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Abstract. In this paper, we present the 2-tuple linguistic neutrosophic CODAS model based on the
traditional fuzzy CODAS (combinative distance-based assessment) model and some fundamental
theories of 2-tuple linguistic neutrosophic information. Firstly, we briefly review the definition of
2-tuple linguistic neutrosophic sets (2TLNSs) and introduce the score function, the accuracy func-
tion, operation laws and some aggregation operators of 2TLNNs. Then, the calculation steps of
traditional fuzzy CODAS model are briefly presented. Furthermore, by combining the traditional
fuzzy CODAS model with 2TLNNs information, the 2-tuple linguistic neutrosophic CODAS model
is established and the computing steps for multiple attribute group decision making (MAGDM) are
simply depicted. Our presented model is more accurate and effective for considering the combina-
tive form of two distance measurements, including fuzzy weighted Hamming distance (HD) and
fuzzy weighted Euclidean distance (ED). Finally, a numerical example for safety assessment of
construction project has been given to illustrate this new model and some comparisons between
2TLNNs CODAS model and two 2TLNNs aggregation operators are also made to further illustrate
the advantages of the new method.
Key words: multiple attribute group decision making (MAGDM) problems, 2-tuple linguistic
neutrosophic sets (2TLNSs), CODAS model, 2-tuple linguistic neutrosophic number weighted
average (2TLNNWA) operators, 2-tuple linguistic neutrosophic number weighted geometric
(2TLNNWG) operators, 2TLNNs CODAS model, construction project.

1. Introduction

Due to the indeterminacy of DM’s and the decision-making issues, we cannot always give
accurate evaluation values of alternatives to select the best project in real MADM prob-
lems (Wang et al., 2019a; Wang, 2019; Wu et al., 2019a, 2019b). To conquer this disad-
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vantage, fuzzy set theory which was defined by Zadeh (1965) originally used the member-
ship function to describe the estimation results rather than exact real-numbers. Atanassov
(1986, 1989) presented another measurement index which named non-membership func-
tion as a complement. Smarandache (1999, 2003) introduced the neutrosophic set (NS).
Then, Wang et al. (2010) introduced the definition and some operational rules of single-
valued neutrosophic sets (SVNSs), where the evaluation information is depicted by truth
membership degree, indeterminacy membership degree and falsity membership degree.
Obviously, the SVNSs and their extensions can describe the fuzzy and uncertainty degree
of a decision maker and can be more suitable for actual multiple attribute decision making
problems (Wang et al., 2019c, 2019e, 2019h, 2019j; Wei et al., 2019e, 2019f).

However, the SVNSs can only represent quantitative decision making information and
fail to depict the qualitative decision making information. As we all know, the 2-tuple
linguistic set (2TLS) (Herrera and Martinez, 2001) can eliminate this limitation. In or-
der to consider both qualitative and quantitative decision making information, Wang et
al. (2018a) defined the 2-tuple linguistic neutrosophic sets (2TLNSs), where the truth
membership function, indeterminacy membership function and falsity membership func-
tion are presented by 2TLNNs. Thus, the 2TLNNs are considered a useful tool to deal
with practical MADM applications. In real decision making problems, finding a good
way to denote evaluation information is only one aspect (Deng and Gao, 2019; Gao et al.,
2019; Li and Lu, 2019; Lu and Wei, 2019). It is also important to know how to deal with
this information. To date, The CODAS (combinative distance-based assessment) method,
which was originally defined by Keshavarz Ghorabaee et al. (2016), use the combinative
form of two distance measurements, including Euclidean and Taxicab distances, which
present accurate values to compute the assessment results of alternatives. However, this
model cannot be applied in fuzzy environment. To overcome this disadvantage, Keshavarz
Ghorabaee et al. (2017) extended the CODAS method to fuzzy environment and proposed
a fuzzy CODAS model which used fuzzy weighted Hamming distance (HD) and fuzzy
weighted Euclidean distance (ED) rather than the crisp distances. Thus, we can easily find
that CODAS method can handle fuzzy decision making problems effectively.

Motivated by the 2-tuple linguistic neutrosophic sets (2TLNSs) and the traditional
CODAS model, the research question and goal of this paper is to build an extended CO-
DAS model to deal with the 2-tuple linguistic neutrosophic decision making problems.
The main novelty and contribution of this paper is the proposition of the 2TLN CODAS
model. On the one hand, the 2-tuple linguistic neutrosophic number can express the quali-
tative and quantitative fuzzy decision making information, on the other hand, the CODAS
model has important merits mentioned above. Thus, we can derive accuracy assessment
results for construction project by utilizing the 2TLN CODAS model. In order to elabo-
rate the process of putting forward the 2TLN CODAS model, this article is structured in
the following way: some related work about 2TLNSs and the CODAS method are given
in Section 2. The definition, the score function, the accuracy function, operation rules
and some aggregation operators of 2TLNNSs are briefly introduced in Section 3. The
computing steps of traditional fuzzy CODAS model are briefly presented in Section 4. By
combining the fuzzy traditional CODAS model with 2TLNNs information, the 2-tuple lin-
guistic neutrosophic CODAS model is established and the computing steps for MAGDM
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problems are simply depicted in Section 5. A numerical example for safety assessment of
construction project is given to illustrate this new model and some comparisons between
2-tuple linguistic neutrosophic CODAS model and two 2TLNNs aggregation operators
are also made to further illustrate advantages of the new method in Section 6. Section 7
gives some conclusions of our work.

2. Related Work

Previously, a lot of decision-making models such as the VIKOR method (He et al., 2019b;
Opricovic and Tzeng, 2004; Wang et al., 2018b), the ELECTRE method (Rashid et al.,
2018), the TOPSIS method (Chen, 2000; Lu et al., 2019b), the PROMETHEE method
(Balali et al., 2014), the MABAC method (Pamucar and Cirovic, 2015), the EDAS method
(Keshavarz Ghorabaee et al., 2015; Wang et al., 2019i; Zhang et al., 2019) and the TODIM
method (Gomes and Lima, 1979) have been studied extensively by numerous researchers.
Compared with the existing literature, the CODAS model has the advantage of taking the
combinative form of ED and HD into account with respect to the intangibility of decision
maker (DM) and the uncertainty of decision-making environment to obtain more accu-
rate and effective aggregation results. Since the CODAS method was proposed, a large
number of scholars have studied it. Pamucar et al. (2018) presented a linguistic neutro-
sophic CODAS model. Badi et al. (2018) studied the site selection of desalination plant
in Libya by using CODAS method. Bolturk (2018) proposed an extended CODAS model
to deal with Pythagorean fuzzy decision making problems and studied its application to
supplier selection. Based on interval-valued intuitionistic fuzzy information, Bolturk and
Kahraman (2018a) developed a novel CODAS model. To handle renewable energy se-
lection, Bolturk and Karasan (2018b) proposed the interval-valued neutrosophic CODAS
model. According to novel information measure, Peng and Garg (2018) studied the CO-
DAS method and presented some novel algorithms under the interval-valued fuzzy soft
set. Ren (2018) established the intuitionistic fuzzy CODAS model for MADM. Karasan
et al. (2019) developed an integrated methodology based on the neutrosophic CODAS
model.

As for the 2-tuple linguistic neutrosophic sets, based on the Hamy mean (HM)
operator, Wu et al. (2018b) proposed some 2-tuple linguistic neutrosophic Hamy
mean (2TLNNHM) operators and 2-tuple linguistic neutrosophic dual Hamy mean
(2TLNNDHM) operators to fuse 2TLNNs. Wang et al. (2019b) developed some 2-tuple
linguistic neutrosophic Muirhead mean (2TLNNMM) operators for MADM. Consider-
ing the Dombi operation laws and BM operators, Wei et al. (2019b) presented some novel
aggregation operators. Wang et al. (2019h) combined the EDAS method with the 2-tuple
linguistic neutrosophic set to build an extended EDAS model for MADM. Based on the
single-valued neutrosophic 2-tuple linguistic set, Wang et al. (2019d) proposed some
Muirhead mean (MM) aggregation operators, Wu et al. (2018a) defined some Hamcher
aggregation operators, Ju et al. (2018) extended it to interval-valued environment and
developed some MSM operators. Wang et al. (2018b) proposed the 2-tuple linguistic neu-
trosophic TODIM model. Thereafter, the 2TLNSs have been widely studied in MADM
issues.
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However, it is clear that there are no studies about the CODAS model with 2TLNNs
information. Some scholars studied the CODAS model under neutrosophic and linguistic
neutrosophic environment, but both of them cannot represent decision information in a
convenient way. At the same time, in the area of 2TLNSs, the research mainly focuses on
the aggregation operators, but there is a lack of research on 2TLN models. Hence, it is
necessary to discuss the 2-tuple linguistic neutrosophic CODAS model. The goal of this
paper is to develop a novel CODAS method based on the conventional CODAS model and
2-tuple linguistic neutrosophic information to study MADM problems more effectively.

3. Preliminaries

3.1. 2-Tuple Linguistic Neutrosophic Sets

Wang et al. (2018a) initially proposed the 2-tuple linguistic neutrosophic sets (2TLNSs),
which consider the important characteristics of 2-tuple linguistic variables and single-
valued neutrosophic sets (SVNSs), hence, can be more effective and accurate to evaluate
the alternatives in multiple attribute decision making problems. To combine the 2TLSs
and SVNSs, the definition of 2TLNSs can be expressed as follows.

Definition 1. Let δ1, δ2, . . . , δk be a linguistic term set. Any label δi shows a possible lin-
guistic scale, and δ = {δ0 = exceedingly terrible, δ1 = very terrible, δ2 = terrible, δ3 =
medium, δ4 = well, δ5 = very well, δ6 = exceedingly well}, then we can describe the
2TLNSs as:

δ = 〈
(st , α,), (si , β), (sf ,χ)

〉
, (1)

where �−1(st , α,),�−1(si , β) and �−1(sf ,χ) ∈ [0, k] represent the truth member-
ship function, the indeterminacy membership function and the falsity membership func-
tion, which are expressed by 2-tuple linguistic variables and satisfy the condition 0 �
�−1(st , φ) + �−1(sf , ϕ) + �−1(sf , γ ) � 3k.

Definition 2 (See Wang et al., 2018a). Let δ1 = 〈(st1 , α1,), (si1 , β1), (sf1 , χ1)〉 and δ2 =
〈(st2 , α2,), (si2 , β2), (sf2 , χ2)〉 be two 2-tuple linguistic neutrosophic numbers (2TLNNs),
the operation formula of them can be defined:

(1) δ1 ⊕ δ2 =
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(3) λδ1 =

⎧⎪⎪⎪⎨
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, λ > 0;

(4) δλ
1 =
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�
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k
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, λ > 0.

According to Definition 2, it is clear that the operation laws have the following prop-
erties.

δ1 ⊕ δ2 = δ2 ⊕ δ1, δ1 ⊗ δ2 = δ2 ⊗ δ1,
(
(δ1)

λ1
)λ2 = (δ1)

λ1λ2 , (2)

λ(δ1 ⊕ δ2) = λδ1 ⊕ λδ2, (δ1 ⊗ δ2)
λ = (δ1)

λ ⊗ (δ2)
λ, (3)

λ1δ1 ⊕ λ2δ1 = (λ1 + λ2)δ1, (δ1)
λ1 ⊗ (δ1)

λ2 = (δ1)
(λ1+λ2). (4)

Definition 3 (See Wang et al., 2018b). Let δ = 〈(st , α,), (si , β), (sf ,χ)〉 be a 2TLNN,
the score and accuracy functions of δ can be expressed:

s(δ) = (2k + �−1(st , α,) − �−1(si , β) − �−1(sf ,χ))

3k
, s(δ) ∈ [0,1], (5)

h(δ) = 1

k

(
�−1(st , α,) − �−1(sf ,χ)

)
, h(δ) ∈ [−1,1]. (6)

For two 2TLNNs δ1 and δ2, based on Definition 3, then

(1) if s(δ1) ≺ s(δ2), then δ1 ≺ δ2;
(2) if s(δ1) 	 s(δ2), then δ1 	 δ2;
(3) if s(δ1) = s(δ2), h(δ1) ≺ h(δ2), then δ1 ≺ δ2;
(4) if s(δ1) = s(δ2), h(δ1) 	 h(δ2), then δ1 	 δ2;
(5) if s(δ1) = s(δ2), h(δ1) = h(δ2), then δ1 = δ2.

3.2. The Distance Measurement of 2TLNNs

Definition 4. Let δ1 = {(st1 , α1), (si1 , β1), (sf1 , χ1)} and δ2 = {(st2 , α2), (si2 , β2),

(sf2χ2)} be two 2TLNNs, then we can get the normalized Hamming distance:

dH (δ1, δ2) = 1

3
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∣∣∣
⎞
⎟⎠ . (7)
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Definition 5. Let δ1 = {(st1 , α1), (si1 , β1), (sf1 , χ1)} and δ2 = {(st2 , α2), (si2 , β2),

(sf2χ2)} be two 2TLNNs, then we can get the normalized Euclidean distance:

dE(δ1, δ2) =

√√√√√√1

3

⎛
⎜⎝
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k

∣∣∣2 +
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k
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+
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k

∣∣∣2
⎞
⎟⎠. (8)

3.3. The 2TLNNWA and 2TLNNWG Operators

Definition 6 (See Wang et al., 2018a). Let δj = {(stj , αj ), (sij , βj ), (sfj
, χj )}, (j =

1,2, . . . , n) be a set of 2TLNNs, the 2TLNNWA and 2TLNNWG operators can be pre-
sented:

2TLNNWA(δ1, δ2, . . . , δn)

= w1δ1 ⊕ w2δ2 ⊗ · · · ⊕ wnδn =
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〉
(9)

and

2TLNNWG(δ1, δ2, . . . , δn)

= (δ1)
w1 ⊗ (δ2)

w2 ⊗ · · · ⊗ (δn)
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=
〈
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(
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,

�
(
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(

1 − ∏n
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,χj )

k
)

wj ))
.

〉
, (10)

where wj is weighting vector of δj , j = 1,2, . . . , n, which satisfies 0 � wj � 1,∑n
j=1 wj = 1.

4. The Traditional Fuzzy CODAS Model

The CODAS (combinative distance-based assessment) method, which was originally de-
fined by Keshavarz Ghorabaee et al. (2016), uses the combinative form of two distance
measurements, including Euclidean and Taxicab distances, which present accurate val-
ues to compute the assessment results of alternatives. However, this model cannot be
applied in fuzzy environment. To overcome this disadvantage, Keshavarz Ghorabaee et
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al. (2017) extended the CODAS method to fuzzy environment and proposed the fuzzy
CODAS model which used fuzzy weighted Hamming distance (HD) and fuzzy weighted
Euclidean distance (ED) rather than the crisp distances. Suppose there are alternatives
{φ1, φ2, . . . , φm}, n attributes {O1,O2, . . . ,On} and t experts {d1, d2, . . . , dt }, then the
decision making steps are expressed as follows.

Step 1. Construct the evaluation matrix R = [φt
ij ]m×n, i = 1,2, . . . ,m, j = 1,2, . . . , n

and calculate the average results matrix

r = [φij ]m×n, i = 1,2, . . . ,m, j = 1,2, . . . , n

which can be depicted as follows:

O1 O2 . . . On

R = [
φt

ij

]
m×n

=
φ1

φ2
...

φm

⎡
⎢⎢⎢⎣

φt
11 φt

12 . . . φt
1n

φt
21 φt

22 . . . φt
2n

...
...

...
...

φt
m1 φt

m2 . . . φt
mn

⎤
⎥⎥⎥⎦ , (11)

O1 O2 . . . On

r = [φij ]m×n =
φ1

φ2
...

φm

⎡
⎢⎢⎢⎣

φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
...

...
...

φm1 φm2 . . . φmn

⎤
⎥⎥⎥⎦ , (12)

φij = φ1
ij ⊕ φ2

ij ⊕ · · · ⊕ φt
ij , (13)

where φt
ij (i = 1,2, . . . ,m, j = 1,2, . . . , n) denotes the evaluation information of

alternative φi (i = 1,2, . . . ,m) on attribute Oj (j = 1,2, . . . , n) by expert dt and
φij means the average values of alternative φi with respect to attribute Oj (j =
1,2, . . . , n).

Step 2. Obtain the attribute’s fuzzy weighting vector Wt which is given by each expert
with respect to all attributes and compute the average fuzzy weighting vector W as
follows:

Wt = [
wt

j

]
1×n

, (14)

W = [wj ]1×n, (15)

wj = w1
j ⊕ w2

j ⊕ · · · ⊕ wt
j , (16)

where wt
j denotes the fuzzy weight of attribute Oj (j = 1,2, . . . , n) by expert dt

and wj (j = 1,2, . . . , n) means the average fuzzy weight values of a attribute Oj

(j = 1,2, . . . , n).
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Step 3. Normalize the average results matrix r = [φij ]m×n, i = 1,2, . . . ,m, j =
1,2, . . . , n based on the type of each attributes using the following formulae.
For benefit attributes:

Nij = φij /maxi (φij ), i = 1,2, . . . ,m, j = 1,2, . . . , n. (17)

For cost attributes:

Nij = 1 − φij /maxi (φij ), i = 1,2, . . . ,m, j = 1,2, . . . , n. (18)

Step 4. According to the normalized average matrix Nij (i = 1,2, . . . ,m, j = 1,2, . . . , n)
and average fuzzy weighting vector wj (j = 1,2, . . . , n), the fuzzy weighted nor-
malized average matrix WNij (i = 1,2, . . . ,m, j = 1,2, . . . , n) can be computed
as:

WNij = wj ⊗ Nij (i = 1,2, . . . ,m, j = 1,2, . . . , n). (19)

Step 5. Determine the fuzzy negative solution (NS) based on the equation (20):

NSj = min
i

(WNij ) (i = 1,2, . . . ,m, j = 1,2, . . . , n). (20)

Step 6. Calculate the fuzzy weighted Hamming distance (HDi ) and fuzzy weighted Eu-
clidean distance (EDi ) between each alternatives and the negative solution (NS)
according to Definition 4 and Definition 5:

HDi =
n∑

j=1

dH (WNij ,NSj ), (21)

EDi =
n∑

j=1

dE(WNij ,NSj ). (22)

Step 7. Determine the relative assessment (RA) matrix which is presented as follows:

RA = [pil]m×m, (23)

pil = (EDi − EDl ) + (
λ(EDi − EDl) × (HDi − HDl )

)
, (24)

where i, l = 1,2, . . . ,m and λ is a threshold function that can be defined:

λ(x) =
{

1 if |x| � θ,

0 if |x| < θ.
(25)

The threshold parameter θ of this function can be set by the decision maker. In our
paper, we let θ = 0.02 for the calculations.
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Step 8. Compute the values of assessment score (AS) based on each alternative’s using
the following equation:

ASi =
m∑

l=1

pil. (26)

Step 9. According to the calculation results of ASi , we can rank all the alternatives. The
bigger the value of ASi is, the better alternative will be selected.

5. The CODAS Model with 2-Tuple Linguistic Neutrosophic Information

By combining the CODAS method with 2-tuple linguistic neutrosophic information we
can build the 2-tuple linguistic neutrosophic CODAS model where all the evaluation
information and attribute’s weighting vector are presented with 2-tuple linguistic neu-
trosophic numbers (2TLNNs). Suppose there are m alternatives {φ1, φ2, . . . , φm}, n at-
tributes {O1,O2, . . . ,On} and t experts {d1, d2, . . . , dt }, let expert’s weighting vector be
{a1, a2, . . . , at }, then the decision making steps are expressed as follows.

Step 1. Construct the 2-tuple linguistic neutrosophic evaluation matrix R = [φt
ij ]m×n,

i = 1,2, . . . ,m, j = 1,2, . . . , n and calculate the average results matrix

r = [φij ]m×n, i = 1,2, . . . ,m, j = 1,2, . . . , n,

which can be depicted as follows:

O1 O2 . . . On

R = [
φt

ij

]
m×n

=
φ1

φ2
...

φm

⎡
⎢⎢⎢⎣

φt
11 φt

12 . . . φt
1n

φt
21 φt

22 . . . φt
2n

...
...

...
...

φt
m1 φt

m2 . . . φt
mn

⎤
⎥⎥⎥⎦ , (27)

O1 O2 . . . On

r = [φij ]m×n =
φ1

φ2
...

φm

⎡
⎢⎢⎢⎣

φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
...

...
...

φm1 φm2 . . . φmn

⎤
⎥⎥⎥⎦ . (28)

Based on the assessment information and expert’s weighting vector {a1, a2, . . . , at },
the

r = [φij ]m×n



170 P. Wang et al.

can be calculated as in Wang et al. (2018c):

φij = a1φ
1
ij ⊕ a2φ

2
ij ⊕ · · · ⊕ atφ

t
ij

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
(
k
(

1 − ∏t
d=1 (1 − �−1(stij ,αij )t

k
)

at ))
,

�
(
k
∏t

d=1

(
�−1(siij ,βij )t

k

)at )
,

�
(
k
∏t

d=1

(
�−1(sfij

,χij )t

k

)at )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (29)

where φt
ij = {(stij , αij )

t , (siij , βij )
t , (sfij

, χij )
t }, (i = 1,2, . . . ,m, j = 1,2, . . . , n)

denotes the 2-tuple linguistic neutrosophic information of alternative φi (i = 1,2,

. . . ,m) on attribute Oj (j = 1,2, . . . , n) by expert dt and φij = {(stij , αij ), (siij , βij ),

(sfij
, χij )} (i = 1,2, . . . ,m, j = 1,2, . . . , n) means the average 2TLNNs values of

alternative with respect to attribute Oj (j = 1,2, . . . , n).
Step 2. Obtain the attribute’s fuzzy weighting vector Wt which is given by each expert

with respect to all attributes and compute the average fuzzy weighting vector W as
follows:

Wt = [
wt

j

]
1×n

= {
(stj , αj )

t , (sij , βj )
t , (sfj

, χj )
t
}

1×n
, (30)

W = [wj ]1×n = {
(stj , αj ), (sij , βj ), (sfj

, χj )
}

1×n
. (31)

Based on the operation rules of 2TLNNs, the W = [wj ]1×n can be calculated as:

wj = a1w
1
j ⊕ a2w

2
j ⊕ · · · ⊕ atw

t
j

=

⎧⎪⎨
⎪⎩

�
(
k
(

1 − ∏t
d=1

(
1 − �−1(stj ,αj )t

k

)at ))
,

�
(
k
∏t

d=1

(
�−1(sij ,βj )t

k

)at )
,�

(
k
∏t

d=1

(
�−1(sfj

,χj )t

k

)at )
⎫⎪⎬
⎪⎭ , (32)

where wt
j = wj = {(stj , αj )

t , (sij , βj )
t , (sfj

, χj )
t } (j = 1,2, . . . , n) denotes

the fuzzy weight of attribute Oj (j = 1,2, . . . , n) by expert dt and wj =
{(stj , αj ), (sij , βj ), (sfj

, χj )}, (j = 1,2, . . . , n) means the average fuzzy weight
values of attribute Oj (j = 1,2, . . . , n).

Step 3. Normalize the average results matrix r = [φij ]m×n, i = 1,2, . . . ,m, j =
1,2, . . . , n based on the type of each attributes using the following formulae.
For benefit attributes:

Nij = φij = {
(stij , αij )

′, (siij , βij )
′, (sfij

, χij )
′}

= {
(stij , αij ), (siij , βij ), (sfij

, χij )
}
, i = 1,2, . . . ,m, j = 1,2, . . . , n.

(33)
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For cost attributes:

Nij = k − φij =

⎧⎪⎨
⎪⎩

(stij , αij )
′,

(siij , βij )
′,

(sfij
, χij )

′

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

�(k − �−1(stij , αij )),

�(k − �−1(siij , βij )),

�(k − �−1(sfij
, χij )),

⎫⎪⎬
⎪⎭ , (34)

i = 1,2, . . . ,m, j = 1,2, . . . , n.

Step 4. According to the normalized average matrix Nij = {(stij , αij )
′, (siij , αij )

′,
(sfij

, αij )
′} and average fuzzy weighting vector wj = {(stj , αj ), (sij , βj ), (sfj

, χj )}
(j = 1,2, . . . , n) the fuzzy weighted normalized average matrix WNij = {(stij , αij )

′′,
(siij , βij )

′′, (sfij
, χij )

′′} (i = 1,2, . . . ,m, j = 1,2, . . . , n) can be computed as:

WNij = wj ⊗ Nij = {
(stij , αij )

′′, (siij , βij )
′′, (sfij

, χij )
′′}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�
(
k
(

�−1(stij ,αij )′
k

· �−1(stj ,αj )

k

))
,

�
(

1 −
(

1 − �−1(siij ,βij )′
k

)
·
(

1 − �−1(sij ,βj )

k

))
,

�
(

1 −
(

1 − �−1(sfij
,χij )′

k

)
·
(

1 − �−1(sfj
,χj )

k

))

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (35)

where i = 1,2, . . . ,m, j = 1,2, . . . , n.
Step 5. Determine the fuzzy negative solution (NS) based on the equation (20)

NSj = min
i

(WNij ) = {
mini (stij , αij )

′′,maxi (siij , βij )
′′,maxi (sfij

, χij )
′′},

(36)

where i = 1,2, . . . ,m, j = 1,2, . . . , n.
Step 6. Calculate the fuzzy weighted Hamming distance and fuzzy weighted Euclidean

distance between each alternatives and the negative solution (NS) according to Def-
inition 4 and Definition 5:

HDi =
n∑

j=1

dH (WNij ,NSj )

=
n∑

j=1

⎛
⎜⎜⎜⎜⎜⎝

1

3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣�−1(stij ,αij )′′−mini�
−1(stij ,αij )′′

k

∣∣∣
+
∣∣∣�−1(siij ,βij )′′−maxi�

−1(siij ,βij )′′
k

∣∣∣
+
∣∣∣�−1(sfij

,χij )′′−maxi�
−1(sfij

,χij )′′
k

∣∣∣

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎠ , (37)

EDi =
n∑

j=1

dE(WNij ,NSj )
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=

√√√√√√√√√√
n∑

j=1

⎛
⎜⎜⎜⎜⎜⎝

1

3

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣�−1(stij ,αij )′′−mini�
−1(stij ,αij )′′

k

∣∣∣2
+
∣∣∣�−1(siij ,βij )′′−maxi�

−1(siij ,βij )′′
k

∣∣∣2
+
∣∣∣�−1(sfij

,χij )′′−maxi�
−1(sfij

,χij )′′
k

∣∣∣2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎠. (38)

Step 7. Determine the relative assessment (RA) matrix which is presented as follows.

RA = [pil]m×m, (39)

pil = (EDi − EDl ) + (
λ(EDi − EDl) × (HDi − HDl )

)
, (40)

where i, l = 1,2, . . . ,m and λ is a threshold function which can be defined:

λ(x) =
{

1 if |x| � θ,

0 if |x| < θ.
(41)

The threshold parameter θ of this function can be set by the decision maker. In our
paper, we let θ = 0.02 for the calculations.

Step 8. Compute the values of assessment score (AS) based on each alternative’s pil

using the following equation:

ASi =
∑m

l=1
pil. (42)

Step 9. According to the calculation results of ASi , we can rank all the alternatives. The
bigger the value of ASi is, the better alternative will be selected.

Thus, the decision making model can be described as:

Step 1. Construct the 2-tuple linguistic neutrosophic evaluation matrix and calculate the
average results matrix by using the equation (29);

Step 2. Obtain the attribute’s fuzzy weighting vector Wt and compute the average fuzzy
weighting vector W by using the equation (32);

Step 3. Normalize the average results matrix based on the type of each attributes by using
the equations (33) and (34);

Step 4. According to the normalized average matrix and average fuzzy weighting vector,
compute the fuzzy weighted normalized average matrix WNij by using the equa-
tion (35);

Step 5. Determine the fuzzy negative solution (NS) by using the equation (36);
Step 6. Calculate the fuzzy weighted Hamming distance and the fuzzy weighted Eu-

clidean distance between each alternatives and the NS by using the equations (37)
and (38);

Step 7. Determine the relative assessment (RA) matrix by using the equation (40);
Step 8. Compute the values of assessment score (AS) by using the equation (42);
Step 9. According to the calculation results of ASi , rank all the alternatives.
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Table 1
Linguistic scale.

Linguistic terms 2-tuple linguistic neutrosophic numbers

Exceedingly Terrible – ET {(s0,0), (s5,0), (s6,0)}
Very Terrible – VT {(s1,0), (s4,0), (s5,0)}
Terrible – T {(s2,0), (s3,0), (s4,0)}
Medium – M {(s3,0), (s3,0), (s3,0)}
Well – W {(s4,0), (s3,0), (s2,0)}
Very Well – VW {(s5,0), (s2,0), (s1,0)}
Exceedingly Well – EW {(s6,0), (s1,0), (s0,0)}

6. The Numerical Example

6.1. Numerical for 2TLNNs MAGDM Problems

The safety assessment of a construction project could be considered an MAGDM issue
(Tang and Wei, 2019a; Tang et al., 2019; Wang et al., 2019f, 2019g). With the gradual
progress of urbanization in China, the number of construction projects under development
has increased. Thus, it is very important to evaluate the safety of construction projects.
In this section, we provide a numerical example to select the best construction projects
by using the CODAS model with 2-tuple linguistic neutrosophic information. In order
to choose a suitable construction scheme for construction, assume there are five possible
construction projects φi (i = 1,2,3,4,5), which are provided by five famous construction
companies with different construction advantages. In order to select the best construction
project, invite some experts with experience of construction engineering and fuzzy set
theory to construct the evaluation system in order to assess these construction projects.
The evaluation index includes: (1) O1 is the human factor in construction projects; (2) O2

is the energy cost factor; (3) O3 is the building materials and equipment factor; (4) O4 is
the environmental factor. The five possible construction projects φi (i = 1,2,3,4,5) are
to be evaluated with 2TLNNs according to the four criteria by three experts dt (according
to the professional years and the degree of authority of the expert, the weight of the expert
is determined as (0.3,0.4,0.3)).

Step 1. Construct the 2-tuple linguistic neutrosophic evaluation matrix R = [φt
ij ]m×n,

i = 1,2, . . . ,m, j = 1,2, . . . , n. Then according to equation (29) and expert’s
weights, we can obtain the average results matrix r = [φij ]m×n, i = 1,2, . . . ,m,
j = 1,2, . . . , n as follows. (Take φ11 for example.)
According to Table 1, we can derive φ1

11 = {(s4,0), (s3,0), (s2,0)}, φ2
11 =

{(s5,0),(s2,0), (s1,0)}, φ3
11 = {(s4,0), (s3,0), (s2,0)}, then we can get (Tables 2,

3, 4)

φ11 = a1φ
1
11 ⊕ a2φ

2
11 ⊕ a3φ

3
11

=
⎧⎨
⎩�

(
6
(
1 − (

1 − 4
6

)0.3 × (
1 − 5

6

)0.4 × (
1 − 4

6

)0.3))
,

�
(
6
( 3

6

)0.3 × ( 2
6

)0.4 × ( 3
6

)0.3)
,�

(
6
( 2

6

)0.3 × ( 1
6

)0.4 × ( 2
6

)0.3)
⎫⎬
⎭

= {
(s4,0.4843), (s3,−0.4492), (s2,−0.4843)

}
.
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Table 2
Evaluation information by d1 .

O1 (benefit) O2 (cost) O3 (benefit) O4 (benefit)

φ1 W M VT VW
φ2 M T VW W
φ3 W VW VT M
φ4 VT VW M VT
φ5 VW VT M T

Table 3
Evaluation information by d2 .

O1 (benefit) O2 (cost) O3 (benefit) O4 (benefit)

φ1 VW W VT M
φ2 M T VW W
φ3 VT M VW T
φ4 T W M VW
φ5 M W VT VW

Table 4
Evaluation information by d3 .

O1 (benefit) O2 (cost) O3 (benefit) O4 (benefit)

φ1 W VW T M
φ2 VT VT M W
φ3 M T VW W
φ4 W VW VT T
φ5 W VW VT T

Table 5
The average results matrix.

O1 O2

φ1 {(s4, 0.4843), (s3,−0.4492), (s2,−0.4843)} {(s4, 0.1654), (s3,−0.3436), (s2,−0.1654)}
φ2 {(s3, −0.4968), (s3,0.2704), (s3,0.4968)} {(s2, −0.2769), (s3,0.2704), (s4,0.2769)}
φ3 {(s3, −0.2586), (s3,0.3659), (s3,0.2586)} {(s4, −0.3522), (s3,−0.3436), (s2,0.3522)}
φ4 {(s3, −0.4740), (s3,0.2704), (s3,0.4740)} {(s5, −0.3195), (s2,0.3522), (s1,0.3195)}
φ5 {(s4, −0.1577), (s3,−0.3436), (s2,0.1577)} {(s3, 0.3672), (s3,0.2704), (s3,−0.3672)}

O3 O4

φ1 {(s1, 0.3238), (s4,−0.3307), (s5,−0.3238)} {(s4, −0.1577), (s3,−0.3436), (s2,0.1577)}
φ2 {(s5, −0.3904), (s2,0.2587), (s1,0.3904)} {(s4, 0.0000), (s3, 0.0000), (s2, 0.0000)}
φ3 {(s4, 0.3793), (s2,0.4623), (s2,−0.3793)} {(s3, 0.0199), (s3,0.0000), (s3,−0.0199)}
φ4 {(s3, −0.4968), (s3,0.2704), (s3,0.4968)} {(s4, −0.4565), (s3,−0.2192), (s2,0.4565)}
φ5 {(s2, −0.0118), (s3,0.3659), (s4,0.0118)} {(s4, −0.1074), (s3,−0.4492), (s2,0.1074)}

Similarly, we can obtain other average results and all the average results are listed
in Table 5.

Step 2. Obtain the attribute’s fuzzy weighting vector Wt which is given by each expert
with respect to all attributes and compute the average fuzzy weighting vector W as
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Table 6
Attribute’s weighting vector given by decision-maker.

O1 (benefit) O2 (cost) O3 (benefit) O4 (benefit)

d1 VT W VW T
d2 M VT W M
d3 VW W M VT

Table 7
The normalized decision-making matrix Nij .

O1 O2

φ1 {(s4,0.4843), (s3,−0.4492), (s2,−0.4843)} {(s2,−0.1654), (s3,0.3436), (s4,0.1654)}
φ2 {(s3,−0.4968), (s3,0.2704), (s3,0.4968)} {(s4,0.2769), (s3,−0.2704), (s2,−0.2769)}
φ3 {(s3,−0.2586), (s3,0.3659), (s3,0.2586)} {(s2,0.3522), (s3,0.3436), (s4,−0.3522)}
φ4 {(s3,−0.4740), (s3,0.2704), (s3,0.4740)} {(s1,0.3195), (s4,−0.3522), (s5,−0.3195)}
φ5 {(s4,−0.1577), (s3,−0.3436), (s2,0.1577)} {(s3,−0.3672), (s3,−0.2704), (s3,0.3672)}

O3 O4

φ1 {(s1,0.3238), (s4,−0.3307), (s5,−0.3238)} {(s4,−0.1577), (s3,−0.3436), (s2,0.1577)}
φ2 {(s5,−0.3904), (s2,0.2587), (s1,0.3904)} {(s4, 0.0000), (s3, 0.0000), (s2, 0.0000)}
φ3 {(s4,0.3793), (s2,0.4623), (s2,−0.3793)} {(s3,0.0199), (s3,0.0000), (s3,−0.0199)}
φ4 {(s3,−0.4968), (s3,0.2704), (s3,0.4968)} {(s4,−0.4565), (s3,−0.2192), (s2,0.4565)}
φ5 {(s2,−0.0118), (s3,0.3659), (s4,0.0118)} {(s4,−0.1074), (s3,−0.4492), (s2,0.1074)}

follows (Table 6). According to expert’s weighting vector and the equation (32), the
attribute’s weighting vector can be calculated as (take W1 for example).
According to Table 1, we can derive W 1 = {(s1,0), (s4,0), (s5,0)}, W 2 =
{(s3,0), (s3,0), (s3,0)}, W 3 = {(s5,0), (s2,0), (s1,0)}, then we can get

W1 = a1W
1 ⊕ a2W

2 ⊕ a3W
3

=
⎧⎨
⎩�

(
6
(
1 − (

1 − 1
6

)0.3 × (
1 − 3

6

)0.4 × (
1 − 5

6

)0.3))
,

�
(
6
( 4

6

)0.3 × ( 3
6

)0.4 × ( 2
6

)0.3)
,�

(
6
( 5

6

)0.3 × ( 3
6

)0.4 × ( 1
6

)0.3)
⎫⎬
⎭

= {
(s3, 0.4850), (s3,−0.1042), (s3,0.4850)

}
.

So the attribute weights are derived as:

W =

⎧⎪⎪⎨
⎪⎪⎩

{(s3,0.4850), (s3,−0.1042), (s3,0.4850)},
{(s3,0.1146), (s3,0.3659), (s3,−0.1146)},
{(s4,0.1654), (s3,−0.3436), (s2,−0.1654)},
{(s2,0.1880), (s3,0.2704), (s4,−0.1880)}.

⎫⎪⎪⎬
⎪⎪⎭ .

Step 3. Normalize the average results matrix r = [φij ]m×n, i = 1,2, . . . ,m, j =
1,2, . . . , n based on the type of each attributes by formulae (33) and (34).

Step 4. According to the normalized average matrix (i = 1,2, . . . ,m, j = 1,2, . . . , n)
and average fuzzy weighting vector wj (j = 1,2, . . . , n), the fuzzy weighted nor-
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Table 8
The fuzzy weighted normalized average matrix Nij .

O1 O2

φ1 {(s3,−0.3954), (s4,0.2156), (s3,0.3954)} {(s1,−0.0476), (s5,−0.1662), (s5,0.0476)}
φ2 {(s1,0.4539), (s5,−0.4122), (s4,−0.4539)} {(s2,0.2202), (s5,−0.4358), (s4,−0.2202)}
φ3 {(s2,−0.4077), (s5,−0.3628), (s4,0.4077)} {(s1,0.2210), (s5,−0.1662), (s5,−0.2210)}
φ4 {(s1,0.4672), (s5,−0.4122), (s5,−0.4672)} {(s1,−0.3150), (s5,−0.0327), (s5,0.3150)}
φ5 {(s2,0.2317), (s4,0.2702), (s4,−0.2317)} {(s1,0.3667), (s5,−0.4358), (s5,−0.3667)}

O3 O4

φ1 {(s1,−0.0810), (s5,−0.2988), (s5,0.0810)} {(s1,0.4011), (s4,0.4789), (s5,−0.4011)}
φ2 {(s3,0.2001), (s4,−0.0849), (s3,−0.2001)} {(s1, 0.4586), (s5,−0.3648), (s5,−0.4586)}
φ3 {(s3,0.0403), (s4,0.0286), (s3,−0.0403)} {(s1,0.1011), (s5,−0.3648), (s5,−0.1011)}
φ4 {(s2,−0.2622), (s4,0.4789), (s4,0.2622)} {(s1,0.2922), (s5,−0.4645), (s5,−0.2922)}
φ5 {(s1,0.3802), (s5,−0.4679), (s5,−0.3802)} {(s1,0.4195), (s4,0.4309), (s5,−0.4195)}

malized average matrix WNij (i = 1,2, . . . ,m, j = 1,2, . . . , n) can be computed
as (take WN11 for example):

WN11 = wj ⊗ Nij

=
⎧⎨
⎩

�
(

6
(

4.4843
6 · 3.4850

6

))
,�

(
1 −

(
1 − 2.5508

6

)
·
(

1 − 2.8958
6

))
,

�
(

1 −
(

1 − 1.5157
6

)
·
(

1 − 3.4850
6

))
⎫⎬
⎭

= {
(s3,−0.3954), (s4,0.2156), (s3,0.3954)

}
.

Thus, the weighted normalized average matrix WNij (i = 1,2, . . . ,m, j =
1,2, . . . , n) is derived as follows (Table 8).

Step 5. Determine the fuzzy negative solution (NS):

NSj = min
i

(WNij ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(s1,0.4539), (s5,−0.3959), (s5,−0.4539)},
{(s1,−0.3150), (s5,−0.0327), (s5,0.3150)},
{(s1,−0.0810), (s5,−0.2988), (s5,0.0810)},
{(s1,0.1011), (s5,−0.3648), (s5,−0.1011)}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Step 6. Calculate the fuzzy weighted Hamming distance (HDi ) and fuzzy weighted Eu-
clidean distance (EDi ) between each alternatives and the negative solution (NS)
according to Definition 4 and Definition 5.
For example:

HD1 =
n∑

j=1

dH (WNij ,NSj )
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Table 9
The relative assessment matrix (RA)m×m .

φ1 φ2 φ3 φ4 φ5

φ1 0.0000 0.6437 0.2699 −0.1937 0.1626
φ2 −0.6437 0.0000 −0.3738 −0.8374 −0.4811
φ3 −0.2699 0.3738 0.0000 −0.4636 −0.1073
φ4 0.1937 0.8374 0.4636 0.0000 0.3563
φ5 −0.1626 0.4811 0.1073 −0.3563 0.0000

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
3

{∣∣∣ 2.6046−1.4539
6
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6
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∣∣∣ 3.3954−4.5461

6

∣∣∣}
+ 1

3

{∣∣∣ 0.9524−0.6850
6

∣∣∣ +
∣∣∣ 4.8338−4.9673

6

∣∣∣ +
∣∣∣ 5.0476−5.3150

6

∣∣∣}
+ 1

3

{∣∣∣ 0.9190−0.9190
6

∣∣∣ +
∣∣∣ 4.7012−4.7012

6

∣∣∣ +
∣∣∣ 5.0810−5.0810

6

∣∣∣}
+ 1

3

{∣∣∣ 1.4011−1.1011
6

∣∣∣ +
∣∣∣ 4.4789−4.6352

6

∣∣∣ +
∣∣∣ 4.5989−4.8989

6

∣∣∣}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0.2304,

ED1 =
n∑

j=1

dE(WNij ,NSj )

=

√√√√√√√√√√√√√√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3

{∣∣∣ 2.6046−1.4539
6

∣∣∣2 +
∣∣∣ 4.2156−4.6372

6

∣∣∣2 +
∣∣∣ 3.3954−4.5461

6

∣∣∣2}
+ 1

3

{∣∣∣ 0.9524−0.6850
6

∣∣∣2 +
∣∣∣ 4.8338−4.9673

6

∣∣∣2 +
∣∣∣ 5.0476−5.3150

6

∣∣∣2}
+ 1

3

{∣∣∣ 0.9190−0.9190
6

∣∣∣2 +
∣∣∣ 4.7012−4.7012

6

∣∣∣2 +
∣∣∣ 5.0810−5.0810

6

∣∣∣2}
+ 1

3

{∣∣∣ 1.4011−1.1011
6

∣∣∣2 +
∣∣∣ 4.4789−4.6352

6

∣∣∣2 +
∣∣∣ 4.5989−4.8989

6

∣∣∣2}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.2439.

Similarly, we can obtain

HD1 = 0.2304, HD2 = 0.5326, HD3 = 0.3554, HD4 = 0.1343,

HD5 = 0.3123, ED1 = 0.2439, ED2 = 0.5854, ED3 = 0.3887,

ED4 = 0.1463, ED5 = 0.3246.

Step 7. Determine the relative assessment (RA) matrix which is presented as follows (Ta-
ble 9).

Step 8. Compute the values of assessment score (AS) based on each alternative’s pil

AS1 = −0.8824, AS2 = 2.3360, AS3 = 0.4669,

AS4 = −1.8510, AS5 = −0.0695.
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Table 10
Ordering by different parameter θ .

Parameter AS1 AS1 AS1 AS1 AS1 Ordering

θ =0.05 −0.8824 2.3360 0.4669 −1.8510 −0.0695 φ2 > φ3 > φ5 > φ1 > φ4
θ =0.06 −0.8824 2.3360 0.4669 −1.8510 −0.0695 φ2 > φ3 > φ5 > φ1 > φ4
θ =0.07 −0.8824 2.3360 0.4238 −1.8510 −0.0264 φ2 > φ3 > φ5 > φ1 > φ4
θ =0.10 −0.8966 2.3360 0.4238 −1.7549 −0.1083 φ2 > φ3 > φ5 > φ1 > φ4
θ =0.20 −0.7716 2.1588 0.4760 −1.5769 −0.2863 φ2 > φ3 > φ5 > φ1 > φ4
θ =0.30 −0.7716 1.9386 0.2549 −1.3558 −0.0660 φ2 > φ3 > φ5 > φ1 > φ4
θ =0.40 −0.4695 1.6364 0.2549 −1.3558 −0.0660 φ2 > φ3 > φ5 > φ1 > φ4

Step 9. According to the calculation results of AS, we can rank all the alternatives. The
bigger the value of AS is, the better alternative will be selected. Obviously, the rank
of all alternatives is φ2 > φ3 > φ5 > φ1 > φ4 and φ2 is the best alternative.

6.2. Sensitivity Analysis

To show the influence of the threshold parameter θ which is set by the decision maker, the
ordering of the alternatives is shown as follows.

From Table 10, we can easily find that the ordering of alternatives is the same, which
indicates that our proposed 2TLNN CODAS model is robust and effective. At the same
time, when the threshold parameter θ � 0.06, the assessment score (AS) remains the same,
which indicates that the Hamming distance and the Euclidean distance are considered;
when the threshold parameter θ � 0.50, the assessment score (AS) also remains the same,
which indicates only the Euclidean distance are considered. In other words, when the
threshold parameter 0.06 � θ � 0.50, the Euclidean distance is considered absolutely and
the Hamming distance is considered partly. In addition, the absolute values of assessment
scores become smaller with the increase of the parameter. Thus, the decision maker can
obtain different assessment scores by altering the threshold parameter.

6.3. Compare 2TLNNs CODAS Method with Some 2TLNNs Aggregation Operators

In this chapter, we compare our proposed 2-tuple linguistic neutrosophic CODAS method
with the 2-tuple linguistic neutrosophic weighted average (2TLNNWA) operator and
2-tuple linguistic neutrosophic weighted geometric (2TLNNWG) operator. For the at-
tribute’s weights that are presented by 2TLNNs we can use the score function to obtain
the attribute’s weights with crisp number.

According to the value of the average attribute’s weighting vector W which is listed
as:

W =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(s3,0.4850), (s3,−0.1042), (s3,0.4850)},
{(s3,0.1146), (s3,0.3659), (s3,−0.1146)},
{(s4,0.1654), (s3,−0.3436), (s2,−0.1654)},
{(s2,0.1880), (s3,0.2704), (s4,−0.1880)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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Table 11
The fused values by using some 2TLNNs aggregation operator.

2TLNNWA 2TLNNWG

φ1 {(s3,0.0885), (s3,0.0654), (s3,−0.0885)} {(s2,0.4201), (s3,0.1435), (s4,−0.4201)}
φ2 {(s4,−0.0034), (s3,−0.2500), (s2,0.0034)} {(s4,−0.2538), (s3,−0.1964), (s2,0.2538)}
φ3 {(s3,0.3493), (s3,−0.0147), (s3,−0.3493)} {(s3,0.1133), (s3,0.0367), (s3,−0.1133)}
φ4 {(s3,−0.4976), (s3,0.2545), (s3,0.4976)} {(s2,0.3048), (s3,0.2810), (s4,−0.3048)}
φ5 {(s3,0.1103), (s3,−0.1452), (s3,−0.1103)} {(s3,−0.1259), (s3,−0.1077), (s3,−0.1259)}

Table 12
Score results of alternatives φi .

2TLNNWA 2TLNNWG

s(φ1) 0.5062 0.4276
s(φ2) 0.6246 0.5938
s(φ3) 0.5396 0.5106
s(φ4) 0.4306 0.4071
s(φ1) 0.5203 0.4920

Table 13
Rank of Alternatives by some 2TLNNs aggregation operators.

order

2TLNNWA φ2 > φ3 > φ5 > φ1 > φ4
2TLNNWG φ2 > φ3 > φ5 > φ1 > φ4
2TLNNs CODAS model φ2 > φ3 > φ5 > φ1 > φ4

We can obtain the score results as:

W1 = 0.5597, W2 = 0.4924, W3 = 0.6486, W4 = 0.3948.

Then the normalized results wj (j = 1,2, · · · , n) can be expressed as:

wj = Wi

/ n∑
i=1

Wi, (43)

w1 = 0.2671, w2 = 0.2350, w3 = 0.3095, w4 = 0.1884.

Based on the attribute’s weight and the results in Table 7, the fused values by
2TLNNWA and 2TLNNWG operators are shown in Table 11.

According to the score function of 2TLNNs, we can obtain the alternative score results
which are shown in Table 12.

The ranking of alternatives by some 2TLNNs aggregation operators are listed as fol-
lows (Table 13).

Comparing the results of the 2-tuple linguistic neutrosophic CODAS model with
2TLNNWA and 2TLNNWG operators, it can be noted that the aggregation results are
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slightly different in ranking of alternatives and the best alternatives are the same. How-
ever, 2-tuple linguistic neutrosophic CODAS model has important characteristics of using
the combinative form of two distance measurements, including fuzzy weighted Hamming
distance (HD) and fuzzy weighted Euclidean distance (ED) and can be more accurate and
effective in the application of MADM problems.

7. Conclusion

In this paper, we present the 2-tuple linguistic neutrosophic CODAS model based on the
traditional fuzzy CODAS (combinative distance-based assessment) model and some fun-
damental theories of 2-tuple linguistic neutrosophic information. Firstly, we briefly re-
view the definition of 2-tuple linguistic neutrosophic sets (2TLNNSs) and introduce the
score function, the accuracy function, operation laws and some aggregation operators of
2TLNNs. Then, the calculation steps of traditional fuzzy CODAS model are briefly pre-
sented. Furthermore, by combining the traditional fuzzy CODAS model with 2TLNNs
information, the 2-tuple linguistic neutrosophic CODAS model is established and the com-
puting steps are simply depicted. Finally, a numerical example for safety assessment of a
construction project is given to illustrate this new model and some comparisons between
2TLNNs CODAS model and two 2TLNNs aggregation operators are also made to fur-
ther illustrate advantages of the new method. In actual decision making applications, our
developed model has the advantage of considering the combinative form of two distance
measurements, including fuzzy weighted Hamming distance (HD) and fuzzy weighted
Euclidean distance (ED). However, it is difficult to obtain assessment information which
is expressed by 2TLNNs, so we need to continue to study this problem. In the future, the
2-tuple linguistic neutrosophic CODAS model can be applied to the risk analysis (Wei et
al., 2019h, 2018), the MADM problems (Wei et al., 2019a; He et al., 2019a; Tang and
Wei, 2019b; Wei, 2019a, 2019b; Wei et al., 2019c) and many other uncertain and fuzzy
environments (Lu et al., 2019a; Wei et al., 2019c, 2019d, 2019f).
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