value for rating the alternatives due to doubt or incomplete information. Instead, they
prefer to assign a set of possible values to represent the membership degree for any el-
ement to the set. To deal with the issue, Torra (2010) coined the idea of hesitant fuzzy
set, which is a generalization of fuzzy set and intuitionistic fuzzy set. Until then, hesitant
fuzzy set has been successfully applied in decision making problems (Xia and Xu, 2011;
Rodriguez et al., 2012; Zhang and Wei, 2013). Xu and Xia (2011a, 2011b) proposed a
variety of distance measures for hesitant fuzzy set. Wei (2012) introduced hesitant fuzzy
prioritized operators for solving MADM problem. Beg and Rashid (2013) proposed TOP-
SIS method for MADM with hesitant fuzzy linguistic term set. Liao and Xu (2015) de-
veloped approaches to manage hesitant fuzzy linguistic information based on the cosine
distance and similarity measures for HFLTSs and their application in qualitative decision
making. Joshi and Kumar (2016) introduced Choquet integral based TOPSIS method for
multi-criteria group decision making with interval valued intuitionistic hesitant fuzzy set.

However, hesitant fuzzy set can not present inconsistent, imprecise, inappropriate and
incomplete information because the set has only truth hesitant membership degree to ex-
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press any element to the set. To handle this problem, Ye (2015b) introduced single val-
ued neutrosophic hesitant fuzzy sets (SVNHFS) which have three hesitant membership
functions – truth membership, indeterminacy membership and falsity membership func-
tions. Interval neutrosophic hesitant fuzzy sets (INHFS) (Liu and Shi, 2015), a generaliza-
tion of SVNHFS, are also powerful to resolve the difficulty in decision making problem.
Ye (2016) developed correlation coefficients of interval neutrosophic hesitant fuzzy sets
and its application in the MADM method. SVNHFS and INHFS further give possibility
to handle uncertain, incomplete, inconsistent information in real world decision making
problems. Sahin and Liu (2017) defined correlation coefficient of SVNHFS and applied
it in decision making problems. Biswas et al. (2016b) proposed GRA method for MADM
with SVNHFS for known attribute weight. Ji et al. (2018) proposed a projection–based
TODIM approach under multi-valued neutrosophic environments for personnel selection
problem. Biswas et al. (2019b) further extended the GRA method for solving MADM
with SVNHFS and INHFS for partially known or unknown attribute weight.

Until now, little research has been done on the TOPSIS method for solving MADM un-
der SVNHFS and INHFS environments. We also observe that the TOPSIS method has not
been studied earlier under SVNHFS as well as INHFS environment for solving MADM
problems, when the weight information of the attribute is incompletely known or com-
pletely unknown. Therefore, we have an opportunity to extend the traditional methods or
to propose some new methods for TOPSIS to deal with MADM problems with partially
known or unknown weight information under SVNHFS and INHFS environments, which
can play an effective role to deal with uncertain and indeterminate information in MADM
problems.

In view of the above context, we have the following objectives in this study:

• To formulate an SVNHFS based MADM problem, where the weight information is
incompletely known and completely unknown.

• To determine the weights of attributes given in incompletely known and completely
unknown forms using deviation method.

• To extend the TOPSIS method for solving an SVNHFS based MADM problem using
the proposed optimization model.

• To further extend the proposed approach in INHFS environment.
• To validate the proposed approach with two numerical examples.
• To compare the proposed method with some existing methods.

The remainder of this article is organized as follows. Section 2 gives preliminaries for
neutrosophic set, single valued neutrosophic set, interval neutrosophic sets, hesitant fuzzy
set, SVNHFS and INHFS. Section 2 also represents score function, accuracy function
and distance function of SVNHFS and INHFS. Section 3 and Section 4 develop TOPSIS
method for MADM under SVNHFS and INHFS, respectively. Section 5 presents two nu-
merical examples to validate the proposed method and provides a comparative study be-
tween the proposed method and existing methods. Finally, conclusion and future research
directions are given in Section 6.
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2. Preliminaries of Neutrosophic Sets and Single Valued Neutrosophic Set

In this section, we recall some basic definitions of hesitant fuzzy set, single valued neu-
trosophic set, and interval neutrosophic fuzzy sets.

2.1. Single Valued Neutrosophic Set

Definition 1 (See Smarandache, 1998; Haibin et al., 2010). A single valued neutro-
sophic set A in a universe of discourse X = (x1, x2, . . . , xn) is defined as

A = {〈
TA(x), IA(x),FA(x)

〉 ∣∣x ∈ X
}
, (1)

where the functions TA(x), IA(x) and FA(x), respectively, denote the truth, indeterminacy
and falsity membership functions of x ∈ X to the set Ã, with the conditions 0 � TA(x) � 1,
0 � IA(x) � 1, 0 � FA(x) � 1, and

0 � TA(x) + IA(x) + FA(x) � 3. (2)

For convenience, we take a single valued neutrosophic set A = {〈TA(x), IA(x),FA(x)〉 |
x ∈ X} as A = 〈TA, IA,FA〉 and call it single valued neutrosophic number (SVNN).

2.2. Interval Neutrosophic Set

Definition 2 (See Wang et al., 2005). Let X be a non empty finite set. Let D[0,1] be
the set of all closed sub-intervals of the unit interval [0,1]. An interval neutrosophic set
(INS) Ã in X is an object having the form:

Ã = {〈
x,T

Ã
(x), I

Ã
(x),F

Ã
(x)
〉|x ∈ X

}
, (3)

where T
Ã

: X → D[0,1], I
Ã

: X → D[0,1], F
Ã

: X → D[0,1] with the condition 0 �
T

Ã
(x)+ I

Ã
(x)+F

Ã
(x) � 3 for any x ∈ X. The intervals T

Ã
(x), I

Ã
(x) and F

Ã
(x) denote,

respectively, the truth, the indeterminacy and the falsity membership degrees of x to Ã.
Then, for each x ∈ X, the lower and the upper limit points of closed intervals of T

Ã
(x),

I
Ã
(x) and F

Ã
(x) are denoted by [T L

Ã
(x), T U

Ã
(x)], [IL

Ã
(x), IU

Ã
(x)], and [FL

Ã
(x), FU

Ã
(x)],

respectively. Thus INS Ã can also be presented in the following form:

Ã = {〈
x,
[
T L

Ã
(x), T U

Ã
(x)
]
,
[
IL

Ã
(x), IU

Ã
(x)
]
,
[
FL

Ã
(x),FU

Ã
(x)
]〉 ∣∣x ∈ X

}
,

where, 0 � T U

Ã
(x) + IU

Ã
(x) + FU

Ã
(x) � 3 for any x ∈ X. For convenience of notation, we

consider Ã = 〈[T L

Ã
, T U

Ã
], [IL

Ã
, IU

Ã
], [FL

Ã
,FU

Ã
]〉 as an interval neutrosophic number (INN),

where 0 � T U

Ã
+ IU

Ã
+ FU

Ã
� 3 for any x ∈ X.
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2.3. Hesitant Fuzzy Set

Definition 3 (See Torra, 2010). Let X be a universe of discourse. A hesitant fuzzy set
on X is symbolized by

A = {〈
x,hA(x)

〉 ∣∣x ∈ X
}
, (4)

where hA(x), referred to as the hesitant fuzzy element, is a set of some values in [0,1]
denoting the possible membership degree of the element x ∈ X to the set A.

From mathematical point of view, an HFS A can be seen as an FS if there is only one
element in hA(x). For notational convenience, we assume h as hesitant fuzzy element
hA(x) for x ∈ X.

Definition 4 (See Chen et al., 2013). Let X be a non-empty finite set. An interval hesitant
fuzzy set on X is represented by

E = {〈
x, h̃E(x)

〉 ∣∣x ∈ X
}
,

where h̃E(x) is a set of some different interval values in [0,1], which denote the possible
membership degrees of the element x ∈ X to the set E. h̃E(x) can be represented by an
interval hesitant fuzzy element h̃ which is denoted by {γ̃ |γ̃ ∈ h̃}, where γ̃ = [γ L, γ U ] is
an interval number.

Definition 5 (See Ye, 2015a). Let X be a fixed set. Then a N on X is defined as

N = {〈
x, t (x), i(x), f (x)

〉 | x ∈ X
}
, (5)

in which t (x), i(x) and f (x) represent three sets of some values in [0,1], denoting, respec-
tively, the possible truth, indeterminacy and falsity membership degrees of the element
x ∈ X to the set N . The membership degrees t (x), i(x) and f (x) satisfy the following
conditions:

0 � δ, γ, η � 1, 0 � δ+ + γ + + η+ � 3,

where δ ∈ t (x), γ ∈ i(x), η ∈ f (x), δ+ ∈ t+(x) = ⋃
δ∈t (x) max t (x), γ + ∈ i+(x) =⋃

γ∈t (x) max i(x) and η+ ∈ f +(x) =⋃
η∈f (x) maxf (x) for all x ∈ X.

n(x) = 〈t (x), i(x), f (x)〉 is called single valued neutrosophic hesitant fuzzy element
(SVNHFE) denoted by n = 〈t, i, f 〉. The number of values for possible truth, indeter-
minacy and falsity membership degrees of the element in different SVNHFEs may be
different.
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Definition 6 (See Liu and Shi, 2015). Let X be a non-empty finite set. Then an interval
neutrosophic hesitant fuzzy set on X is represented by

ñ = {〈
x, t̃(x), ĩ(x), f̃ (x)

〉 ∣∣x ∈ X
}
,

where t̃ (x) = {γ̃ |γ̃ ∈ t̃ (x)}, ĩ(x) = {γ̃ |γ̃ ∈ ĩ(x)} and f̃ (x) = {γ̃ |γ̃ ∈ f̃ (x)} are three sets
of some interval values in real unit interval [0,1], which denote the possible truth, indeter-
minacy and falsity membership hesitant degrees of the element x ∈ X to the set N . These
values satisfy the limits:

γ̃ = [
γ L, γ U

]⊆ [0,1], δ̃ = [
δL, δU

]⊆ [0,1], η̃ = [
ηL,ηU

]⊆ [0,1]

and 0 � γ̃ + + δ̃+ + η̃+ � 3, where γ̃ + = ⋃
γ̃∈t̃ (x) sup t̃ (x), δ̃+ = ⋃

δ̃∈t̃ (x) sup ĩ(x) and
η̃+ = ⋃

η̃∈t̃ (x) sup f̃ (x). Then ñ = {t̃ (x), ĩ(x), f̃ (x)} is called an interval neutrosophic
hesitant fuzzy element (INHFE) which is the basic unit of the INHFS and is represented
by the symbol ñ = {t̃ , ĩ, f̃ } for convenience.

2.4. Score Function, Accuracy Function and Distance Function of SVNHFEs and
INHFEs

Definition 7 (See Biswas et al., 2016b). Let ni = 〈ti , ii , fi〉 (i = 1,2, . . . , n) be a col-
lection of SVNHFEs. Then the score function S(ni), the accuracy function A(ni) and the
certainty function C(ni) of ni (i = 1,2, . . . , n) can be defined as follows:

1. S(ni) = 1
3

[
2 + 1

lt

∑
γ∈t γ − 1

li

∑
δ∈i δ − 1

lf

∑
η∈f η

]
;

2. A(ni) = 1
lt

∑
γ∈t γ − 1

lf

∑
η∈f η;

3. C(ni) = 1
lt

∑
γ∈t γ .

Example 1. Let n1 = 〈{0.3,0.4,0.5}, {0.1}, {0.3,0.4}〉 be an SVNHFE, then by Defini-
tion 7, we have

1. S(n1) = 1
3 [2 + 1.2

3 − 0.1 − 0.7
2 ] = 0.65;

2. A(n1) = 1.2
3 − 0.7

2 = 0.05;
3. C(n1) = 1.2

3 = 0.4.

Definition 8 (See Biswas et al., 2016b). Let n1 = 〈t1, i1, f1〉 and n2 = 〈t2, i2, f2〉 be two
SVNHFEs. Then the following rules can be defined for comparison purpose:

1. If s(n1) > s(n2), then n1 is greater than n2, i.e. n1 is superior to n2, denoted by n1 � n2.
2. If s(n1) = s(n2) and A(n1) > A(n2), then n1 is greater than n2, i.e. n1 is superior to

n2, denoted by n1 � n2.
3. If s(n1) = s(n2) and A(n1) = A(n2), and C(n1) > C(n2), then n1 is greater than n2,

i.e. n1 is superior to n2, denoted by n1 � n2.
4. If s(n1) = s(n2) and A(n1) = A(n2), and C(n1) = C(n2), then n1 is equal to n2, i.e.

n1 is indifferent to n2, denoted by n1 ∼ n2.



TOPSIS Method for Neutrosophic Hesitant Fuzzy Multi-Attribute Decision Making 41

Example 2. Let n1 = 〈{0.3,0.4,0.5}, {0.1}, {0.3,0.4}〉 and n2 = 〈{0.6,0.7}, {0.1,0.2},
{0.2,0.3}〉 be two SVNHFEs, then by Definition 7, we have

S(n1) = 0.65, A(n1) = 0.05, C(n1) = 0.40,

S(n2) = 0.75, A(n2) = 0.40, C(n2) = 0.65.

Since S(n2) > S(n1), therefore, we have n2 � n1 from Definition 8. We take another
example to compare SVNHFEs.

Example 3. Let n1 = 〈{0.5,0.6}, {0.2}, {0.2,0.3}〉 and n2 = 〈{0.7,0.8}, {0.3}, {0.3,0.4}〉
be two SVNHFEs. Then by Definition 7, we have

S(n1) = 0.70, A(n1) = 0.30, C(n1) = 0.55,

S(n2) = 0.70, A(n2) = 0.40, C(n2) = 0.75.

Since S(n2) = S(n1) and A(n2) > A(n1), we have n2 � n1 from Definition 8.

Definition 9 (See Biswas et al., 2016b). Let ñi = 〈t̃i , ĩi , f̃i〉 (i = 1,2, . . . , n) be a col-
lection of INHFEs. Then the score function S(ñi), the accuracy function A(ñi) and the
certainty function C(ñi) of ñi (i = 1,2, . . . , n) can be defined as follows:

1. S(ñi) = 1
6

[
4 + 1

lt

∑
γ∈t (γ

L + γ U) − 1
li

∑
δ∈i (δ

L + δU ) − 1
lf

∑
η∈f (ηL + ηU)

]
;

2. A(ñi) = 1
2

[ 1
lt

∑
γ∈t (γ

L + γ U) − 1
lf

∑
η∈f (ηL + ηU)

]
;

3. C(ñi) = 1
2

[ 1
lt

∑
γ∈t (γ

L + γ U)
]
.

Example 4. Let ñ1 = 〈{[0.3,0.4], [0.4,0.5]}, {[0.1,0.2]}, {[0.3,0.4]}〉 be an INHFE,
then by the above definition, we have

1. S(ñ1) = 1
6

[
4 + 1

2 (0.7 + 0.9) − (0.1 + 0.2) − (0.3 + 0.4)
]= 0.63;

2. A(ñ1) = 1
2

[ 1
2 (0.7 + 0.9) − (0.3 + 0.4)

]= 0.05;
3. C(ñ1) = 1

2

[ 1
2 (0.7 + 0.9)

]= 0.4.

Definition 10. Let n1 = 〈t1, i1, f1〉 and n2 = 〈t2, i2, f2〉 be two INHFEs. Then the fol-
lowing rules can be defined to compare INHFEs:

1. If s(ñ1) > s(ñ2), then ñ1 is greater than ñ2, denoted by ñ1 � ñ2.
2. If s(ñ1) = s(ñ2) and A(ñ1) > A(ñ2), then ñ1 is greater than ñ2, denoted by ñ1 � ñ2.
3. If s(ñ1) = s(ñ2) and A(ñ1) = A(ñ2), and C(ñ1) > C(ñ2), then ñ1 is greater than ñ2,

denoted by ñ1 � ñ2.
4. If s(ñ1) = s(ñ2) and A(ñ1) = A(ñ2), and C(ñ1) = C(ñ2), then ñ1 is equal to ñ2, de-

noted by ñ1 ∼ ñ2.

Example 5. Let ñ1 = 〈{[0.3,0.4], [0.4,0.5]}, {[0.1,0.2]}, {[0.3,0.4]}〉 and ñ2 = 〈{[0.5,

0.6]}, {[0.1,0.2], [0.2,0.3]}, {[0.2,0.3]}〉 be two INHFEs, then by Definition 9, we have

S(ñ1) = 0.63, A(ñ1) = 0.05, C(ñ1) = 0.40;
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S(ñ2) = 0.70, A(ñ2) = 0.30, C(ñ2) = 0.55.

Following Definition 10, and the relation S(ñ2) > S(ñ1) we can say n2 � n1.

Definition 11 (See Biswas et al., 2018). Let n1 = 〈t1, i1, f1〉 and n2 = 〈t2, i2, f2〉 be two
SVNHFEs. Then the normalized Hamming distance between n1 and n2 is defined as fol-
lows:

D(n1, n2) = 1

3

(∣∣∣∣ 1

lt1

∑
γ1∈t1

γ1 − 1

lt2

∑
γ2∈t2

γ2

∣∣∣∣+
∣∣∣∣ 1

li1

∑
δ1∈i1

δ1 − 1

li2

∑
δ2∈i2

δ2

∣∣∣∣
+
∣∣∣∣ 1

lf1

∑
η1∈f1

η1 − 1

lf2

∑
η2∈f2

η2

∣∣∣∣
)

, (6)

where ltk , lik and lfk
are numbers of possible membership values in nk for k = 1,2.

Example 6. Let n1 = 〈{0.3,0.4,0.5}, {0.1}, {0.3,0.4}〉 and n2 = 〈{0.6,0.7}, {0.1,0.2},
{0.2,0.3}〉 be two SVNHFEs, then by the above definition, we have the distance measure
between n1 and n2

D(n1, n2) = 1

3

(∣∣∣∣13 (0.3 + 0.4 + 0.5) − 1

2
(0.6 + 0.7)

∣∣∣∣+
∣∣∣∣0.1 − 1

2
(0.1 + 0.2)

∣∣∣∣
+
∣∣∣∣12 (0.3 + 0.4) − 1

2
(0.2 + 0.3)

∣∣∣∣
)

= 0.1333.

Definition 12 (See Biswas et al., 2018). Let ñ1 = 〈t̃1, ĩ1, f̃1〉 and ñ2 = 〈t̃2, ĩ2, f̃2〉 be two
INHFEs. Then the normalized Hamming distance between ñ1 and ñ2 is defined as follows:

D̃(ñ1, ñ2)

= 1

6

⎛
⎜⎜⎜⎜⎝

∣∣ 1
lt̃1

∑
γ1∈t̃1

γ L
1 − 1

lt̃2

∑
γ2∈t̃2

γ L
2

∣∣+ ∣∣ 1
lt̃1

∑
γ1∈t̃1

γ U
1 − 1

lt̃2

∑
γ2∈t̃2

γ U
2

∣∣
+ ∣∣ 1

l
ĩ1

∑
δ1∈ĩ1

δL
1 − 1

l
ĩ2

∑
δ2∈ĩ2

δL
2

∣∣+ ∣∣ 1
l
ĩ1

∑
δ1∈ĩ1

δU
1 − 1

l
ĩ2

∑
δ2∈ĩ2

δU
2

∣∣
+ ∣∣ 1

l
f̃1

∑
η1∈f̃1

ηL
1 − 1

l
f̃2

∑
η2∈f̃2

ηL
2

∣∣+ ∣∣ 1
l
f̃1

∑
η1∈f̃1

ηU
1 − 1

l
f̃2

∑
η2∈f̃2

ηU
2

∣∣

⎞
⎟⎟⎟⎟⎠ ,

(7)

where lt̃k , l
ĩk

and l
f̃k

are numbers of possible membership values in nk for k = 1,2.

Example 7. Let ñ1 = 〈{[0.3,0.4], [0.4,0.5]}, {[0.1,0.2]}, {[0.3,0.4]}〉 and ñ2 =
〈{[0.5,0.6]}, {[0.1,0.2], [0.2,0.3]}, {[0.2,0.3]}〉 be two INHFEs. Using the above defi-
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nition, we have the distance measure between ñ1 and ñ2

D̃(ñ1, ñ2) = 1

6

⎛
⎜⎝

| 1
2 (0.3 + 0.4) − 0.5| + | 1

2 (0.4 + 0.5) − 0.6|
+ |0.1 − 1

2 (0.1 + 0.2)| + |0.2 − 1
2 (0.2 + 0.3)|

+ |0.3 − 0.2| + |0.4 − 0.3|

⎞
⎟⎠

= 1

6
(0.15 + 0.15 + 0.05 + 0.05 + 0.10 + 0.10) = 0.10.

3. TOPSIS Method for MADM with SVNHFS Information

In this section, we propose TOPSIS method to find out the best alternative in MADM
with SVNHFSs. Suppose that A = {A1,A2, . . . ,Am} be the discrete set of m alternatives
and C = {C1,C2, . . . ,Cn} be the set of n attributes for a SVNHFSs based multi-attribute
decision making problem. Also, assume that the rating value of the i-th alternative Ai (i =
1,2, . . . ,m) over the attribute Cj (j = 1,2, . . . , n) is considered with SVNHFSs xij =
(tij , iij , fij ), where tij = {γij | γij ∈ tij ,0 � γij � 1}, iij = {δij | δij ∈ iij ,0 � δij � 1}
and fij = {ηij | ηij ∈ fij ,0 � ηij � 1} indicate the possible truth, indeterminacy and
falsity membership degrees of the i-th alternative Ai over the j -th attribute Cj for i =
1,2, . . . ,m and j = 1,2, . . . , n. Then we can construct a SVNHFS based decision matrix
X = (xij )m×n which has entries as the SVNHFSs and can be written as

X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤
⎥⎥⎥⎦ . (8)

Now, we extend the TOPSIS method for MADM in single-valued neutrosophic hesitant
fuzzy environment. Before going to discuss in details, we briefly mention some important
steps of the proposed model. First, we consider the weights of attributes which may be
known, incompletely known or completely unknown. For known cases, we easily employ
the weights of attributes in the TOPSIS method with SVNHFs. But the problem arises for
later two cases, because we can not employ the incomplete or unknown weights directly
in the TOPSIS method under neutrosophic hesitant fuzzy environment. To deal with the
issue, we develop optimization models to determine the exact weights of attributes using
maximum deviation method (Yingming, 1997). Following TOPSIS method, we then de-
termine the Hamming distance measure of each alternative from the positive and negative
ideal solutions. Finally, we obtain the relative closeness co-efficient of each alternative to
determine the most preferred alternative.

We elaborate the following steps used in the proposed model.

Step 1. Determine the weights of attributes.

Case 1a. If the information of attribute weights is completely known and is given as w =
(w1,w2, . . . ,wn)

T , with wj ∈ [0,1] and
∑n

j=1 wj = 1, then go to Step 2.
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However, in case of real decision making, due to time pressure, lack of knowledge
or decision makers’ limited expertise in the public domain, the information about the at-
tribute weights is often incompletely known or completely unknown. In this situation,
when the attribute weights are partially known or completely unknown, we use the max-
imizing deviation method proposed by Yingming (1997) to deal with MADM problems.
For an MADM problem, Yingming suggested that when an attribute has a larger devia-
tion among the alternatives, a larger weight should be assigned and when an attribute has
a smaller deviation among the alternatives, a smaller weight should be assigned, and when
an attribute has no deviation, zero weight should be assigned.

Now, we develop an optimization model based on maximizing deviation method to de-
termine the optimal relative weights of attributes under SVNHF environment. For the at-
tribute Cj ∈ C, the deviation of alternative Ai to all the other alternatives can be defined as

Dij (w) =
m∑

k=1

wjD(xij , xkj ), for i = 1,2, . . . ,m; j = 1,2, . . . , n. (9)

In Eq. (6), the Hamming distance D(xij , xkj ) is defined as

D(xij , xkj ) = 1

3

⎛
⎜⎜⎜⎝

∣∣ 1
ltij

∑
γij ∈tij

γij − 1
ltkj

∑
γkj ∈tkj

γkj

∣∣
+ ∣∣ 1

liij

∑
δij ∈iij

δij − 1
likj

∑
δkj ∈ikj

δkj

∣∣
+ ∣∣ 1

lfij

∑
ηij ∈fij

ηij − 1
lfkj

∑
ηkj ∈fkj

ηkj

∣∣

⎞
⎟⎟⎟⎠

= 1

3

(
�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj )

)
, (10)

where

�T (xij , xkj ) =
∣∣∣∣ 1

ltij

∑
γij ∈tij

γij − 1

ltkj

∑
γkj ∈tkj

γkj

∣∣∣∣,
�I (xij , xkj ) =

∣∣∣∣ 1

lfij

∑
ηij ∈fij

ηij − 1

lfkj

∑
ηkj ∈fkj

ηkj

∣∣∣∣,
�F(xij , xkj ) =

∣∣∣∣ 1

lfij

∑
ηij ∈fij

ηij − 1

lfkj

∑
ηkj ∈fkj

ηkj

∣∣∣∣,
and ltij , liij and lfij

denote the numbers of possible membership values in xil for l = j, k.
We now consider the deviation values of all alternatives to other alternatives for the

attribute xj ∈ X (j = 1,2, . . . , n):

Dj(w) =
m∑

i=1

Dij (wj )

=
m∑

i=1

m∑
k=1

wj

3

(
�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj )

)
. (11)
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Case 2a: The information about the attribute weights is incomplete.

In this case, we develop some model to determine the attribute weights. Suppose that the
attribute’s incomplete weight information H is given by

1. A weak ranking: {wi � wj }, i 
= j ;
2. A strict ranking: {wi − wj � εi(> 0)}, i 
= j ;
3. A ranking of difference: {wi − wj �wk − wp}, i 
= j 
= k 
= p;
4. A ranking with multiples: {wi � αiwj }, 0 � αi � 1, i 
= j ;
5. An interval form: {βi � wi � βi + εi(> 0)}, 0 � βi � βi + εi � 1.

For these cases, we construct the following constrained optimization model based on the
set of known weight information H :

M–1.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxD(w) =
n∑

j=1

m∑
i=1

m∑
k=1

wj

3

(
�T (xij , xkj ) + �I (xij , xkj )

+ �F(xij , xkj )

)
,

subject to w ∈ H, wj � 0,
n∑

j=1
wj = 1, j = 1,2, . . . , n.

(12)

By solving Model-1, we can obtain the optimal solution w = (w1,w2, . . . ,wn)
T , which

can be used as the weight vector of the attributes to proceed to Step 2.

Case 3a: The information about the attribute weights is completely unknown.

In this case, we develop the following non-linear programming model to select the weight
vector W , which maximizes all deviation values for all the attributes:

M–2.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxD(w) =
n∑

j=1

m∑
i=1

m∑
k=1

wj

3

(
�T (xij , xkj ) + �I (xij , xkj )

+ �F(xij , xkj )

)
,

s.t. wj � 0, j = 1,2, . . . , n;
n∑

j=1
w2

j = 1.

(13)

The Lagrange function corresponding to the above constrained optimization problem is
given by

L(w,λ) =
n∑

j=1

m∑
i=1

m∑
k=1

wj

3

(
�T (xij , xkj ) + �I (xij , xkj )

+ �F(xij , xkj )

)
+ λ

6

(
n∑

j=1

w2
j − 1

)
,

(14)

where λ is a real number denoting the Lagrange multiplier. The partial derivatives of L

with respect to wj and λ are given by

∂L

∂wj

= 1

3

m∑
i=1

m∑
k=1

(
�T (xij , xkj ) + �I (xij , xkj )

+ �F(xij , xkj )

)
+ λ

3
wj = 0, (15)

∂L

∂λ
= 1

6

(
n∑

j=1

w2
j − 1

)
= 0. (16)
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It follows from Eq. (15) that

wj = −
(

m∑
i=1

m∑
k=1

(
�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj )

))/
λ, (17)

for i = 1,2, . . . ,m.
Putting this value of wj in (16), we get

λ2 =
n∑

j=1

(
m∑

i=1

m∑
k=1

(
�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj )

))2

(18)

or

λ = −

√√√√√ n∑
j=1

(
m∑

i=1

m∑
k=1

(
�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj )

))2

, (19)

where λ < 0 and
m∑

i=1

m∑
k=1

(�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj ))

represents the sum of deviations of all the attributes with respect to the j -th attribute and

n∑
j=1

(

m∑
i=1

m∑
k=1

(�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj )))
2

represents the sum of deviations of all the alternatives with respect to all the attributes.
Then by combining equations (17) and (19), we obtain weight wj for j = 1,2, . . . , n as

wj =
∑m

i=1
∑m

k=1(�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj ))√∑n
j=1(

∑m
i=1

∑m
k=1(�T (xij , xkj ) + �I (xij , xkj ) + �F(xij , xkj )))2

.

(20)

We make the sum of wj (j = 1,2, . . . , n) into a unit to normalize the weight of the j -th
attribute:

wN
j = wj∑n

j=1 wj

, j = 1,2, . . . , n; (21)

and consequently, we obtain the weight vector of the attribute as

W = (
wN

1 ,wN
2 , . . . ,wN

n

)
for proceeding to Step-2.
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Step 2. Determine the positive ideal alternative and negative ideal alternative.

From decision matrix X = (xij )m×n, we can determine the single valued neutrosophic
hesitant fuzzy positive ideal solution A+ and the single valued neutrosophic hesitant
fuzzy negative ideal solution (SVNHFNIS) A− of alternatives as follows:

A+ = (
A+

1 ,A+
2 , . . . ,A+

n

)
=
{〈

max
i

{
γ

σ(p)
ij

}
,min

i

{
δ
σ(q)
ij

}
,min

i

{
η

σ(r)
ij

}〉|i = 1,2, . . . ,m; j = 1,2, . . . , n
}
,

(22)

A− = (
A−

1 ,A−
2 , . . . ,A−

n

)
=
{〈

min
i

{
γ

σ(p)
ij

}
,max

i

{
δ
σ(q)
ij

}
,max

i

{
η

σ(r)
ij

}〉|i = 1,2, . . . ,m and j = 1,2, . . . , n
}
.

(23)

Here, we compare the attribute values xij by using score, accuracy and certainty values
of SVNHFEs defined in Definition 7.

Step 3. Determine the distance measure from the ideal alternatives to each alternative.

In order to determine the distance measure between the positive ideal alternative A+ and
the alternative Ai , we use the following equation:

D+
i =

n∑
j=1

wjD
(
xij , x

+
j

)

= wj

3

⎛
⎜⎜⎜⎝
∣∣ 1
ltij

∑
γij ∈tij

γij − 1
l
t
+
j

∑
γ +
j ∈t+j

γ +
j

∣∣
+ ∣∣ 1

liij

∑
δij ∈iij

δij − 1
likj

∑
δ−
j ∈i+j

δ+
j

∣∣
+ ∣∣ 1

lfij

∑
ηij ∈fij

ηij − 1
lfkj

∑
η−
j ∈f +

j
η+

j

∣∣

⎞
⎟⎟⎟⎠ (24)

for i = 1,2, . . . ,m. Similarly, we can determine the distance measure between the negative
ideal alternative A− and the alternative Ai (i = 1,2, . . . ,m) by the following equation:

D−
i =

n∑
j=1

wjD
(
xij , x

−
j

)

= wj

3

⎛
⎜⎜⎜⎝
∣∣ 1
ltij

∑
γij ∈tij

γij − 1
l
t
−
j

∑
γ −
j ∈t−j

γ −
j

∣∣
+ ∣∣ 1

liij

∑
δij ∈iij

δij − 1
likj

∑
δ+
j ∈i−j

δ−
j

∣∣
+ ∣∣ 1

lfij

∑
ηij ∈fij

ηij − 1
lfkj

∑
η−
j ∈f +

j
η−

j

∣∣

⎞
⎟⎟⎟⎠ (25)

for i = 1,2, . . . ,m.
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Step 4. Determine the relative closeness coefficient.

We determine closeness coefficient Ci for each alternative Ai (i = 1,2, . . . ,m) with re-
spect to SVNHFPIS A+ by using the following equation:

RCi = D−
i

D+
i + D−

i

for i = 1,2, . . . ,m, (26)

where 0 � Ci � 1 (i = 1,2, . . . ,m). We observe that an alternative Ai is closer to the
SVNHFPIS A+ and farther to the SVNHFNIS A− as Ci approaches unity.

Step 5. Rank the alternatives.

We can rank the alternatives according to the descending order of relative closeness coef-
ficient values of alternatives to determine the best alternative from a set of feasible alter-
natives.

Step 6. End.

4. TOPSIS Method for MADM with INHFS Information

In this section, we further extend the proposed model into interval neutrosophic hesitant
fuzzy environment.

For an MADM problem, let A = (A1,A2, . . . ,Am) be a set of alternatives, C =
(C1,C2, . . . ,Cn) be a set of attributes, and W̃ = (w̃1, w̃2, . . . , w̃n)

T be the weight vec-
tor of the attributes such that w̃j ∈ [0,1] and

∑n
j=1 w̃j = 1.

Suppose that X̃ = (x̃ij )m×n be the decision matrix where x̃ij be the INHFS for the
alternative Ai with respect to the attribute Cj and x̃ij = (t̃ij , ĩij , f̃ij ), where t̃ij , ĩij , and
f̃ij are truth, indeterminacy and falsity membership degree, respectively. The decision
matrix is given by

X̃ =

⎡
⎢⎢⎢⎣

x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n

...
...

. . .
...

x̃m1 x̃m2 · · · x̃mn

⎤
⎥⎥⎥⎦ . (27)

Now, we develop TOPSIS method based on INHFS when the attribute weights are com-
pletely known, partially known or completely unknown.

Step 1. Determine the weights of the attributes.

We suppose that attribute weights are completely known, partially known or completely
unknown. We use the maximum deviation method when the attribute weights are partially
known or completely unknown.
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Case 1b. The information of attribute weights is completely known
Assume the attribute weights as w̃ = (w̃1, w̃2, . . . , w̃n)

T with w̃j ∈ [0,1] and∑n
j=1 w̃j = 1 and then go to Step 2.

For partially known or completely unknown attribute weights, we calculate the deviation
values of the alternative Ai to other alternatives under the attribute Cj defined as follows:

D̃ij (w̃) =
m∑

k=1

w̃jD(x̃ij , x̃kj ), for i = 1,2, . . . ,m; j = 1,2, . . . , n. (28)

Using (7), the Hamming distance D̃(x̃ij , x̃kj ) is obtained as

D̃(x̃ij , x̃kj )

= 1

6

⎛
⎜⎜⎜⎜⎝

∣∣ 1
lt̃ij

∑
γ̃ij ∈t̃ij

γij
L − 1

lt̃ij

∑
γ̃ij ∈t̃kj

γij
L
∣∣+ ∣∣ 1

lt̃ij

∑
γ̃ij ∈tij

γij
U − 1

lt̃ij

∑
γ̃ij ∈t̃kj

γij
U
∣∣

+ ∣∣ 1
l
ĩij

∑
δ̃ij ∈iij

δij
L − 1

l
ĩij

∑
δ̃ij ∈ĩkj

δij
L
∣∣+ ∣∣ 1

l
ĩij

∑
δ̃ij ∈iij

δij
U − 1

l
ĩij

∑
δ̃ij ∈ĩkj

δij
U
∣∣

+ ∣∣ 1
l
f̃ij

∑
η̃ij ∈fij

ηij
L − 1

l
f̃ij

∑
η̃ij ∈f̃kj

ηij
L
∣∣+ ∣∣ 1

l
f̃ij

∑
η̃ij ∈fij

ηij
U − 1

l
f̃ij

∑
η̃ij ∈f̃kj

ηij
U
∣∣

⎞
⎟⎟⎟⎟⎠

= 1

6

(
�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj ) + �F̃ (x̃ij , x̃kj )

)
, (29)

where

�T̃ (x̃ij , x̃kj )

=
∣∣∣∣ 1

lt̃ij

∑
γ̃ij ∈t̃ij

γij
L − 1

lt̃ij

∑
γ̃ij ∈t̃kj

γij
L

∣∣∣∣+
∣∣∣∣ 1

lt̃ij

∑
γ̃ij ∈tij

γij
U − 1

lt̃ij

∑
γ̃ij ∈t̃kj

γij
U

∣∣∣∣;
�I (xij , xkj )

=
∣∣∣∣ 1

l
ĩij

∑
δ̃ij ∈iij

δij
L − 1

l
ĩij

∑
δ̃ij ∈ĩkj

δij
L

∣∣∣∣+
∣∣∣∣ 1

l
ĩij

∑
δ̃ij ∈iij

δij
U − 1

l
ĩij

∑
δ̃ij ∈ĩkj

δij
U

∣∣∣∣;
�F̃(x̃ij , x̃kj )

=
∣∣∣∣ 1

l
f̃ij

∑
η̃ij ∈fij

ηij
L − 1

l
f̃ij

∑
η̃ij ∈f̃kj

ηij
L

∣∣∣∣+
∣∣∣∣ 1

l
f̃ij

∑
η̃ij ∈fij

ηij
U − 1

l
f̃ij

∑
η̃ij ∈f̃kj

ηij
U

∣∣∣∣,
and lt̃ij , l

ĩij
and l

f̃ij
are numbers of possible membership values in xil for l = j, k.

The deviation values of all the alternatives to the other alternatives for the attribute Cj

(j = 1,2, . . . , n) can be obtained from the following:

D̃j (w̃) =
m∑

i=1

D̃ij (w̃j )

=
m∑

i=1

m∑
k=1

w̃j

6

(
�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj ) + �F̃(x̃ij , x̃kj )

)
. (30)
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Case 2b. The information of attribute weights is partially known

In this case, we assume a non-linear programming model to calculate attribute weights.

M-3.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max D̃(w) =
n∑

j=1

m∑
i=1

m∑
k=1

w̃j

6

(
�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj )

+ �F̃(x̃ij , x̃kj )

)
,

subject to w̃ ∈ H̃ , w̃j � 0,
n∑

j=1
w̃j = 1, j = 1,2, . . . , n,

(31)

where H̃ is a set of partially known weight information.
Solving Model-3, we can get the optimal attribute weight vector.

Case 3b. The information of attribute weights is completely unknown

In this case, we consider the following model:

M-4.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

maxD(w) =
n∑

j=1

m∑
i=1

m∑
k=1

wj

6

(
�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj )

+ �F̃(x̃ij , x̃kj )

)
,

s.t. w̃j � 0,
n∑

j=1
w̃2

j = 1, j = 1,2, . . . , n.

(32)

The Lagrangian function corresponding to the above nonlinear programming problem is
given by

L̃(w̃, λ̃) =
n∑

j=1

m∑
i=1

m∑
k=1

w̃j

6

(
�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj )

+ �F̃(x̃ij , ξxkj )

)
+ λ̃

12

(
n∑

j=1

w̃2
j − 1

)
,

(33)

where λ̃ is the Lagrange multiplier. Then the partial derivatives of L̃ are computed as

∂L̃

∂w̃j

= 1

6

m∑
i=1

m∑
k=1

(
�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj )

+ �F̃(x̃ij , x̃kj )

)
+ λ

6
w̃j = 0, (34)

∂L̃

∂λ̃
= 1

12

(
n∑

j=1

w̃2
j − 1

)
= 0. (35)

It follows from Eq. (34) that the weight w̃j for i = 1,2, . . . ,m is

w̃j = −
(

m∑
i=1

m∑
k=1

(
�T̃ (x̃ij , x̃kj ) + �I (x̃ij , x̃kj ) + �F̃(x̃ij , x̃kj )

))
/λ̃. (36)

Putting wj in Eq. (35), we get

λ̃2 =
n∑

j=1

(
m∑

i=1

m∑
k=1

(
�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj ) + �F̃(x̃ij , x̃kj )

))2

(37)
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or

λ̃ = −

√√√√√ n∑
j=1

(
m∑

i=1

m∑
k=1

(
�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj ) + �F̃(x̃ij , x̃kj )

))2

, (38)

where λ̃ < 0 and
∑m

i=1
∑m

k=1(�̃T (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj ) + �F̃(x̃ij , x̃kj )) represents
the sum of deviations of all the attributes with respect to the j -th attribute and∑n

j=1(
∑m

i=1
∑m

k=1(�̃T (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj ) + �F̃(x̃ij , x̃kj )))
2 represents the sum

of deviations of all the alternatives with respect to all the attributes.
Then combining Eqs. (36) and (38), we obtain the weight w̃j (j = 1,2, . . . , n) as

w̃j =
∑m

i=1
∑m

k=1(�T̃ (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj ) + �F̃ (x̃ij , x̃kj ))√∑n
j=1(

∑m
i=1

∑m
k=1(�̃T (x̃ij , x̃kj ) + �Ĩ(x̃ij , x̃kj ) + �F̃(x̃ij , x̃kj )))2

.

(39)

We make the sum of wj (j = 1,2, . . . , n) into a unit to normalize the weight of the j -th
attribute:

w̃N
j = w̃j∑n

j=1 w̃j

, j = 1,2, . . . , n; (40)

and consequently, we obtain the weight vector of the attribute as

W̃ = (w̃N
1 , w̃N

2 , . . . , w̃N
n )

for proceeding to Step-2.

Step 2. Determine the positive ideal alternative and the negative ideal alternative.

From decision matrix X̃ = (x̃ij )m×n, we determine the interval neutrosophic hesitant
fuzzy positive ideal solution (INHFPIS) A+ and the interval neutrosophic hesitant fuzzy
negative ideal solution (INHFNIS) A− of alternatives as follows:

Ã+ = (
Ã+

1 , Ã+
2 , . . . , Ã+

n

)
=
{〈

max
i

{
γ̃

σ (p)
ij

}
,min

i

{
δ̃
σ (q)
ij

}
,min

i

{
η̃

σ (r)
ij

}〉|i = 1,2, . . . ,m and j = 1,2, . . . , n
}
,

(41)

Ã− = (
Ã−

1 , Ã−
2 , ˜. . .,A−

n

)
=
{〈

min
i

{
γ̃

σ (p)
ij

}
,max

i

{
δ̃
σ (q)
ij

}
,max

i

{
η̃

σ (r)
ij

}〉|i = 1,2, . . . ,m and j = 1,2, . . . , n
}
.

(42)

Here, we compare the attribute values x̃ij by using score, accuracy and certainty values
of INHFSs defined in Definition 9.
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Step 3. Determine the distance measure from the ideal alternatives to each alternative.

We determine the distance measure between the positive ideal alternative A+ and the
alternative Ai (i = 1,2, . . . ,m) as follows:

D̃+
i =

n∑
j=1

w̃j D̃
(
x̃ij , x̃

+
j

)

= w̃j

6

⎛
⎜⎜⎜⎜⎝

∣∣ 1
lt̃ij

∑
γ̃ij ∈t̃ij

γ L
ij − 1

l
t̃
+
j

∑
γ̃ +
j ∈t̃+j

γ L+
j

∣∣+ ∣∣ 1
lt̃ij

∑
γ̃ij ∈t̃ij

γ U
ij − 1

l
t̃
+
j

∑
γ̃ +
j ∈t̃+j

γ U+
j

∣∣
+ | 1

lt̃ij

∑
δ̃ij ∈t̃ij

δL
ij − 1

l
t̃
+
j

∑
δ̃+
j ∈t̃+j

δL+
j

∣∣+ ∣∣ 1
lt̃ij

∑
δ̃ij ∈t̃ij

δU
ij − 1

l
t̃
+
j

∑
δ̃+
j ∈t̃+j

δU+
j

∣∣
+ ∣∣ 1

lt̃ij

∑
η̃ij ∈t̃ij

ηL
ij − 1

l
t̃
+
j

∑
η̃+
j ∈t̃+j

ηL+
j

∣∣+ ∣∣ 1
lt̃ij

∑
η̃ij ∈t̃ij

ηU
ij − 1

l
t̃
+
j

∑
η̃+
j ∈t̃+j

ηU+
j

∣∣

⎞
⎟⎟⎟⎟⎠
(43)

for i = 1,2, . . . ,m. Similarly, we determine the distance measure between the negative
ideal alternative A− and the alternative Ai (i = 1,2, . . . ,m) as follows:

D̃−
i =

n∑
j=1

w̃j D̃
(
x̃ij , x̃

−
j

)

= w̃j

6

⎛
⎜⎜⎜⎜⎝

∣∣ 1
lt̃ij

∑
γ̃ij ∈t̃ij

γ L
ij − 1

l
t̃
+
j

∑
γ̃ +
j ∈t̃+j

γ L+
j

∣∣+ ∣∣ 1
lt̃ij

∑
γ̃ij ∈t̃ij

γ U
ij − 1

l
t̃
+
j

∑
γ̃ −
j ∈t̃+j

γ U−
j

∣∣
+ ∣∣ 1

lt̃ij

∑
δ̃ij ∈t̃ij

δL
ij − 1

l
t̃
−
j

∑
δ̃−
j ∈t̃−j

δL−
j

∣∣+ ∣∣ 1
lt̃ij

∑
δ̃ij ∈t̃ij

δU
ij − 1

l
t̃
−
j

∑
δ̃−
j ∈t̃−j

δU−
j

∣∣
+ ∣∣ 1

lt̃ij

∑
η̃ij ∈t̃ij

ηL
ij − 1

l
t̃−
j

∑
η̃−
j ∈t̃−j

ηL−
j

∣∣+ ∣∣ 1
lt̃ij

∑
η̃ij ∈t̃ij

ηU
ij − 1

l
t̃−
j

∑
η̃−
j ∈t̃−j

ηU−
j

∣∣

⎞
⎟⎟⎟⎟⎠ .

(44)

Step 4. Determine the closeness coefficient.

In this step, we calculate closeness coefficient Ci for each alternative Ai (i = 1,2, . . . ,m)

with respect to INHFPIS Ã+ as given below:

R̃Ci = D̃−
i

D̃+
i + D̃−

i

for i = 1,2, . . . ,m, (45)

where 0 � C̃i � 1 (i = 1,2, . . . ,m). We observe that the alternative Ai is closer to the
INHFPIS Ã+ and farther to the INHFNIS A− as C̃i approaches unity.

Step 5. Rank the alternatives.

Finally, we can rank the alternatives according to the descending order of relative close-
ness coefficient values of alternatives to choose the best alternative from a set of feasible
alternatives.

Step 6. End.

We briefly present the steps of the proposed strategies in Fig. 1.
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Fig. 1. The schematic diagram of the proposed method.

5. Numerical Examples

In this section, we consider two examples to illustrate the utility of the proposed method
for single valued neutrosophic hesitant fuzzy set (SVNHFS) and interval hesitant fuzzy
set (INHFS).

5.1. Example for SVNHFS

Suppose that an investment company wants to invest a sum of money in the following four
alternatives:

• car company (A1);
• food company (A2);
• computer company (A3);
• arms company (A4).

The company considers the following three attributes to make the decision:

• risk analysis (C1);
• growth analysis (C2);
• environment impact analysis (C3).
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Table 1
Single valued neutrosophic hesitant fuzzy decision matrix.

C1 C2 C3

A1 〈{0.3,0.4,0.5}, {0.1}, {0.3,0.4}〉 〈{0.5,0.6}, {0.2,0.3}, {0.3,0.4}〉 〈{0.2,0.3}, {0.1,0.2}, {0.5,0.6}〉
A2 〈{0.6,0.7}, {0.1,0.2}, {0.2,0.3}〉 〈{0.6,0.7}, {0.1}, {0.3}〉 〈{0.6,0.7}, {0.1,0.2}, {0.1,0.2}〉
A3 〈{0.5,0.6}, {0.4}, {0.2,0.3}〉 〈{0.6}, {0.3}, {0.4}〉 〈{0.5,06}, {0.1}, {0.3}〉
A4 〈{0.7,0.8}, {0.1}, {0.1,0.2}〉 〈{0.6,0.7}, {0.1}, {0.2}〉 〈{0.3,0.5}, {0.2}, {0.1,0.2,0.3}〉

We assume the rating values of the alternatives Ai , i = 1,2,3,4 with respect to attributes
Cj , j = 1,2,3 and get the SVNHFS matrix presented in Table 1. The steps to get the best
alternative are as follows:

Step 1: Determine the weights of attributes.
There are three cases for attribute weights:

Case 1: When the attribute weights are completely known, let the weight vector be wN =
(0.35,0.25,0.40).

Case 2: When the attribute weights are partially known, the weight information is as
follows:

H =

⎧⎪⎪⎨
⎪⎪⎩

0.30 � w1 � 0.40,

0.20 � w2 � 0.30,

0.35 � w3 � 0.45,

and w1 + w2 + w3 = 1.

Using Model-1, we get the single objective programming problem as{
max(D) = 1.796w1 + 1.164w2 + 1.962w3,

subject to w ∈ H and
∑3

j=1 wj = 1, wj > 0 for j = 1,2,3.

Solving this problem with optimization software LINGO 11, we get the optimal weight
vector as wN = (0.35,0.20,0.45).

Case 3: When the attribute weights are completely unknown, using Model-2 and Eqs. (20)
and (21), we obtain the following weight vector:

wN = (0.351,0.265,0.384).

Step 2: Determine the positive ideal alternative and the negative ideal alternative.
In this step, we calculate the positive and the negative ideal solutions from Eqs. (22)

and (23), respectively.

A+ = (
A+

1 ,A+
2 ,A+

3

)
=
( 〈{0.7,0.8}, {0.1}, {0.1,0.2}〉, 〈{0.6,0.7}, {0.1}, {0.2}〉,

〈{0.6,0.7}, {0.1,0.2}, {0.1,0.2}〉
)

, (46)
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Table 2
Distance measure from the positive ideal solution.

D+(Ai) Case 1 Case 2 Case 3

D+
1 0.210 0.210 0.201

D+
2 0.037 0.035 0.037

D+
3 0.140 0.145 0.148

D+
4 0.046 0.052 0.044

Table 3
Distance measure from the negative ideal solution.

D−(Ai) Case 1 Case 2 Case 3

D−
1 0.180 0.164 0.198

D−
2 0.176 0.183 0.173

D−
3 0.120 0.115 0.102

D−
4 0.181 0.182 0.180

Table 4
Relative closeness coefficient.

RC(Ai) Case 1 Case 2 Case 3

RC(A1) 0.461 0.438 0.496
RC(A2) 0.826 0.839 0.823
RC(A3) 0.462 0.451 0.408
RC(A4) 0.796 0.778 0.800

A− = (
A−

1 ,A−
2 ,A−

3

)
,

=
( 〈{0.5,0.6}, {0.4}, {0.2,0.3}〉, 〈{0.6}, {0.3}, {0.4}〉,

〈{0.2,0.3}, {0.1,0.2}, {0.5,0.6}〉
)

. (47)

Step 3: Determine the distance measure from the ideal alternatives to each alternative.
In this step, we determine the distance measure from the positive and negative ideal

solutions from Eqs. (24) and (25) as given in Tables 2 and 3.

Step 4: Determine the relative closeness coefficient.
We now calculate the relative closeness coefficients from Eq. (26) and the results are

shown in Table 4.

Step 5: Rank the alternatives.
From Table 4, ranks of the alternatives are determined as follows:

Case 1: A2 � A4 � A3 � A1,

Case 2: A2 � A4 � A3 � A1,

Case 3: A2 � A4 � A1 � A3.
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Table 5
Interval neutrosophic hesitant fuzzy decision matrix.

C1 C2 C3

A1

⎧⎨
⎩

{[0.3,0.4], [0.4,0.5]}
{[0.1,0.2]}
{[0.3,0.4]}

⎫⎬
⎭

⎧⎨
⎩

{[0.4,0.5], [0.5,0.6]}
{[0.2,0.3]}

{[0.3,0.3], [0.3,0.4]}

⎫⎬
⎭

⎧⎨
⎩

{[0.3,0.5]}
{[0.2,0.3]}

{[0.1,0.2], [0.3,0.3]}

⎫⎬
⎭

A2

⎧⎨
⎩

{[0.6,0.7]}
{[0.1,0.2]}

{[0.1,0.2], [0.2,0.3]}

⎫⎬
⎭

⎧⎨
⎩

{[0.6,0.7]}
{[0.1,0.2]}
{[0.2,0.3]}

⎫⎬
⎭

⎧⎨
⎩

{[0.6,0.7]}
{[0.1,0.2]}
{[0.1,0.2]}

⎫⎬
⎭

A3

⎧⎨
⎩

{[0.3,0.4], [0.5,0.6]}
{[0.2,0.4]}
{[0.2,0.3]}

⎫⎬
⎭

⎧⎨
⎩

{[0.6,0.7]}
{[0.0,0.1]}
{[0.2,0.3]}

⎫⎬
⎭

⎧⎨
⎩

{[0.5,06]}
{[0.1,0.2], [0.2,0.3]}

{[0.2,0.3]}

⎫⎬
⎭

A4

⎧⎨
⎩

{[0.7,0.8]}
{[0.0,0.1]}
{[0.1,0.2]}

⎫⎬
⎭

⎧⎨
⎩

{[0.5,0.6]}
{[0.2,0.3]}
{[0.3,0.4]}

⎫⎬
⎭

⎧⎨
⎩

{[0.2,0.3]}
{[0.1,0.2]}

{[0.4,0.5], [0.5,0.6]}

⎫⎬
⎭

The above shows that A2 is the best alternative for all cases.

Step 6: End.

5.2. Example for INHFS

In order to demonstrate the proposed method for INHFS, we consider the same numerical
example for SVNHFS but the rating values of the attributes are INHFS. The INHFS based
decision matrix is presented in Table 5.

Step 1: Determine the weights of attributes.
Here, we consider completely known, partially known and completely unknown at-

tribute weights in three cases.

Case 1: When the attribute weights are known in advance, let the weight vector be

w̄N = (0.30,0.25,0.45).

Case 2: When the attribute weights are partially known, the weight information is as
follows:

H̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.30 � w̃1 � 0.40,

0.20 � w̃2 � 0.30,

0.35 � w̃3 � 0.45,

and w̃1 + w̃2 + w̃3 = 1.
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Table 6
Distance measure from the positive ideal solution.

D̃+(Ai) Case 1 Case 2 Case 3

D̃+
1 0.164 0.168 0.167

D̃+
2 0.032 0.035 0.037

D̃+
3 0.102 0.113 0.104

D̃+
4 0.146 0.139 0.129

Now, with the help of Model-3, we consider the following optimization problem:
{

max(D) = 1.7626w̃1 + 1.526w̃2 + 1.848w̃3,

subject to w̃ ∈ H̃ and
∑3

j=1 w̃j = 1, w̃j > 0 for j = 1,2,3.

Solving this problem with optimization software LINGO 11, we get the optimal weight
vector as

w̄N = (0.35,0.20,0.45).

Case 3: When the attribute weights are completely unknown, using Model-2 and Eqs. (39)
and (40), we obtain the following weight vector:

w̄N = (0.343,0.297,0.360).

Step 2: Determine the positive ideal alternative and the negative ideal alternative.
In this step, we calculate the positive and the negative ideal solutions, where the posi-

tive ideal solution is the best solution and the negative ideal solution is the worst solution.
From Eqs. (22) and (23), we get

Ã+ = (
Ã+

1 , Ã+
2 , Ã+

3

)

=
⎛
⎝ 〈{[0.7,0.8]}, {[0.0,0.1]}, {[0.1,0.2]}〉,

〈{[0.6,0.7]}, {[0.0,0.1]}, {[0.2,0.3]}〉,
〈{[0.6,0.7]}, {[0.1,0.2]}, {[0.1,0.2]}〉

⎞
⎠ , (48)

Ã− = (
Ã−

1 , Ã−
2 , Ã−

3

)

=
⎛
⎝ 〈{[0.3,0.4], [0.4,0.5]}, {[0.1,0.2]}, {[0.3,0.4]}〉,

〈{[0.4,0.5], [0.5,0.6]}, {[0.2,0.3]}, {[0.3,0.3], [0.3,0.4]}〉,
〈{[0.2,0.3]}, {[0.1,0.2]}, {[0.4,0.5], [0.5,0.6]}〉

⎞
⎠ . (49)

Step 3: Determine the distance measure from the ideal alternatives to each alternative.
In this step, using Eqs. (43) and (44), we determine the distance measure from the pos-

itive ideal solution and the negative ideal solution as given in Tables 6 and 7, respectively.

Step 4: Determine the relative closeness coefficient.
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Table 7
Distance measure from the negative ideal solution.

D̃−(Ai) Case 1 Case 2 Case 3

D̃−
1 0.078 0.079 0.063

D̃−
2 0.179 0.180 0.168

D̃−
3 0.155 0.153 0.148

D̃−
4 0.071 0.080 0.082

Table 8
Relative closeness coefficient.

˜RC(Ai) Case 1 Case 2 Case 3
˜RC(A1) 0.322 0.312 0.273
˜RC(A2) 0.848 0.837 0.819
˜RC(A3) 0.603 0.576 0.587
˜RC(A4) 0.327 0.365 0.389

We now calculate the relative closeness coefficient from Eq. (45). The results are
shown in Table 8.

Step 5: Rank the alternatives.
From Table 8, we obtain the ranks of the alternatives as follows:

Case 1 : A2 � A3 � A4 � A1,

Case 2 : A2 � A3 � A4 � A1,

Case 3 : A2 � A3 � A4 � A1.

The above shows that A2 is the best alternative for all cases.

Step 6: End.

5.3. Comparative Analysis and Discussion

We divide this section into two parts. Firstly, we compare our proposed method with the
existing methods for multi-attribute decision making under SVNHFS and then for INHFS.

5.3.1. SVNHFS
Ye (2015a) developed the method to find out the best alternative under single valued neu-
trosophic hesitant fuzzy environment, and Sahin and Liu (2017) proposed correlation co-
efficient of single valued neutrosophic hesitant fuzzy set for MADM. Rankings of the
alternatives of the above existing method and our proposed method are shown in Table 9.
When the attribute weights are known in advance, three methods result in the same rank-
ing. However, when the attribute weights are partially known or completely unknown, the
above two methods are not applicable.
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Table 9
A comparison of the results under SVNHFS.

Methods Type of weight information Ranking result

Ye’s (2015a) method Completely known A2 � A4 � A3 � A1
Sahin and Liu’s (2017) method Completely known A2 � A4 � A3 � A1
Proposed method Completely known A2 � A4 � A3 � A1
Ye’s (2015b) method Partially known Not applicable
Sahin and Liu’s (2017) method Partially known Not applicable
Proposed method Partially known A2 � A4 � A3 � A1
Ye’s (2015b) method Completely unknown Not applicable
Sahin and Liu’s (2017) method Completely unknown Not applicable
Proposed method Completely unknown A2 � A4 � A1 � A3

Table 10
A comparison of the results under INHFS.

Methods Type of weight information Ranking result

Liu and Shi’s method (2015) Completely known A2 � A3 � A4 � A1
Proposed method Completely known A2 � A3 � A4 � A1
Liu and Shi’s method (2015) Partially known Not applicable
Proposed method Partially known A2 � A3 � A4 � A1
Liu and Shi’s method (2015) Completely unknown Not applicable
Proposed method Completely unknown A2 � A3 � A4 � A1

5.3.2. INHFS
Liu and Shi (2015) proposed MADM method for the best alternative under interval neu-
trosophic hesitant fuzzy environment. Table 10 shows a comparison between Liu and Shi’s
(2015) method and our proposed method.

The advantages of the proposed method for SVNHFS and INHFS are as follows:

• The existing methods are developed based on aggregation operator, correlation coeffi-
cient and hybrid weighted operator, but our proposed method is developed on the basis
of deviation method.

• The proposed method offers more flexible choice of weight information because it is
also applicable to partially known and unknown weight information.

6. Conclusion

Neutrosophic hesitant fuzzy set encompasses single valued neutrosophic set, interval neu-
trosophic set, hesitant fuzzy set, intuitionistic fuzzy set and fuzzy set. The neutrosophic set
has three components: truth membership, falsity membership and indeterminacy member-
ship functions. Therefore, neutrosophic hesitant fuzzy set is flexible to deal with imprecise,
indeterminate and incomplete information for MADM problems. In this study, we have
extended TOPSIS method for solving MADM problems under SVNHFS and INHFS envi-
ronments. We have considered three types of weight information of attributes – completely
known, partially known and completely unknown weight information. We have developed
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optimization models for calculating attribute weights for partially known, and completely
unknown weight information with the help of maximizing deviation method. Finally, nu-
merical examples have been given to support and illustrate the validation and efficiency
of the proposed method. The proposed strategy can be extended to multi-attribute group
decision making problem as well as the case when weight information is unknown. The
developed model can be applied to many real decision making problems such as pattern
recognition, supply chain management, data mining, etc. For future research, the proposed
method can be extended in MADM problems with plithogenic set (Smarandache, 2017).
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