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Abstract. In this article, we propose a practical algorithm for capacitated facility location problems
(CFLP). There are some approaches which can obtain primal solutions while simultaneously ex-
ploiting the primal structure and the dual structure. One of these approaches is the mean value cross
decomposition (MVCD) method that ensures convergence without solving master problems. How-
ever, MVCD has been previously applied only to uncapacitated facility location problems (UFLP),
due to the fact that the performance is highly dependent on the structure of the problem. The pro-
posed algorithm, named the dynamic mean value cross decomposition algorithm (DMVCD), is
effectively integrated with MVCD and cutting plane methods in order to tighten the bounds by re-
ducing the duality gap. Computational results of various instances are also reported to verify the
effectiveness and efficiency of DMVCD.

Key words: capacitated facility location problems, cross decomposition, mean value cross
decomposition, primal recovery strategies, Lagrangian relaxation

1. Introduction

The facility location problem (FLP) is a problem to choose facility locations, such as
industrial plants or warehouses, in order to minimize the cost to meet the product demands.
In general, there are fixed costs for locating the facilities and delivery costs for distributing
the products between facilities and customers.

Problem PCFL , the mathematical formulation of the CFLP (Capacitated Facility Loca-
tion Problem), can thus be formulated as a mixed integer program. To do this, we define
a set of sites I = {1,2, . . . ,m} where facilities can be located, and a set of customers
J = {1,2, . . . , n} with a given demand for a single product. Let fi be the given fixed cost
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of opening facility i and cij be the delivery cost from facility i to customer j . Also, let
dj be the demand of customer j and si be the maximum capacity of facility i . For de-
cision variables, let the continuous variable xij be the fraction of customer j ’s demand
dj delivered from facility i and the binary variable yi = 1 if facility i is open and yi = 0

otherwise. Then PCFL is formalized as follows:

(PCFL)

v∗ =min

m
∑

i=1

fiyi +

m
∑

i=1

n
∑

j=1

cijxij , (1)

subject to

m
∑

i=1

xij = 1, ∀j, (2)

xij 6 yi, ∀i, j, (3)

n
∑

j=1

djxij 6 siyi, ∀i, (4)

xij > 0, ∀i, j, (5)

yi ∈ {0,1}, ∀i. (6)

PCFL is a problem of finding a subset of facilities to open and of deciding the ratio
xij to be delivered in order to minimize the total costs, as a objective function (1), while
satisfying all the constraints (2)–(6). Constraints (2) indicate all demands must be met,
and constraints (3) require customers to be supplied only from open facilities. Finally,
constraints (4) are the capacity constraints for which the total supply at a facility is lim-
ited by the maximum capacity of the facility. Note that the UFLP (Uncapacitated Facility
Location Problem) does not include the constraints (4). However, it is well known that
CFLP better reflects more realistic problems than UFLP, and both of them are NP-hard
problems. A new extension of CFLP, called the ordered CFLP, is also introduced to deal
with more realistic situations (Kalcsics et al., 2010).

Many branch-and-boundalgorithms have been developed in which several relaxations
and decomposition schemes are used to find desired lower bounds. These kinds of branch-
and-bound algorithms focus on improving bounds obtained by relaxations or decompo-
sitions and recovering feasible solutions from these bounds. In this context, the cutting
plane methods grounded on the polyhedral theory are primarily used to improve the
bounds in conjunction with valid inequalities. The polyhedral structure of CFLP and
valid inequalities of network flow problems with capacitated fixed charges were stud-
ied in some researches (Padberg et al., 1985; Wolsey, 1989; Leung and Magnanti, 1989;
Aardal et al., 1995). Based on these studies, various versions of the branch-and-cut algo-
rithms were developed (Aardal, 1998a; Klose, 2000; Sridhar and Park, 2000; Ortega and
Wolsey, 2003). In addition, Avella and Boccia (2009) developed a branch-and-cut-and-
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price algorithm based on the mixed dicut inequalities, and Yang et al. (2012) presented a
cut-and-solve based algorithm for the single-source capacitated facility location problem.

Another key method to guarantee promising error bounds is the Lagrangian heuristic
algorithm on Lagrangian relaxation, mainly using subgradient optimization techniques to
solve the Lagrangian dual problems. This method also requires relaxation techniques as
well as some recovery schemes in order to produce feasible solutions. Klincewicz and
Luss (1986) suggested a Lagrangian heuristic algorithm to relax the capacity constraints,
while Lagrangian relaxation algorithms relaxing the demand constraints to create a num-
ber of knapsack problems were employed (Sridharan, 1993; Hindi and Pienkosz, 1999;
Holmberg et al., 1999; Barahona and Chudak, 2005). Beasley (1993) proposed a heuris-
tic algorithm by relaxing both capacity constraints and demand constraints, and Agar and
Salhi (1998) improved Beasley algorithm. For feasible solution recovery methods, a re-
stricted neighborhood search and a repeated-matching algorithm were studied (Hindi and
Pienkosz, 1999; Holmberg et al., 1999) and a subgradient-based heuristic algorithm in
conjunction with the volume algorithm and randomized rounding was developed (Bara-
hona and Chudak, 2005). Also, Chen and Ting (2008) developed a hybrid algorithm which
combined the Lagrangian heuristic and a multiple ant colony system in order to solve the
single source capacitated facility location problem, and an add-drop-interchangeheuristic
presented by Sinha (2009) was used to improve a lower bound based on the LP-relaxation.
Furthermore, Du et al. (2010) proposed an approximation algorithm for the k-level CFLP
that unified and extended several existing facility location problems and Sun (2012) devel-
oped an effective tabu search heuristic procedure for CFLP, as compared to the Lagrangian
heuristic method with improved subgradient scheme.

In addition, there are different approaches simultaneously considering the primal and
the dual structures of the FLP problems. On one hand, the cross decomposition algorithm
(Van Roy, 1983) is integrated with Benders decomposition and Lagrangian relaxation
into a single framework. On the other hand, there is the mean value cross decomposi-
tion (MVCD) algorithm as a variant of cross decomposition (Holmberg, 1992). While
most of the Lagrangian relaxation-based algorithms only give us lower bounds for the pri-
mal problems, these approaches provide good upper and lower bounds at the same time
and generate various information to find feasible solutions. Cross decomposition has been
successfully applied to CFLP (Van Roy, 1986), but it should incorporate a complicated
procedure to solve master problems depending on the outcomes of convergence tests. At
worst, hence, as the convergence test fails at each iteration, cross decomposition cannot be
better than Benders or Dantzig–Wolfe decomposition. Indeed, the cross decomposition is
designed to work well with few master problems, but it has been reported that the master
problems have to be addressed frequently, which consequently makes the algorithm ineffi-
cient (Cornuéjols et al., 1991; Wentges, 1996; Holmberg, 2001). Without the master prob-
lems, MVCD was proposed as a method which can efficiently obtain optimal solutions for
linear programming problems by using only the subproblem structures (Holmberg, 1992;
Holmberg, 1994). It was also shown that MVCD provided the same bounds as Lagrangian
relaxation, which are better than those of LP-relaxation (Holmberg, 1997). Then, MVCD
was extended for MIP (Mixed Integer Programming) problems and applied to UFLP
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(Holmberg, 1997, 2001). In addition, it has been shown to be useful for convex nonlinear
problems (Holmberg and Kiwiel, 2006). In this regard, MVCD has been considered as an
efficient approach due to its simplified computational procedure than cross decomposi-
tion, guaranteeing relatively good lower bounds. Of course, cross decomposition is able
to present better solutions than MVCD, but it is in general harder to quickly obtain good
solutions within finite iterations, especially for large scale problems.

In sum, based on the decomposition techniques, either the branch-and-bound, branch-
and-cut, or heuristic methods have been widely used for CFLP. Though MVCD with the
branch-and-bound methods has been examined in the literature, MVCD in conjunction
with the cutting plane methods has been less studied.

Hence, we propose a specially designed algorithm that combines MVCD and the cut-
ting plane methods in order to practically solve CFLP. This algorithm, named DMVCD
(dynamic mean value cross decomposition), is a general application of MVCD in which
cutting plane methods play an important role for convergencewithout solving master prob-
lems while reducing the duality gap.

The rest of this paper is organized as follows. In Section 2, we describe MVCD which is
the basis of our algorithm. Our proposed algorithm is detailed in Section 3. Computational
results are presented in Section 4. In the last section, we summarize our results and show
a way forward based on the present study.

2. Mean Value Cross Decomposition Method

Algorithm MVCD is very similar to cross decomposition, in that both algorithms simulta-
neously exploit the primal and dual structures of problems (Holmberg, 1992, 1994). The
main difference between MVCD and cross decomposition is that MVCD uses the mean
value of previous dual subproblem solutions as the input value of the primal subproblem
and vice versa, whereas the cross decomposition employs the last dual subproblem solu-
tions directly to solve the primal subproblem and vice versa. Though cross decomposition
has been widely applied to combinatorial optimizations, MVCD has a rather different ad-
vantage such as guaranteed convergenceusing only a simple procedurewithout addressing
master problems, as a consequence, it is also very efficient.

MVCD is built on a suitable combination of the primal master problem and the dual
master problem, both of which have the same optimal value. However, it is difficult to use
MVCD in directly solving MIP because of the duality gap. In order to apply MVCD for
MIP, we first need to construct primal problems and dual problems to have tight bounds.
MVCD with this combination of problems produces the same bound as that of Lagrangian
relaxation (Holmberg, 1997). If the dual subproblem has an integrality property, the same
lower bound as that of Lagrangian relaxation can be obtained even if the dual subproblem
is LP-relaxed. Based on this property, the MVCD-based branch-and-bound algorithm for
UFLP was developed (Holmberg, 2005).

Problem PUFL is defined as a problem with no capacity constraints (4) in PCFL . Let
MP be the primal master problem, MD be the dual master problem and v∗, vP and vD be
the optimal values of PUFL, MP and MD, respectively.



Dynamic Mean Value Cross Decomposition Algorithm 527

Let us define the bounded sets X,YLP, Y as X = {xij :
∑m
i=1

xij = 1, xij > 0, ∀i, j },
YLP = {yi : 0 6 yi 6 1, ∀i} and Y = {yi: yi ∈ {0,1}, ∀i}, respectively. We assume that for
each yi ∈ YLP there exists some xij ∈X such that xij 6 yi for all i, j . Dual subproblems,
denoted by USDµ, are constructed via Lagrangian relaxation with respect to coupling
constraints (3) with the dual variable µ > 0. The surrogate constraint (7) is required in
order to exist some xij ∈X satisfying xij 6 yi for yi ∈ YLP ∀i, j . For fixed yi ∈ YLP ∀i ,
let us define primal subproblems as USPy with ψ(y) of the optimal values.

(USDµ)

ϕ(µ)=min

(

m
∑

i=1

fi −µisi

)

yi +

(

m
∑

i=1

n
∑

j=1

cij +µidj

)

xij ,

subject to

x ∈X,

y ∈ Y,

m
∑

i

yi > 1. (7)

Then, we obviously have

ϕ(µ)6 vD 6 v∗ = vP 6ψ(y), ∀µ> 0, ∀y ∈ Y.

Now, let us define ỸLP = {yi: 0 6 yi 6 1,
∑m
i yi > 1, ∀i}, Ỹ = {yi ∈ {0,1}:

∑m
i yi > 1, ∀i} and ỸC as the convex hull of Ỹ . Since constraint (7) defines the facet

of YC , the convex hull of Y , we have ỸC = YC = {yi: 0 6 yi 6 1, ∀i}. Therefore, we can
construct another convexified primal master problem (MPC) as follows:

(MPC) vC = min
y∈YC

ψ(y).

Note that vC = vD . In this case, MVCD performs on a combination of MPC and MD,
which can guarantee the same bounds as vD 6 v∗ of Lagrangian relaxation.

Let us denote MPL and MDL as LP-relaxation problems of MP and MD, respectively,
and define vPL =miny∈ỸLP

ψ(y) (MPL) and vDL =maxu>0 ϕLP(u) (MDL). Here, vPL =

vDL holds because MDL is the Lagrangian dual of MPL. Then, we have another MVCD
application that runs on a combination of MPL and MDL having vPL = vDL . In addition,
there exists an integrality property in USDµ by Definition 1.

Definition 1. (See Geoffrion, 1974.) The dual subproblem is said to have the integrality
property if ϕ(u)= ϕLP(u), ∀u > 0, i.e., if replacing Y with YLP in the dual subproblem
has no effect on the objective function value.

As Problem USDµ has the integrality property and if it has been LP-relaxed, the same
bounds as those of MPC and MD are obtained; that is, vDL = vD = vC (Geoffrion, 1974).
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However, it is not easy for MVCD to find the exact integer solutions because the duality
gap between vDL(vD) and v∗ still exists, and MVCD has a feature of infinite asymptotic
convergence to the optimal solution. Therefore, in order to overcome these difficulties
and improve the efficiency of asymptotic convergence, the branch-and-bound and primal
recovery heuristic techniques were used. In this light, several combinations with other
techniques such as cross decomposition, primal-dual subgradient optimizations, and the
variations of MVCD were studied in the MVCD framework (Holmberg, 2001, 2005).

In particular, MVCD is well applied to the special case of UFLP, the Lagrangian dual
of which is separated into m parts with the only binary variable y and has the integrality
property. In contrast, in the case of CFLP, no Lagrangian dual meets the integrality prop-
erty. The Lagrangian dual divided respectively into x and y variables yields the lower dual
performance with the large duality gap. Also, as is the case of UFLP, the closer one is to
the optimal solutions, the slower is the convergencedue to infinite asymptotic convergence
of MVCD. For these reasons, there is no empirical study of MVCD with application to
CFLP.

3. Dynamic Mean Value Cross Decomposition for CFLP

In this section, we describe the dynamic mean value cross decomposition (DMVCD)
method which is designed for practically applying the MVCD method to CFLP. As stated
in the previous sections, the applications of MVCD are limited depending on the structures
of the problems, in spite of its various advantages. In the case of CFLP, Lagrangian relax-
ation generally leads to a large duality gap. Consequently, the MVCD itself is not a useful
method for this problem, and hence, the DMVCD algorithm proposed in this study em-
ploys the cutting plane methods to obtain tighter bounds. The main concept of DMVCD is
to approximate the convex hull of PCFL whenever no improvement takes place by consid-
ering some valid inequalities in the MVCD framework. This scheme reduces the duality
gap and tightens the bounds of MVCD and is able to accelerate the asymptotic conver-
gence. Most of the existing studies relevant to the cutting plane methods in conjunction
with decomposition methods have only focused on strengthening the master problems
by enhancing the cuts consisting of the master problems or adding strong valid inequal-
ities to the master problems (Magnanti and Wong, 1981; Klose, 2000; Van Roy, 1986;
Sridhar and Park, 2000). In contrast, we try to add some valid inequalities to the subprob-
lems, which allows DMVCD to generate tighter bounds while preserving the efficient
procedures of MVCD.

Our approach owes much to the MVCD-based branch-and-bound method (Holmberg,
2005). This study pays attention to issues such as heuristics for obtaining feasible inte-
ger solutions, tree search strategies and reoptimization after branching or adding valid
inequalities and it has thus been successfully applied to UFLP. However, in the case of
CFLP, some guidelines were established but no empirical study was presented (Holm-
berg, 2005). Our study focuses on developing a practical procedure for the addition of
valid inequalities that ensures consecutive improvements of the bounds, and evaluating
the convergence and effectiveness of the procedures through an empirical study for CFLP.
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3.1. A Lagrangian Relaxation for DMVCD

Like MVCD, we first need to obtain the dual subproblem to be addressed by DMVCD.
To do so, there are several options to relax the demand constraints (2), the variable
upper bounds (3) and the capacity constraints (4) in PCFL , mentioned in Introduc-
tion. It is known that it is more effective to relax the demand constraints (2) for La-
grangian heuristics as shown in the studies (Sridharan, 1993; Hindi and Pienkosz, 1999;
Holmberg et al., 1999, 2005; Barahona and Chudak, 2005), whereas cross decomposi-
tion forms the dual subproblems by relaxing the capacity constraints (4). However, the
Lagrangian subproblems obtained by dualizing (2) or (4) are not able to be separated into
x and y variable parts and have no integrality property. In other words, none of them is
able to obtain a suitable primal master problem with the same objective value as that of
the dual master problem.

In our approach, instead of using these Lagrangian relaxation schemes, we form the
dual subproblem, denoted CSD(µ,ν), through a relaxation with regard to both constraints
(3) and (4). Let µ and ν be the dual variables corresponding to constraints (3) and (4),
respectively. In addition, constraint (8) is required for the feasibility of the primal subprob-
lems, denoted CSPy , which is defined by fixing the primal variables yi ∈ YLP = {yi: 0 6

yi 6 1,
∑m
i=1

siyi >
∑n
j=1

dj ∀i} in PCFL . In addition, the optimal value of CSPy is
defined as ψ(y).

(CSD(µ,ν))

ϕ(µ,ν)=min

m
∑

i=1

(fi −µisi −

n
∑

j=1

νij )yi +

m
∑

i=1

n
∑

j=1

(cij +µidj + νij )xij ,

subject to

m
∑

i=1

xij = 1, ∀j,

m
∑

i=1

siyi >

n
∑

j=1

dj , (8)

xij > 0, ∀i, j,

yi ∈ {0,1}, ∀i.

Even though separability is obtained, constraint (8) is a knapsack constraint which
is not able to define the facets of the convex hull of {yi : 0 6 yi 6 1}, so that CSD(µ,ν)
no longer has the integrality property. Therefore, the LP-relaxation of CSD(µ,ν) cannot
provide the same bounds as those of the Lagrangian relaxation. As a result, we adopt
another MPC and MD in accordance with the convergence conditions of MVCD, both of
which have CSPy and CSD(µ,ν) as their subproblems. Here, MPC and MD are defined as
follows:
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(MPC)

vC = min
y∈YC

ψ(y),

where YC is the convex hull of Y : (9)

Y =

{

yi ∈ {0,1}:

m
∑

i=1

siyi >

n
∑

j=1

dj , ∀i

}

,

(MD)

vD = max
µ>0, ν>0

ϕ(µ,ν).

3.2. Cutting Plane Methods and Valid Inequalities in DMVCD

For convenience, the optimal objective values of PCFL, MP, MD, and MPC defined in
the previous Section 3.1 are repeated as v∗, vP , vD , and vC , respectively. Again, let us
duplicate MPL (LP-relaxations of MP) and MDL (LP-relaxations of MD), and their opti-
mal values are vPL =miny∈YLP ψ(y) and vDL =maxu>0 ϕLP(u), respectively. Then, the
relation between these values holds true (see Fig. 1 below):

vDL = vPL 6 vC = vD 6 v∗ = vP .

Now, in order to examine another relation, we denote Z as the feasible set defined by
constraints (2)–(6) in PCFL and ZLR as the feasible set of the LP-relaxation of PCFL. Also,
let ck for k ∈K be a valid inequality violated by a point in ZLR, whereK is the index set of
all valid inequalities for conv(Z). Given VK̃ as the feasible space obtained by intersecting
ck for all k ∈ K̃ ⊆ K , we can define ZS = {(x, y) ∈ VK̃ : y integer}. Then, we can state
another master problem as follows:

vS = min
y∈conv(ZS)

ψ(y).

Duality

gap

*

P
v v 

C D
v v 

PL DL
v v 

S
v 

S
v

D
v 

MVCD or Lagrangian relaxation

ˆ
S
vˆ

D
v

DMVCD

Fig. 1. The relations between various values.
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Here, conv(Z)⊆ conv(ZS)⊆ZLR is valid, so that we have the following obvious result
(see Fig. 1):

vPL 6 vS 6 v
∗.

If we could find all valid inequalities in order that K̃ is the same as K , we would
have vS = v∗. However, unfortunately, for NP-hard problems such as CFLP, it is almost
impossible to obtain K̃ that can completely describe conv(Z).

Our purpose is to obtain ZS such that vC 6 vS 6 v
∗ = vP for better bounds than those

of the Lagrangian relaxation or MVCD (see Fig. 1). However, note that the knapsack cover
inequalities, which are well known as the single most effective class (Padberg et al., 1985;
Aardal, 1998a), are already implicitly included in both MPC and MD by defining YC with
constraint (8). As a consequence, we can say that ZS which is equivalent to YC is already
held, namely vS = vC .

Now we will discuss how vS can be improved to ṽS > vS .

Proposition 1. Assume that there exists a setG of points (x, y) ∈ {YC − conv(Z)}. Let ck

for k ∈ K̃ ⊆K be a valid inequality violated by a point (x̂, ŷ) ∈G, and let Z̃S = ZS ∩YC .

Then, vC < ṽS 6 v
∗, where ṽS =min

y∈conv(Z̃S)
ψ(y).

Proof. Since conv(Z̃S) is the convex hull of {ZS ∩ YC} and conv(Z)⊂ conv(ZS), obvi-
ously conv(Z)⊆ conv(Z̃S)⊂ YC . Thus, vC < ṽS 6 v∗. �

Both a point in YC and a valid inequality ck for k ∈K violated by that point are required
for ensuring ṽS > vS = vC according to Proposition 1. Note that a convex combination of
y-solutions of CSD(µ,ν), denoted by ȳ , always lies in YC and x can be obtained by solving
CSPȳ . However, considering that solutions yielded always stay within YC and converge to
a particular solution in YC , it is not required all valid inequalities for Z cutting off points
in YC . Therefore, we will take the valid inequalities into consideration only in situations
of no improvement. Consequently, in terms of the search space for identifying the valid
inequalities, DMVCD becomes more efficient than the cutting plane methods based on
LP-relaxation. To some extent, there are some valid inequalities to be considered in the
previous studies (Padberg et al., 1985; Aardal et al., 1995; Aardal, 1998b), e.g., flow cover
inequalities, effective capacity inequalities, submodular inequalities, and so on. Among
these valid inequalities, we use a common inequalities set, the flow cover inequalities.

Now, we need to construct the dual subproblems, CSD(µ,ν), such that the dual optimal
value is equal to ṽS . Assume that a valid inequality (10) is violated by (x , ȳ).

∑

ij

αkij x
k
ij +

∑

i

βki y
k
i 6 γ

k, k ∈ K̃ ∩K. (10)

Then, we have two choices, namely either to keep a valid inequality (10) or to relax it.

Proposition 2. Let ϕ̃(µ, ν) be the dual subproblem via a Lagrangian relaxation with

respect to a valid inequality (10) and ṽD =maxµ>0, ν>0 ϕ̃(µ, ν). Then, ṽS = ṽD .
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Proof. See Geoffrion (1974). �

ThroughPropositions 1 and 2, we can choose a type of relaxation that ensures ṽS = ṽD ,
keeping the valid inequality. However, in order to implement DMVCD practically, a valid
inequality with only y-variables, i.e., αij = 0, ∀i, j in (10), is available for this type of
relaxation. Because the primal subproblem, CSPȳ , is defined by fixing only y = ȳ, except
for x-variables in the DMVCD framework, keeping the valid inequality (10) may result in
ṽS < ṽD . In other words, when only the y-variables exist in a valid inequality generated,
we could keep it for convergent DMVCD. If both x and y variables appear in the valid
inequality, we can obtain v̂D by relaxing it. Then, we can also obtain v̂S such that vC 6

v̂S = v̂D 6 ṽS , where v̂S is defined as follows:

v̂S = min
y∈ conv(Y)

ψ̂(y),

where ψ̂(y) is the optimal value of Problem CSPy with the valid inequality as a constraint.

3.3. The Dynamic Mean Value Cross Decomposition Algorithm

Our DMVCD algorithm first attempts to reach a specific value, vC = vD , by repeating the
following two steps:

• fix y at its mean value ȳ and solve the restricted primal subproblem CSPȳ to get new
values for µ, ν, and
• fix µ, ν at its mean value µ̄, ν̄ and solve the Lagrangian dual subproblem CSD(µ̄,ν̄)

to get new values for y .

In parallel with these basic steps, the additions of the flow cover inequalities with
both x and y variables enhance the current bounds vC to the bounds v̂S such that vC 6

v̂S = v̂D 6 ṽS by dualizing these inequalities as described in Section 3.2. Furthermore,
we carry out this procedure repetitively to make DMVCD convergent to a tight bound
vC ≪ v̂S 6 v∗. In addition, we will exploit valid inequalities whenever no improvement
takes place by taking advantage of a feature that ȳ always lies in the YC .

According to Holmberg (Holmberg, 2005), the effect of bad starting solutions remains
for many iterations and might make MVCD inefficient. For this reason, some combinations
of MVCD, subgradient optimization and ordinary cross decomposition were suggested in
order to produce good starting solutions (Holmberg, 2005). Also, the earlier solutions
accumulated as mean values have knock-on effects on converging to specific values. In
other words, though they help to guarantee the convergence of our scheme, they might
make our scheme more asymptotic. Thus, it is necessary to lessen the effect of the earlier
solutions. To do this, DMVCD intends to reduce the solutions space approximately onto
conv(Z) by adding valid inequalities. Therefore, the earlier solutions that cannot validate
the added inequalities barely affect the convergence to specific values. So, we attempt
to accelerate the asymptotic convergence by restarting the solutions accumulating in the
procedure of DMVCD whenever valid inequalities are added. In this sense, we do not
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need to obtain the good starting solutions with additional techniques and get the starting
solutions as the input values of the dual subproblem by simply using the dual-subgradient
optimization for ϕLP(µ, ν), the LP-relaxation of CSD(µ,ν).

Our proposed algorithm is summarized as follows:

Algorithm: Dynamic Mean Value Cross Decomposition

Initialization Get a start solution (µ0, ν0) by using the subgradient optimization
based on ϕLP(µ, ν).

Set t = 1, k = 1, vU =∞, vL =−∞.

Let N1 be a maximum iteration number and ǫ be a termination tolerance as
the gap between optimal values of the primal and dual master problem.

Main Step Guaranteeing good bounds

Step (I) Dual subproblem phase

Let µ̄k = 1

k
µk−1 + k−1

k
µ̄k−1, ν̄k = 1

k
νk−1 + k−1

k
ν̄k−1.

Solve ϕ(µ̄k, ν̄k) and get yk .

If ϕ(µ̄k, ν̄k)> vL, set vL = ϕ(µ̄k, ν̄k).

If (vU − vL)/vU × 100 6 ǫ or t >N1, then TERMINATE.
Step (II) Primal subproblem phase

Let ȳk = 1

k
yk + k−1

k
ȳk−1.

Solve ψ(ȳk) and get µk , νk and xk .

Set k← k + 1, t← t + 1.

If ψ(ȳk)6 vU , set vU =ψ(ȳk), ybest = ȳk and xbest = xk .

Otherwise, go to Step (III).

If (vU − vL)/vU × 100 6 ǫ or t > N1, then TERMINATE.
Step (III) Addition of valid inequalities

Identify valid inequalities violated by (ybest , xbest) and add them to
CSPy and dualize them to CSD(µ,ν).

Reset k = 1, and ȳk = 0, µk = µ̄k , νk = ν̄k .

Go to step (I).

4. Computational Results

We performed several computational tests suitable for the research goals, applying
DMVCD to both known benchmark test problems as well as to proper modifications of
those problems. In detail, we compared DMVCD with both MVCD and CPLEX. Most of
Lagrangian heuristic methods concern the lower bound computation. To do so, they gener-
ally employed the Lagrangian relaxation that provides the same bounds as MVCD, which
also makes us to assess DMVCD against MVCD. In addition, CPLEX was included in the
computational tests, which is a widely used commercial optimization tool for solving MIP,
because it solves MIP using a very general and robust algorithm based on branch-and-cut,
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which can also generate certain cuts in order to make the relaxation a better approxima-
tion of the original MIP. Our comparisons were made on quality (i.e., bounds and time to
solve) of the solutions generated in a rather different size of the CFLP problems.

The proposed algorithm (DMVCD) was implemented in Visual C++ and run on an
IBM PC with 32GB RAM, an Intel Xeon processor of 2.53 GHz and a 64-bit Windows
operating system. The transportation problems (the primal subproblems) and the binary
knapsack problems (the dual subproblems), both of which were added by flow cover in-
equalities, were solved by the dual simplex and MIP Optimizer contained in CPLEX 12.1.
In addition, we took advantage of CPLEX Concert Technology in order to repeatedly call
out CPLEX as a subproblem solver in the proposed algorithm procedure.

For the computational tests below, we define some measures as follows:

Gap: |vU−vL|
vU
× 100 (unit: %),

cpu: the computational time spent on solving PCFL (unit: seconds),

Dopt:
(

1−
|v∗−vL|
v∗

)

× 100, where v∗ is the known optimal value (unit: %),

Popt:
(

1− |v
∗−vU |
v∗

)

× 100, where v∗ is the known optimal value (unit: %).

Here, the upper bound vU and lower bound vL used to evaluate Gap (%) represent v̂C
(ṽC) and v̂D (ṽD) for DMVCD, vC and vD for MVCD. Also, Dopt and Popt represent the
dual and primal optimality, respectively.

The main objective of the present study focuses on developing some implementation
schemes of MVCD available for CFLP. Thus, we first want to see whether the proposed
algorithm really works on CFLP, comparing its performance to that of MVCD. To this end,
our first computational test runs were performed on the Beasley’s test problems that are
available from “OR-Library: Distributing test problems by electronic mail”. Table 1 shows
the results. Note that the test runs were limited to only 150 iterations and ǫ 6 0.2. There
are 4 columns in Table 1, namely “instance”, “DMVCD”, “MVCD”, and “improvement”
that mean, respectively, the problem sizes and names, results of DMVCD and MVCD, and
the improvements achieved from DMVCD compared to MVCD. As shown in Table 1, for
smaller size problems up to 25× 50, where the first number is the number of potential
facilities and the second is the number of customers, DMVCD achieves a 99% optimality
while keeping the small primal-dual gap of about 1% and especially satisfying ǫ 6 0.2 for
cap41, cap42, cap43, and cap44. In contrast, MVCD yields an optimality from 96.39% to
98.35% with the gap of about 3% to problems such as cap81, cap82, cap83, cap91 and
cap92. Thus, it is thought that better solutions can be generated from Lagrangian dual in
conjunction with valid inequalities than the solutions that are taken from only Lagrangian
dual, even though the valid inequalities are implicitly imposed.

For instances with a size of 50×50 with the large duality gap, the optimality of MVCD
was 80.90% to 88.31% except that of cap131. However, we can see more improvement of
DMVCD over MVCD, which points out that DMVCD performs better on problems with
a large duality gap.

There are 6 instances of cap71, cap101, cap102, cap103, cap104, and cap131 with no
improvement of DMVCD, meaning no valid inequalities were generated. These instances
were made up of facilities that have the same constant capacity as total demands given
and fixed charges with a large variance, so that very few facilities are mostly opened.
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Table 1
Comparison of DMVCD and MVCD (N1 = 150, ǫ 6 0.2).

Instance DMVCD MVCD Improvement

Gap cpu Dopt Gap cpu Dopt Gap Dopt

16× 50 cap41 0.20 2.61 99.84 0.43 3.60 99.67 0.24 0.17

cap42 0.20 2.34 99.83 0.40 3.40 99.67 0.20 0.16

cap43 0.20 0.90 99.80 0.40 3.39 99.67 0.20 0.13

cap44 0.20 0.73 99.80 0.37 3.51 99.69 0.17 0.11

cap51 0.37 3.68 99.68 0.70 3.34 99.44 0.33 0.24

cap61 0.47 3.46 99.71 1.46 3.53 98.99 0.99 0.72

cap62 0.45 3.48 99.75 1.34 3.34 99.26 0.89 0.49

cap63 0.82 3.67 99.23 1.25 3.45 99.15 0.43 0.08

cap71 0.38 3.45 99.75 0.38 3.42 99.75 0.00 0.00

25× 50 cap81 1.22 6.26 99.11 3.95 5.34 96.39 2.73 2.72

cap82 0.62 6.86 99.38 3.57 5.37 96.98 2.95 2.40

cap83 1.03 6.24 99.51 3.27 5.43 97.33 2.23 2.18

cap91 0.85 5.27 99.39 2.89 5.51 98.06 2.05 1.33

cap92 0.77 5.66 99.46 2.61 5.30 98.35 1.84 1.12

cap101 1.09 5.26 99.37 1.09 5.41 99.37 0.00 0.00

cap102 0.92 5.51 99.43 0.92 5.34 99.43 0.00 0.00

cap103 0.82 5.23 99.44 0.82 5.30 99.44 0.00 0.00

cap104 0.67 5.27 99.74 0.67 5.34 99.74 0.00 0.00

50× 50 cap111 8.78 10.58 94.24 24.65 10.94 85.44 15.87 8.80

cap112 0.98 10.98 99.60 27.42 10.75 85.19 26.43 14.41

cap113 0.82 10.89 99.29 25.57 10.78 86.28 24.75 13.01

cap114 1.26 11.11 99.08 23.56 10.50 86.86 22.31 12.22

cap121 14.80 10.30 90.04 29.04 10.67 80.90 14.24 9.14

cap122 13.79 10.56 90.71 31.87 10.87 82.23 18.08 8.48

cap123 13.06 10.61 91.09 31.67 10.64 86.85 18.61 4.24

cap124 12.26 10.75 91.59 29.92 10.62 88.31 17.66 3.29

cap131 2.03 10.23 99.14 2.03 10.34 99.14 0.00 0.00

Table 2
Primal and dual end-tail behaviors of DMVCD.

Instance N1 = 250 N1 = 300 N1 = 350 N1 = 500

Popt Dopt Popt Dopt Popt Dopt Popt Dopt

50× 50 cap111 97.78 96.81 98.05 97.46 98.32 97.83 98.85 98.46
cap121 96.83 93.82 97.37 94.84 97.63 95.71 98.08 97.26
cap122 96.75 94.58 97.23 95.56 97.62 96.20 98.25 97.43
cap123 97.34 94.49 97.70 95.50 97.73 96.51 97.88 96.70
cap124 97.63 94.74 97.70 95.98 97.91 96.25 97.91 96.25

In effect, we can say that DMVCD performs well enough on CFLP and shows excel-
lence on problems with a large duality gap.

Although we see that DMVCD generates sufficient bounds, we want to investigate
its end-tail behavior in order to confirm that it practically converges to the near optimal
values. In so doing, we enlarge the maximum number of iterations from 150 to 500 as
shown in Table 2. This experiment was only carried out where there was in a stark con-
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trast in terms of Gap (i.e., cap111, cap121, cap122, cap123, and cap124). In this table,
we see that both the primal and dual optimality gradually increase and finally converge
to some accumulation points, even though the asymptotic behavior still occurs as conjec-
tured. According to our convergent procedures of DMVCD, vC ≪ v̂S = v̂D 6 v∗ holds.
However, we observed that v̂S are mostly greater than v∗. It seems that the behaviors of
upper bounds (v̂S ) are caused by approximating the solution space to conv(Z). From this
experiment, it is certain that the convergence of DMVCD also becomes more asymptotic
as the bounds get closer to optimal values, even though DMVCD is more efficient than
MVCD.

In addition to Tables 1 and 2, in order to ascertain the excellence of DMVCD for a
large-size CFLP and computational efficiency, we modified Beasley’s large scale prob-
lems with a size of 100× 1000 since the original large scale problems are made up fa-
cilities that have the large constant capacities to demands and fixed charges with a large
variance so that there are few trade-offs between the fixed charges and the delivery costs
when some facilities are opened. Also the fixed charges of the facilities are very expensive,
so the delivery costs appear to have little effect on the objective values. Thus, we modified
Beasley’s problems in two new types of problem. The first was obtained by reducing the
constant capacity of each facility by the tightness of

∑

i si/
∑

j dj . For the second type,
we randomly generated the capacities of the facilities according to si ∼ U [

∑

i si/m− α,
∑

i si/m + β], ∀i for appropriately chosen values of α,β > 0. In this test, we evenly
used the tightness between 3.00 and 6.00 and set α,β as 1,000. For both types, the fixed
charges were adjusted proportionally to the capacities, and the original costs and demands
were used without modifications. The test problem instances are divided into ‘capC’ and
‘capR’ representing problems with constant capacities and problems with randomly gen-
erated capacities, respectively. Nine instances for each ‘capC’ and ‘capR’ were gene-
rated.

Table 3 shows how well the large scale CFLP is solved by DMVCD, MVCD, and
CPLEX, given N1 = 150 and ǫ 6 0.2. Here CPLEX equally employed MIP Opti-
mizer in version 12.1. Note that the CPLEX MIP Optimizer solves MIP problems
based on the branch-and-cut approach, which is almost tuned in by its default pa-
rameter settings (refer to http://www-01.ibm.com/software/integration
/optimization/cplex-optimizer/). Also we set 2,500 seconds as a termina-
tion time limit for CPLEX. For conducting cost-effectiveness evaluations, the column
“costeff”, expressed as (cpuDMVCD/cpuCPLEX) × 100(%), is used and indicates how
quickly DMVCD reaches the optimal or feasible solutions produced by CPLEX. There-
fore, the (near) optimal values of CPLEX are used, as v∗, to calculate the dual optimality,
namely Dopt. In this context, we can say that DMVCD is cost-effective if DMVCD pro-
duces good optimality on the condition of a lower costeff . In addition, the column “status”
in Table 3 indicates whether each instance is exactly solved by CPLEX within the given
time limit.

In the instances of capC1–capC9 and capR3–capR9, DMVCD reached an optimality of
97% with dramatic improvements from MVCD during a similar run time to that by MVCD.
DMVCD is far superior to MVCD in terms of both the quality of the bounds provided and
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Table 3
Performance and cost-effectiveness of DMVCD for large scale problems with a size of 100× 1000

(N1 = 150, ǫ 6 2).

Instance DMVCD MVCD Improvement CPLEX

Gap Dopt cpu Gap Dopt cpu Gap Dopt cpu Status costeff

capC1 2.50 97.85 439.11 26.49 81.15 426.27 24.00 16.69 2500.80 Feasible 17.6%
capC2 2.70 97.62 439.73 26.27 81.08 428.55 23.56 16.54 2500.52 Feasible 17.6%
capC3 1.98 97.96 343.03 22.56 84.58 429.38 20.57 13.38 2500.45 Feasible 13.7%

capC4 4.26 96.35 442.98 20.67 85.99 431.14 16.41 10.36 2345.59 Optimal 18.9%
capC5 4.78 96.36 570.68 20.90 85.00 632.47 16.12 11.36 2153.36 Optimal 26.5%
capC6 1.98 98.10 514.94 31.96 79.33 514.94 29.98 18.77 1370.05 Optimal 37.6%

capC7 3.44 97.38 444.93 18.12 88.52 433.89 14.67 8.86 894.17 Optimal 49.8%
capC8 1.99 98.18 301.55 22.05 87.07 553.63 20.07 11.12 1220.76 Optimal 24.7%
capC9 6.07 96.27 572.34 18.16 90.28 540.42 12.09 5.98 1375.55 Optimal 41.6%

capR1 9.69 92.59 529.51 9.69 92.59 530.98 0.00 0.00 2500.54 Feasible 21.2%
capR2 6.20 95.27 527.31 6.20 95.27 567.78 0.00 0.00 2500.57 Feasible 21.1%
capR3 3.44 97.38 444.93 18.12 88.52 433.89 14.67 8.86 884.17 Optimal 50.3%

capR4 3.70 96.65 538.99 22.42 86.65 547.72 18.72 10.00 1272.96 Optimal 42.3%
capR5 2.67 97.16 568.17 38.82 75.77 568.17 36.15 21.39 2452.93 Optimal 23.2%
capR6 2.04 90.68 539.80 29.45 74.46 539.80 27.41 16.21 1572.76 Optimal 34.3%

capR7 6.22 95.69 567.86 14.11 91.58 546.87 7.88 4.11 2500.57 Feasible 22.7%
capR8 2.36 97.68 646.32 26.90 84.46 646.32 24.53 13.22 2500.57 Feasible 25.8%
capR9 2.07 97.83 595.11 30.71 79.51 595.11 28.64 18.32 1580.21 Optimal 37.7%

the cost-effectiveness in these instances. Furthermore, DMVCD provided lower bounds at
approximately 97% of the (near) optimal values of CPLEX, consuming only about 20%
to 50% of the computational time of CPLEX. Especially for capC3, DMVCD satisfied the
termination rule, ǫ 6 2, with a costeff of only 13.7%, whereas CPLEX was not able to
solve capC3 within the time limit.

A note for capR6 is further needed here. It has an optimality of 90.68% and a Gap of
2.04%. This can be seen that the upper bound of DMVCD rapidly converged to the bound
such v̂S as vD 6 v̂S = v̂D 6 v∗ before the valid inequalities were sufficiently generated.
Thus, more valid inequalities are needed in order to improve both the upper and lower
bounds simultaneously.

As for the instances such as capR1 and capR2, there were no differences between
DMVCD and MVCD. This means that no flow cover inequalities were generated, since
the structures of the problems are not suitable for DMVCD. As a result, DMVCD only
obtained the same level as MVCD.

Also, Table 4 shows a new comparison of DMVCD and an up-to-date heuris-
tic algorithm. As a benchmark, we employed the tabu search (TS) procedure pro-
posed by Sun (2012), which is more effective than the LRISS method (Lorena and
Senne, 1999), an improved subgradient-based Lagrangian heuristic method. The pro-
gram code for TS was obtained from the original author, Sun (2012). For the same
problems used in Table 3, we compared the performance and cost-effectiveness be-
tween DMVCD and TS. The experiment was done on a 64-bit LINUX computer that
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Table 4
Comparison of DMVCD and TS.

Instance DMVCD TS

P1 P2 P3

Popt cpu Popt cpu Popt cpu Popt cpu

capC1 99.65 146.34 99.36 (0.29)∗ 154.62 99.36 (0.29)∗ 191.08 99.22 (0.43)∗ 177.31
capC2 99.67 146.28 99.40 (0.27)∗ 160.29 99.40 (0.27)∗ 196.61 99.41 (0.26)∗ 181.99
capC3 99.94 125.36 99.18 (0.76)∗ 178.59 99.26 (0.68)∗ 219.71 99.10 (0.84)∗ 196.35

capC4 99.36 147.70 99.09 (0.27)∗ 168.16 99.09 (0.27)∗ 207.84 99.05 (0.31)∗ 202.65
capC5 98.81 144.24 99.47 (−0.66) 160.86 99.58 (−0.77) 204.19 99.32 (−0.51) 171.63
capC6 99.92 141.84 99.22 (0.70) 131.94 99.22 (0.70)∗ 159.83 99.22 (0.70)∗ 159.35

capC7 99.15 144.25 99.42 (−0.27) 176.94 99.42 (−0.27) 216.53 98.97 (0.18)∗ 167.93
capC8 99.82 133.73 99.64 (0.18) 113.31 99.64 (0.18)∗ 136.14 99.35 (0.47) 119.88
capC9 97.51 138.53 98.66 (−1.15)∗∗ 113.22 98.66 (−1.15) 145.30 98.71 (−1.20) 152.30

capR1 97.48 146.67 85.84 (11.64)∗ 149.47 85.84 (11.64)∗ 182.52 85.89 (11.59)∗ 178.22
capR2 98.44 144.99 99.09 (−0.65)∗∗ 135.50 99.09 (−0.65) 172.09 99.31 (−0.87) 155.73
capR3 99.15 141.97 99.32 (−0.17) 174.65 99.32 (−0.17) 216.59 98.97 (0.18)∗ 166.03

capR4 99.64 143.54 99.63 (0.01) 100.59 99.70 (−0.06)∗∗ 125.84 99.55 (0.09) 123.85
capR5 99.82 165.67 99.45 (0.37) 113.47 99.45 (0.37) 138.80 99.62 (0.20) 124.37
capR6 92.56 164.05 93.08 (−0.52)∗∗ 107.13 93.08 (−0.52)∗∗ 131.64 93.17 (−0.61)∗∗ 126.49

capR7 97.96 164.27 99.38 (−1.42)∗∗ 114.86 99.38 (−1.42)∗∗ 147.97 99.33 (−1.37)∗∗ 125.56
capR8 99.96 252.00 99.11 (0.85) 101.68 99.25 (0.71) 128.54 99.23 (0.73) 131.93
capR9 99.89 154.92 99.28 (0.61) 101.50 99.28 (0.61) 123.01 99.05 (0.84) 110.90

(Value)= Popt in DMVCD− Popt in TS.
∗∗DMVCD has better Popt than TS in a less time taken.
∗∗TS has better Popt than DMVCD in a less time taken.

has two AMD Opteron Dual Core 2.6 GHz processors and 4 GB RAM. Note that
DMVCD was also run on the same computing environment with maximum 150 itera-
tions and ǫ = 0.2. Let P = {α1, α2,C, m̄, [l

l
0
, lu

0
], [ll

1
, lu

1
]} as a set of parameters of TS.

To specify the set of parameters for TS, we considered the following parameter sets:
(i) P1 = {2,1,40,40, [10,15], [10,15]}, (ii) P2 = {2,1,50,40, [10,15], [10,15]}, and
(iii) P3 = {2,1,50,40, [10,25], [10,25]}. These parameter sets were intentionally con-
sidered to make the search of TS more intensive and extensive as suggested by Sun
(2012).

In Table 4, Popt was calculated by using the optimal (or feasible) objective values of
CPLEX in Table 3. The positive values in parenthesis in Table 4 mean that DMVCD
produces the better solutions than TS and the negative values are the opposite case. Even
though TS is very effective against the well-known most effective Lagrangian heuristic
procedure for the CFLP in Sun (Sun, 2012), DMVCD is quite comparable to TS. In detail,
we observed that DMVCD resulted in better performance for capC problems, whereas TS
was better fit to capR problems. Strikingly interesting is, as shown in CapR1, DMVCD
guaranteed better bounds rather than TS, even at the worst case of TS.

In conclusion, all experimental results clearly indicate DMVCD performs well for
CFLP against other algorithms.
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5. Conclusions and Further Research

In this article, we proposed the Dynamic Mean Value Cross Decomposition (DMVCD),
which is effectively integrated with MVCD and the cutting plane methods in order to solve
CFLP. In the combinatorial optimizations, although MVCD is an attractive method in that
it can effectively provide the information of solutions and the same bounds as those of the
Lagrangian relaxation, it has not been widely applied to other problems except UFLP, due
to the fact that the performance is highly dependent on the structure of the problem. The
present study showed that DMVCD ensures better bounds than those of Lagrangian relax-
ation or MVCD. Furthermore, the easy-to-solve structures remain intact as in MVCD and
a scheme to remove the earlier solutions to decrease the rate of convergence is addition-
ally included. For these reasons, it is expected that DMVCD is able to save computational
efforts, even though an additional separation heuristic procedure is required to identify
the valid inequalities. In addition, the computational results for CFLP demonstrated the
effectiveness and efficiency of our proposed algorithm.

Even though the benefits of DMVCD are evident, it is impossible to obtain the ex-
act optimal integer solutions because the asymptotic convergence and the duality gap still
remain. Therefore, based on the DMVCD method, we need to develop a way to recover
integer solutions, hopefully close to the optimal solutions. It is thought that a combination
with the MVCD-based branch-and-bound method (Holmberg, 2005) may be a good alter-
native in that both DMVCD and MVCD-based branch-and-bound are complementary, as
mentioned in Section 3. A study on this topic is planned for the near future. In addition
to this combination, a technique to adjust the convex combination weights to accumulate
solutions is needed, e.g., a dually-weighted method (Wentges, 2001) and GWMVC (gen-
eral weighted mean value cross decomposition) (Holmberg, 2005), in order to accelerate
the rate of convergence. From our computational results, we found that the flow cover
valid inequalities were not well generated depending on the problem structure, despite the
existence of a gap between the upper and lower bounds. Therefore, for the robustness of
DMVCD, more empirical studies with flow cover inequalities as well as effective capacity
inequalities and submodular inequalities are needed. Through these further studies, it will
be possible to develop a method to adaptively use the valid inequalities relevant to the
structures of the problems, which makes DMVCD more effective and robust.

Finally, DMVCD can be extended to large scale optimization problems as an efficient
approximate algorithm to guarantee acceptable bounds. However, unfortunately, DMVCD
cannot be applied to large scale optimization problems with an ill-defined polyhedral
structure. For this case, RLT (Reformulation-Linearization Techniques) would be a good
alternative approach.
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Dinaminio vidutinės vertės kryžminio skaidymo algoritmas apribotos
talpos objektų vietos parinkimo uždaviniams

Chulyeon KIM, Gyunghyun CHOI, Sung-Seok KO

Šiame straipsnyje pasiūlytas praktinis algoritmas apribotos talpos objektų vietos parinkimo užda-
viniams spręsti. Yra keletas būdų, skirtų pirminiam sprendiniui rasti naudojantis pirmine ir antrine
struktūromis. Vienas iš šių būdų yra vidutinės vertės kryžminio skaidymo metodas. Anksčiau šis
metodas buvo taikytas tik neapribotos talpos objektų vietos parinkimo uždaviniams, nes pajėgumas
labai priklauso nuo uždavinio struktūros. Siūlomas algoritmas, vadinamas dinaminio vidutinės ver-
tės kryžminio skaidymo algoritmu, yra efektyvi vidutinės vertės kryžminio skaidymo ir pjaunan-
čiųjų plokštumų metodų integracija. Pateikiami įvairių uždavinių sprendimo pasiūlytu algoritmu
rezultatai.


