
INFORMATICA, 2013, Vol. 24, No. 4, 577–602 577
 2013 Vilnius University

Heuristic Methods for Inference of XML Schemas:
Lessons Learned and Open Issues

Irena MLÝNKOVÁ∗, Martin NEČASKÝ
Department of Software Engineering, Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic

e-mail: mlynkova@ksi.mff.cuni.cz, necasky@ksi.mff.cuni.cz

Received: June 2011; accepted: October 2012

Abstract. In this paper we focus on a specific class of XML schema inference approaches – so-called
heuristic approaches. Contrary to grammar-inferring approaches, their result does not belong to any
specific class of grammars and, hence, we cannot say anything about their features from the point of
view of theory of languages. However, the heuristic approaches still form a wider and more popular
set of approaches due to natural and user-friendly strategies. We describe a general framework of the
inference algorithms and we show how its particular phases can be further enhanced and optimized
to get more reasonable and realistic output. The aim of the paper is (1) to provide a general overview
of the heuristic inference process and existing approaches, (2) to sum up the improvements and
optimizations we have proposed so far in our research group, and (3) to discuss possible extensions
and open problems which need to be solved. Hence, it enables the reader to get acquainted with the
field fast.
Key words: XML Schema inference, regular-tree grammars, heuristics, integrity constraints.

1. Introduction

Without any doubt the XML (Bray et al., 2008) is currently a de-facto standard for data
representation. Its popularity is given by the fact that it is well-defined, easy-to-use and,
at the same time, enough powerful. To enable users to specify own allowed structure of
XML documents, so-called XML schema, the W3C1 has proposed two languages – DTD
(Bray et al., 2008) and XML Schema (Thompson et al., 2004; Biron and Malhotra, 2004).
The former one is directly a part of XML specification and due to its simplicity it is one
of the most popular formats for schema specification. The latter language was proposed
later, in reaction to the lack of constructs of DTD. The key emphasis is put on simple types,
object-oriented features (such as user-defined data types, inheritance, substitutability etc.)
and reusability of parts of a schema or whole schemas.

On the other hand, statistical analyses of real-world XML data show that a signifi-
cant portion of XML documents (52% Mignet et al. (2003) of randomly crawled or 7.4%
Mlýnková et al. (2006) of semi-automatically collected) still have no schema at all. What

*Corresponding author.
1http://www.w3.org/.

578 I. Mlýnková, M. Nečaský

is more, XML Schema definitions (XSDs) are used even less (only for 0.09% Mignet
et al. (2003) of randomly crawled or 38% Mlýnková et al. (2006) of semi-automatically
collected XML documents) and even if they are used, they often (in 85% of cases Bex
et al. (2004)) define so-called local tree grammars (Murata et al., 2005), i.e., grammars
that can be defined using DTD as well.

Consequently a new research area of automatic inference of an XML schema has
opened. The key aim is to create an XML schema for the given sample set of XML doc-
uments that is neither too general, nor too restrictive. It means that the set of document
instances of the inferred schema is not too broad in comparison with the sample data but,
also, it is not equivalent to it. Currently, there are several proposals of respective algo-
rithms, but there is also still a space for further improvements. In particular, since accord-
ing to the Gold’s theorem (Gold, 1967) regular languages are not identifiable only from
positive examples (i.e., sample XML documents expected to be valid against the result-
ing schema), the existing methods need to exploit either heuristics or a restriction to an
identifiable subclass of regular languages.

Contributions. In this paper we focus on a specific class of XML schema inference
approaches – so-called heuristic approaches. Contrary to grammar-inferring approaches,
their result does not belong to any specific class of grammars and, hence, we cannot say
anything about their features from the point of view of theory of languages. However,
the heuristic approaches still form a wider and more popular set of approaches due to
natural and user-friendly strategies. We describe a general framework of the inference
algorithms and we show how its particular phases can be further enhanced and optimized
to get more reasonable and realistic output. The aim of the paper is (1) to provide a general
overview of the heuristic inference process and existing approaches, (2) to sum up the
improvements and optimizations we have proposed so far in our research group, and (3) to
discuss possible extensions and open problems which need to be solved. Hence, it enables
the reader to get acquainted with the field fast.

Outline. The rest of the paper is structured as follows: In Section 2 we introduce a
formal view of XML schemas. In Section 3 we first describe a general overview of typical
phases of XML schema inference algorithm and then analyze particular phases from the
point of view of current and well as our improvements. In Section 4 we discuss the re-
maining open issues to be solved in the area of XML schema inference in general. Finally,
in Section 5 we conclude.

2. Formal View of XML Schema Languages

For the purpose of the following text we need a formal view of XML documents, XML
schema languages and mutual validity. In general, we can divide the described schema lan-
guages into grammar-based (i.e., DTD Bray et al., 2008, XML Schema Thompson et al.,
2004; Biron and Malhotra, 2004, RELAX NG Murata, 2002) and pattern-based (i.e., Jel-
liffe, 2001). The majority of current papers deal with basic and most common structural
specification of XML data that can be expressed using the grammar-based languages. In

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 579

other words, they do not deal with advanced integrity constraints that can be expressed
using Schematron or XML Schema assertions. So, if not stated otherwise, we consider
the same set.

The grammar-based XML schema languages we consider in the first parts of our text
can be further classified according to their expressive power. We borrow and slightly mod-
ify for our purposes the definitions from (Murata et al., 2005). We represent an XML
document as directed labeled tree t = (V ,E) called XML tree whose vertices from set V

represent XML elements and attributes and edges from set E represent the hierarchical
structure. We also consider a common formalization of an XML schema in a form of a
regular tree grammar (RTG) G = (N,T ,S,P) having a set of non-terminals N , a set
of terminals T , a set of start symbols S and a set of production rules P . Terminals of the
grammar specify allowed elements (and attributes) in the XML document and the produc-

tion rules, resp. regular expressions (REs) on their right hand sides, specify their allowed
content. An XML tree valid against a given regular tree grammar is then an XML tree
which can be constructed by the rewriting rules of the grammar. Another possibility to
formalize XML schemas are classical finite state automata (FSA). It is a well known fact
that production rules of regular grammars can be expressed as finite state automata and
vice versa.

In Murata et al. (2005), various classes of RTGs that correspond to particular XML
schema languages were introduced. In particular, we can define so-called local-tree gram-

mars that correspond to DTD and single-type tree grammars that correspond to XML
Schema. Note that RELAX NG corresponds to general regular tree grammars.

Definition 1. Let us have an RTG G = (N,T ,S,P). Two non-terminals A,B ∈ N are
competing with each other if there exist two production rules A → ar1 and B → ar2,
where a ∈ T and r1, r2 are REs over N .

Definition 2. A local tree grammar (LTG) is a RTG without competing non-terminals.
A tree language is a local tree language if it is generated by a local tree grammar.

Definition 3. A single-type tree grammar (STTG) is a RTG such that

• for each production rule, non-terminals in its content model do not compete with
each other, and

• start symbols do not compete with each other.

A tree language is a single type tree language if it is generated by a single type tree gram-
mar.

3. General Framework of Heuristic Inference Approaches

The studied problem of XML schema inference can be described as follows: Being given
an input set of XML trees I = {t1, t2, . . . , tn}, we search for an XML schema, i.e., an RTG
GI = (NI , TI ,PI , SI), such that ∀i ∈ [1, n] : ti is valid against GI . In particular, we are

580 I. Mlýnková, M. Nečaský

searching for GI that is enough concise, precise and, at the same time, general. This re-
quirement indicates, that the optimal result is hard to define and, in general, there may
exist several solutions, i.e., a set of candidate RTGs O = {G1

I ,G
2

I , . . . ,G
m
I }, such that

∀i ∈ [1, n],∀j ∈ [1,m] : ti is valid against G
j
I , whereas we are looking for the optimal

G
opt

I ∈ O .
The problem of finding G

opt

I can be viewed as a special kind of optimization prob-
lem called combinatorial optimization problem (COP) (Barták, 1998). Since the space of
candidate RTGs O is theoretically infinite, we usually exploit a kind of greedy search or
other heuristics.

Most of the existing works use the same strategy consisting of the following phases to
solve this problem:

• Phase I. Derivation of initial grammar;
• Phase II. Clustering of production rules of initial grammar;
• Phase III. Inference of REs;
• Phase IV. Refactorization;
• Phase V. Inference of simple data types;
• Phase VI. Inference of integrity constraints;
• Phase VII. Expressing the inferred items in the target XML schema language.

The current methods differ in involving/omitting selected phases and, in particular,
strategies they apply on them. In the following sections we describe in detail the current
approaches and the improvements we have proposed so far.

3.1. Phase I. Derivation of Initial Grammar

The first phase of the inference process is the same in all existing works: For each element
node e in any of the XML trees in I and its child nodes e1, e2, . . . , ek we construct a
production Epe of the form e → lab(e)(e1 e2 . . . ek), where lab(e) denotes the label of e.
The production rules form so-called initial grammar (IG).

Example 1. An example of an XML document (a) and respective IG (b) is depicted in
Fig. 1.

Note that for the sake of clarity we start non-terminals of IG with capital letters and
terminals of IG with small letters.

3.2. Phase II. Clustering of Production Rules of IG

In the second phase the production rules of IG need to be clustered, since for each cluster
a single RE is inferred in phase III (see Section 3.3). A typical strategy of the existing
works is to cluster the production rules simply on the basis of the equivalence of left-hand
sides.

Example 2. An example of clusters of IG in Fig. 1 (omitting duplicities and the produc-
tion rule for pcdata) is depicted in Fig. 2.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 581

Fig. 1. An example of an XML document (a) and its IG (b).

Fig. 2. Production rules of IG clustered according to equivalence of left hand sides.

Fig. 3. Elements with the same name but different structure.

Apparently, such beginning step leads to inference of an LTG, i.e., DTD, where all the
elements are defined at the same level, and, hence, we are not able to specify elements with
the same name but different structure. However, the described functionality is included in
XML Schema and RELAX NG, i.e., STTGs and RTGs, and can have quite reasonable
usage due to homonymy of element names.

Example 3. Let us have an XML schema of a library where each book, author and pub-
lisher has a name. In the former case it can be only a simple string, whereas in the latter
two cases the name can consist of a couple of elements each having its own semantics –
see Fig. 3.

582 I. Mlýnková, M. Nečaský

In paper (Vošta et al., 2008) we have proposed two strategies that enable one to infer
both STTGs and RTGs. They are based on two extensions of the clustering algorithm – on
the basis of similarity of context of elements and similarity of content of elements. In paper
Vyhnanovská and Mlýnková (2010) we have proposed another extension, that enables one
to cluster also elements with different context (and names), but similar structure.

3.2.1. Similarity of Context

The key feature of STTGs is based on the fact that elements in the same content model, i.e.,
context, do not compete with each other. First, we need a formal definition of a context.

Definition 4. A context contv of an element node v ∈ V in a document tree t = (V ,E) is
a concatenation of lab(v0)lab(v1) . . . lab(vn), where v0 is the root node of the tree, vn = v,
and ∀i ∈ [1, n] : 〈vi−1, vi〉 ∈ E.

For the purpose of evaluation of similarity of two contexts contv and contu, we exploit
and modify the classical Levenshtein algorithm Levenshtein (1966) that determines the
edit distance of two strings sx , sy using inserting, deleting or replacing a single character.
In our case instead of single characters our operations work with whole element names.
Hence, in the following text we can assume that we have a function simcontext : V × V →

[0,1] which expresses the similarity of contexts of two element nodes, where 0 denotes
strong dissimilarity and 1 equivalence.

3.2.2. Similarity of Content

The key feature of RTGs is that they allow for any kind of competing non-terminals. In
other words, we can cluster the elements not only according to their context, but also
content. As an XML element e can be viewed as a subtree te (in the following text denoted
as an element tree) of corresponding document tree t , we use a modified idea of tree edit

distance, where the similarity of trees te and tf is expressed using the minimum number
of edit operations necessary to transform te into tf (or vice versa).

Currently, there exist several approaches to tree edit distance (e.g., Touzet, 2005;
Marian, 2002). The key aspect is obviously the set of allowed edit operations which need
to be suitable for a particular application.

Example 4. Consider two simple operations – adding and removal of a leaf node (and
respective edge). As depicted in Fig. 4, such similarity is not suitable, e.g., for recursive
elements. The example depicts two element trees of element a having subelement i having
subelement j having subelement k which contains either subelement z or again i . With

Fig. 4. Tree edit distance of recursive elements.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 583

the two simple edit operations the edit distance would be 4, but, since the elements have
the same XML schema, we would expect the optimal distance of 1 reflecting the usage of
one additional recursive level.

For our purpose we exploit a similarity measure defined in Nierman and Jagadish
(2002) which specifies more complex XML-aware tree edit operations on whole subtrees,
each having its constant cost, as follows:

• Insert – a single node n is inserted to the position given by parent node p and ordinal
number expressing its position among subelements of p;

• Delete – a leaf node n is deleted;
• Relabel – a node n is relabeled;
• InsertTree – a whole subtree t is inserted to the position given by parent node p and

ordinal number expressing position of its root node among subelements of p;
• DeleteTree – a whole subtree t rooted at node n is deleted.

As it is obvious, for given trees te and tf there are usually several possible transfor-
mation sequences for transforming te into tf . A natural approach is to evaluate all the
possibilities and to choose the one with the lowest cost. But such approach can be quite
inefficient. Thus authors of Nierman and Jagadish (2002) propose so-called allowable se-

quences of edit operations, which significantly reduce the set of possibilities and, at the
same time, speed up their cost evaluation.

In the following text we assume that we have a function simcontent : V × V → [0,1]

which expresses the similarity of element trees te and tf rooted at element nodes e, f ∈ V ,
i.e., content of elements.

3.2.3. Clustering Algorithm

In the resulting clustering algorithm we utilize a modification of classical mutual neigh-

borhood clustering (MNC) approach (Jain and Dubes, 1988). We start with initial clusters
c1, c2, . . . , ck of elements given by the equivalence of their context, i.e., elements e and f

belong to cluster ci if simcontext(e, f) = 1. In other words, the initial clustering is based
on a natural assumption that elements having the same context are likely to have the same
schema definition. The initial clusters are then merged on the basis of element structure
using the tree edit distance simcontent . Firstly, ∀i ∈ [1, k] we determine a representative
element ri of cluster ci .

3.3. Phase III. Inference of REs

Having the set of clusters c1, c2, . . . , cl of production rules, the key emphasis is in the
existing works put on inference of REs. A common approach is so-called merging state

algorithm which consists of two steps:

1. ∀i ∈ [1, l] a prefix tree automaton (PTA) Aci is built from the production rules of
cluster ci .

2. Each Aci is generalized via merging of its states.

584 I. Mlýnková, M. Nečaský

Fig. 5. An example of an IG and a PTA.

Fig. 6. Exploitation of an obsolete schema: (a) a production rule of an IG and a production rule of an obsolete
schema, (b) result of their merging.

Example 5. An example of a cluster ci of IG and the respective PTA Aci is depicted in
Fig. 5.

In Mlýnková (2009) we have focussed on further extension of this step based on a
typical real-world situation when a user creates an XML schema of XML documents but
then modifies and updates only the data (identified in Mlýnková et al. (2006)). In other
words, we are provided not only with the input documents I = {t1, t2, . . . , tn}, but also
an obsolete XML schema, i.e., in general an RTG Gobs = (Nobs, Tobs,Pobs, Sobs), such
that there exist parts of the input documents that are valid against it, i.e., the similarity of
Gobs and G

opt
I is high. Such input can be exploited for speeding up the inference process.

We only need to modify the process of creating the initial automata to be optimized and
generalized. In particular, we cluster and merge the production rules of IG extracted from
I together with production rules from Pobs. Hence, we do not start with PTAs, but general
FSAs.

Example 6. An example of merging a production rule of IG with a production rule from
an obsolete schema Gobs is depicted in Fig. 6.

Regardless the input automaton, the rules and strategies for merging the states of a PTA
used in the current approaches differ, but they have a common aim to output a concise and
precise XML schema. As we have mentioned at the beginning of this section, since the

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 585

aaaa ⇒ a+

(ab)∗|a?b? ⇒ (a?b?)∗

ab|ab∗ ⇒ ab∗

a?, b?, c? ⇒ a|b|c

a, b, c, d, a, d, b, c ⇒ (a|b|c|d)+

Simple heuristic rules for merging states of automaton
Fig. 7. Simple heuristic rules for merging states of automaton.

amount of possible output automata, i.e., schemas, is theoretically infinite, the approaches
search only a subspace of possible solutions using a kind of greedy-search, terminating
condition etc.

3.3.1. Naive Solutions

The first and simplest approaches implemented, e.g., in system DTD-miner (Moh et al.,
2000), use a simple set of heuristic rules such as those depicted in Fig. 7 and the search
strategy continues until there exists a rule that can be applied.

3.3.2. Evaluation of Schema Quality

A strategy similar to DTD-miner is used also in system XTRACT (Garofalakis et al., 2000).
However, the rules are not applied using a greedy search, but a set of possible solutions
is produced and the system selects the optimal one, i.e., it is able to evaluate quality of a
schema generalization.

For the purpose of schema evaluation the authors (as well as the subsequent ap-
proaches) exploit so-called minimum description length (MDL) principle (Grunwald,
2005). It expresses the quality of an XML schema candidate using two aspects – con-
ciseness and preciseness. Conciseness of an XML schema is expressed using the number
of bits required to describe the schema itself (the smaller, the better). Preciseness of an
XML schema is expressed using the number of bits required for description of the input
XML trees in I using the schema. In other words, on the one hand, a good schema should
be enough general which is related to the low number of states of the schema automaton,
but, on the other hand, it should preserve details which means that it enables one to ex-
press document instances using short codes, since most of the information is carried by
the schema itself.

3.3.3. Advanced Merging Rules

Apart from simple heuristic merging rules, there exist also approaches that base their
strategy on various theoretical results.

The k,h-context method (Ahonen, 1996) specifies an identifiable subclass of regular
languages which assumes that the context of elements is limited. So merging states of an
automaton A = (Q,6, δ, s,F) is based on an assumption that two states x, y ∈ Q are
identical (and can be merged) if there exist two identical paths of length k terminating in
x and y . In addition, also h6 k preceding states in these paths are then identical.

On the other hand, the s, k-string method (Wong and Sankey, 2003) is based on Nerod’s
equivalency of states of automaton A assuming that two states x, y ∈ Q are equivalent if

586 I. Mlýnková, M. Nečaský

Fig. 8. Merging states of an automaton: (a) k,h-context and (b) s, k-string.

sets of all paths leading from x and y to any f ∈ F are equivalent. But since such condition
is hard to check, we can restrain to k-strings, i.e., only paths of length of k or terminating in
a terminal state f ∈ F . The respective equivalency of states then depends on equivalency
of sets of outgoing k-strings. In addition, for easier processing we can consider only s

most probable paths, i.e., we can ignore singular special cases.

Example 7. Two examples of the described merging are depicted in Fig. 8. In the former
case (a), we can merge states 4 and 5, because they have the same prefixes of length 1 (i.e.,
edge Address). In the latter case (b), we can merge states 3, 5 and 4, 6 because they have
the same suffixes of length 1.

3.3.4. Advanced Search Strategies

As we have mentioned, we can view the problem of generalization of an automaton as a
kind of optimization problem where we search for an optimal solution in a theoretically
infinite space. The basic strategy is to use a kind of a greedy search. However, with the
general view of the problem as a COP, we can use also more advanced meta-heuristics.

In Wong and Sankey (2003) the authors utilize a classical approach called Ant Colony

Optimization (ACO) (Dorigo et al., 2006). The ACO heuristic is based on observations of
nature, in particular the way ants exchange information they have learnt. A set of artificial
“ants” 1 search the space of solutions 2 trying to find the optimal solution sopt ∈ 2 such
that σ(sopt) 6 σ(s); ∀s ∈ 2. In i-th iteration each ant a ∈ 1 searches a subspace of 2 for a
local suboptimum until it “dies” after performinga predefined amount of steps Nant . While
searching, an ant a spreads a certain amount of “pheromone”, i.e., a positive feedback
which denotes how good solution it has found so far. This information is exploited by ants
from the following iterations to choose better search steps. The key aspect of the algorithm
is one step of an ant. Each step consists of generating of a set of possible movements, their
evaluation using σ , and execution of one of the candidate steps. The executed step is
selected randomly on the basis of probability given by σ . The algorithm terminates either
after a specified number of iterations Niter or if s′

opt ∈ 2 is reached such that f (s′
opt) 6

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 587

Fig. 9. Automaton P3 – permutation of three items.

Tmax, where Tmax is a required threshold. Note that the randomness is the key aspect of
the metaheuristic, since it enables one to search larger space of solutions than greedy
strategies do and thus possibly find a better suboptimum.

In our case of schema inference we start with the PTA (or its modification) from
phase II (see Section 3.2). A step of an ant means application of a selected generalization
rule, either a naive one (see Section 3.3.1) or any of the advanced methods such as, e.g.,
k,h-context or s, k-string (see Section 3.3.3). The objective function σ can be defined,
e.g., using the MDL principle (see Section 3.3.2).

3.3.5. XML Schema Unordered Sequences

In all the previous approaches the authors focussed on constructs that can be expressed in
DTD. In Vošta et al. (2008) we extended the current approaches with the ability to infer
also unordered sequences of elements, i.e., XML Schema all construct (or & operator
for simplicity). (Even though, such construct can be expressed in DTD using a list all
possible permutations, such approach is not used in practise for apparent disadvantages.)
Our extension is based on the observation that it can be considered as a special kind of rule
for merging states of an automaton. It enables one to replace a set of ordered sequences
of elements with a single unordered sequence represented by the & operator.

In particular, we exploit the fact that for each n ∈ N we know the structure of the au-
tomaton Pn which accepts each permutation of n items having all the states fully merged.

Example 8. An example of automaton P3 is depicted in Fig. 9 for three items A, B, C.

Our idea is to find subautomata enough similar to Pn automaton. We can also observe,
that the candidate subautomaton must be always a subgraph of Pn, otherwise we can skip
its processing. Hence, the problem of edit distance is highly simplified. and we use the
following types of edit operations:

3.3.6. XML Schema “Syntactic Sugar”

As we have mentioned, XML Schema involves plenty of “syntactic sugar”, i.e., constructs
being equivalent. For instance, the unordered sequences described in the previous section
represent one of the cases.

Definition 5. Let sx and sy be two XML schema fragments. Let η(s) = {d such that d

is an element tree valid against s}. Then sx and sy are equivalent, denoted as sx ∼ sy , if
η(sx) = η(sy).

588 I. Mlýnková, M. Nečaský

Fig. 10. “Syntactic sugar” of XML Schema: (a) globally and locally defined simple types, (b) unordered se-
quences.

Table 1
XSD equivalence classes of ξ/ ∼.

Class Constructs Canonical representative

CST Globally defined simple type, locally defined simple type Locally defined simple type
CCT Globally defined complex type, locally defined complex type Locally defined complex type
CEl Referenced element, locally defined element Locally defined element
CAt Referenced attribute, locally defined attribute, attribute

referenced via an attribute group
Locally defined attribute

CElGr Content model referenced via an element group, locally
defined content model

Locally defined content model

CSeq Unordered sequence of elements e1, e2, . . . , el , choice of all
possible ordered sequences of e1, e2, . . . , el

Choice of all possible ordered
sequences of e1, e2, . . . , el

CCTDer Derived complex type, newly defined complex type Newly defined complex type
CSubGr Elements in a substitution group γ , choice of elements in γ Choice of elements in γ

CSub Data types τ1, τ2, . . . , τk derived from type τ , choice of
content models defined in τ1, τ2, . . . , τk, τ

Choice of content models
defined in τ1, τ2, . . . , τk , τ

Example 9. As depicted in Fig. 10(a), there is no difference if a simple type is defined
locally or globally. Example (b) depicts the equivalence between an unordered sequence
of a set of elements and a choice of their possible ordered permutations.

Consequently, having a set ξ of all XSD constructs, we can specify the quotient set
ξ/ ∼ of ξ by ∼ and respective equivalence classes Mlýnková and Nečaský (2009) – see
Table 1. Each of the classes of ∼ equivalence can be then represented using a selected
canonical representative as listed in Table 1 as well. Note that each of the constructs not
mentioned in the table forms a single class C1,C2, . . . ,Cn.

With regard to the classes, we can generalize the previous approach for inference of
unordered sequences, since from a general point of view we can find multiple ways how

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 589

Fig. 11. Splitting and outlining an automaton: (a) productions with a common fragment, (b) outlined common
fragment.

to express an XSD. For our purposes, we first slightly modify its definition (Vyhnanovská
and Mlýnková, 2010).

The solution to the problem we proposed Mlýnková and Nečaský (2009) is taking
into account also the semantics of the data. In particular, we use a kind of a thesaurus that
enables one to discover semantic relations. Hence, we discover that the semantic similarity
of words person and book is not high, but similarity of, e.g., person, author and
editor is sufficient. And it also brings another advantage, since it indicates the way we
should express the sharing (as discussed in Section 3.7).

Example 10. Let us have two candidates for outlining – employee and manager.
The thesaurus not only determines that they are related, but also that employee is a
broader term to manager. Hence, instead of creating typeCommon and derived types
typeEmployee and typeManager, we create typeEmployee and a derived type
typeManager.

To ensure the indicated functionality, we extend the process of inference of RE with an
outlining rule. The algorithm directly searches for equivalent schema fragments and ana-
lyzes their semantic relevance. If it is identified as sufficient, the respective subautomaton
is outlined.

Example 11. An example of outlining of an automaton is depicted in Figs. 11(a) and
11(b). In this case we exploit the fact that elements person and manager have common
items that can be outlined into a globally defined schema fragment represented using a
subautomaton. Since “person” and “manager” are semantically related, the sets are enough
large and the items are not too general, the result again bears more information and it is
more realistic.

590 I. Mlýnková, M. Nečaský

Fig. 12. Splitting repetitions: (a) application of merging rule a,a, a, . . . , a ⇒ a+, (b) application of splitting
repetitions rule a,a, a, . . . , a ⇒ a,a, a, a∗ .

3.3.7. Statistical Analysis of Input Documents

If we want to go in the inference process even further and be more precise, we can exploit
the given XML documents more deeply (Mlýnková and Nečaský, 2009). Our motivation
results from ideas used in adaptive schema-driven XML-to-relational mapping strategies.
They apply various XML-to-XML transformations (such as, e.g., a+ = a, a∗) on the input
XML schema, evaluate them and select the optimal one. For this purpose, we can exploit
almost any equation known for regular expressions. However, since the amount of options
is again large and we would get to the same problem as described above, we need to restrict
ourselves to cases that can be assessed as relevant. But, since we do not have an etalon in
a set of XML queries like the adaptive mapping methods do, we exploit etalons relevant
to schema inference.

Example 12. For instance we can find out that in 95% of cases element person has two
subelements phone at maximum and only in 5% of cases there occur elements person
having more than five subelements phone. In the existing works the schema would be
generalized to phone+ or phone* although for most of the input XML documents it
is too general. Consequently, if we exploit the above described equation we could pre-
serve the first two occurrences of element phone and provide more realistic schema, i.e.,
phone phone phone*, bearing more precise information.

For the purpose of the indicated improvements we further extend the rules for merging
states of an automaton. In particular, we add new merging rules that exploit statistics of
the given XML data, i.e., while merging we take into account also additional information
that influence the process.

Example 13. An example of exploitation of data statistics is depicted in Fig. 12. The
numbers above the particular elements depict the amount of data instances that induce

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 591

a?? ⇒ a? a
∗? ⇒ a

∗
aa

∗ ⇒ a
+ (ab)|(ac) ⇒ a(b|c)

a
++ ⇒ a

+
a?∗ ⇒ a

∗
a
+
a
∗ ⇒ a

+

a
∗∗ ⇒ a

∗
a
+∗ ⇒ a

∗
a?a+ ⇒ a

∗

a
∗+ ⇒ a

∗

a?+ ⇒ a
∗

a
+? ⇒ a

∗

Fig. 13. Merging of operators during refactorization
Fig. 13. Merging of operators during refactorization.

this production rule. If we do not consider the statistics, we would infer Fig. 12(a). But,
with regard to the data, it would be too general, since most of the person elements have
right three subelements phone, whereas only in few cases there are persons with more
phone numbers. Consequently, from the point of view of preciseness of information on
the data, Fig. 12(b) is much realistic and bears more precise information.

3.4. Phase IV. Refactorization

A natural next phase of each schema inference method is refactoring or refinement, i.e.,
improving readability and simplifying structure while preserving the functionality of the
resulting schema. Such requirement is ensured using a set of rules that enable one to
describe equivalent or more general result. A demonstrative set of rules is depicted in
Fig. 13.

As we can see, the specified rules enable one to remove duplicate occurrence operators,
to merge sequences of distinct occurrence operators into a single one, to merge sequences
of the same fragments, to avoid nondeterministic content models etc. Almost all of the
mentioned approaches involve such a phase which indicates that the merging rules are not
optimal and the approaches can still be improved. On the other hand, naturally, we can
apply only those rules that do not interfere with other approaches, such as exploitation of
splitting repetitions described in Section 3.3.7.

In phase III. (see Section 3.3) we have also discussed our extension (Mlýnková, 2009)
of usage an obsolete schema. Apparently, using this approach, there may occur schema
fragments that are not used in any of the input data. In other words, the input XML trees
in I are valid against G

opt
I , however, it is too general and may cover also too distinct data.

Hence, we extend the refactorization process with the following steps:

1. Pruning of unused schema fragments;
2. Correction of lower and upper bounds of occurrences of schema fragments;
3. Correction of operators.

All the three steps can be done using a single linear passing of the input documents
in I and preserving respective flags for particular schema parts.

592 I. Mlýnková, M. Nečaský

3.5. Phase V. Inference of Simple Data Types

Since most of the current approaches focus on inference of DTDs, they treat all text values
as simple strings, i.e., they use common PCDATA data type. However, in XML Schema,
as well as RELAX NG, we have a hierarchy of simple data types and also an option to
specify user-defined types. Surprisingly, the inference problem of simple data types is cur-
rently highly marginalized. There seem to exist only two exceptions (Chidlovskii, 2002;
Hegewald et al., 2006) which utilize the same approach: Each set of values of an ele-
ment/attribute is simply analyzed to identify the minimal data type which contains all of
them. Nevertheless, the authors focus only on numeric data types (such as decimal,
float, long, negativeInteger), date, binary and string. Broader sets of
simple types or even user-defined simple types are not supported so far.

3.6. Phase VI. Inference of Integrity Constraints

Similarly to the case of inference of simple data types, the process of inference of integrity

constraints (ICs) can be considered as an additional phase that can extend any of the
inference strategies in general. An IC is a condition specified on the XML data. From this
point of view we can consider simple data types as ICs as well. However, in this section
we mean the “classical” ICs, in particular those that can be expressed in current XML
schema languages. The most common type of ICs are keys and feign keys. In DTD they
are expressed using simple data types ID and IDREF(S) and are valid in the context of
the whole document. In XML Schema we are provided with constructs unique, key,
and keyref which enable one to specify the context/scope of the constraint. Apart from
that, XML Schema involves new constructs assert and report that correspond to
Schematron rules. However, none of the current approaches focuses on these advanced
constructs.

Basic foundations and classifications of XML keys and discussion of the related deci-
sion problems can be found in Buneman et al. (2003).

Definition 6. A key is a construct (C,P, {L1,L2, . . . ,Lk}), where C, P , L1,L2, . . . ,Lk

are XPath paths without predicates that use only child and descendant axes. C is called
context path, P target path and L1,L2, . . . ,Lk key paths. C can be omitted, i.e., we can
write (P, {L1,L2, . . . ,Lk}). This is equivalent to (/,P, {L1,L2, . . . ,Lk}). If C is omitted
we call the key global key, otherwise, it is called relative key.

For the sake of simplicity we can consider that k = 1, i.e., a key is a construct
(C,P, {L}).

Example 14. A key (//project,member, {mid}) formalizes the XML Schema key
example depicted in Fig. 14.

Since the authors of Buneman et al. (2003) do not provide a formalism for foreign
keys, we extend it in a similar manner.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 593

Fig. 14. An example of XML Schema key and keyref constructs.

Definition 7. A foreign key is a construct (C, (P 1, {L1

1
,L1

2
, . . . ,L1

k}) ⇒ (P 2, {L2

1
,L2

2
,

. . . ,L2

k})), where (C,P 2, {L2

1
,L2

2
, . . . ,L2

k}) is a key and P 1,L1

1
,L1

2
, . . . ,L1

k are XPath
paths without predicates that use only child and descendant axes. C can be omitted as in
the case of keys.

For the sake of simplicity we can again consider that k = 1, i.e., a foreign key is a
construct (C, (P 1, {L1}) ⇒ (P 2, {L2})).

Example 15. A foreign key (//project, (document, {mid}) ⇒ (member, {mid}))

formalizes the XML Schema foreign key (keyref construct) depicted in Fig. 14.

Probably the first approach that enables one to search for XML keys can be found in
Grahne and Zhu (2002). The authors first show that the set of candidate keys, i.e., sets of
values that fulfill the condition of uniqueness in a specific context (see Definition 6), is
large and we need to select the optimal one. They propose an algorithm based on a classical
data-mining technique called Apriori which enables one to mine all frequent item sets. For
finding minimal keys, i.e., the set where no key is inferable from others the authors exploit
a sound and complete set of inference rules proposed in (Buneman et al., 2003), such as,
e.g.,

(

C, (P,S)
)

∧ C′ ⊆ C →
(

C′, (P,S)
)

,
(

C, (P,S)
)

∧ P ′ ⊆ P →
(

C, (P ′, S)
)

. (1)

Another aim of the authors is to find so-called approximate keys, i.e., those valid in
“almost” the whole XML document. For this purpose they introduce two concepts – sup-

port and confidence of key expression, i.e., measures of interestingness of a key expression
from the point of view of the input data.

In Barbosa and Mendelzon (2003) the authors focus on the problem of inference of
ID and also IDREF(S) attributes. In case of keys, they focus on the same issue, i.e.,
to identify the optimal key from the set of candidates, in this case using a greedy search
strategy. Then, having a set of keys, the finding of foreign keys means just checking the
condition specified by Definition 7.

594 I. Mlýnková, M. Nečaský

01 for $e in //employee

02 return

03 <employee>

04 {$e/name}

05 {for $m in //member[mid=$e/eid]

06 return

07 <member>{$m/../code,$m/position}</member>}

08 {let $d := //document[mid=$e/eid]

09 return

10 <doccnt>{count($d)}</doccnt>

11 <docavgpages>{avg($d/pages)}</docavgpages>}

12 </employee>

Fig. 15. Query with repeating join pattern.

In Nečaský and Mlýnková (2009) we propose an approach which enables to discover
keys and foreign keys more precisely using the analysis of XML queries, in particular join
queries. Assume a query Q which joins a sequence of elements S1 targeted by a path P1

with a sequence of elements S2 targeted by a path P2 on a condition L1 = L2. It means
that Q joins an element e1 from S1 with an element e2 from S2 if e1/L1 equals to e2/L2.

Example 16. An example of such query is depicted in Fig. 15. It joins a sequence of
elements targeted by a path //employee with a list of elements targeted by a path
//member on a condition eid = mid at line 05, i.e., an //employee element e

is joined with a //member element m if eid of e equals to mid of m.

Assume that each join is done via a key/foreign key pair. Hence, we can infer from Q

that L1 is a key for elements in S1 or L2 is a key for elements in S2 and the other is a
foreign key referencing the key. From our sample query in Fig. 15, we can therefore infer
(//employee, {eid}) or (//member, {mid}). We can also infer the respective foreign
key, i.e., (//member, {mid}) ⇒ (//employee, {eid}) or (//employee, {eid}) ⇒

(//member, {mid}), respectively.
The problem is how to decide which of L1 and L2 is the key and which is the foreign

key. For this purpose we analyze the constructs used in the query (e.g., for vs. let
clauses, aggregation functions such as avg, min, max or sum, function count etc.). On
the basis of their usage we are able to output a list of scored keys and for each key a list
foreign keys referencing the key. The score of a key can be negative or positive. A negative
score means that the key is not specified by the XML documents while positive means that
it is satisfied. The absolute value of the score means how sure we are about it. The method
is supposed to be used in combination with any of the methods which analyze the data to
optimize the search process.

3.7. Phase VII. Expressing the Inferred Items in the Target Language

Last but not least we need to express the inferred schema using constructs of the target
XML schema language. In case of DTD constructs it is a quite straightforward process
since the inferred REs only need to be directly rewritten into the respective syntax using

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 595

Fig. 16. Options of rewriting into XSD syntax.

classical approaches such as a state removal method (Linz, 2000) or an algebraic method

Kain (1972). Note that a crucial issue of these methods is to select the best order of states
to remove, since different removal sequences lead to different regular expressions. For this
purpose several heuristics are proposed in Han and Wood (2007).

In case of XML Schema constructs the situation is much more complicated due to
extensions we proposed (Vyhnanovská and Mlýnková, 2010; Mlýnková and Nečaský,
2009) and described in phase III (see Section 3.3). In general in all cases we can ex-
ploit classes CEl , CElGr and CAt (see Table 1). Depending on the type of the outlined
production rule, we simply define respective globally defined element, group of elements,
attribute or group of attributes. The problem is when we want use also classes CCT and
CCTDer , i.e., globally defined complex types and their mutual derivation. Firstly, we nat-
urally need to follow the W3C specifications (Thompson et al., 2004). In particular, we
have two choices – extension and restriction. Consequently, we can exploit outlining of
complex types and their derivation only in case it can be specified in either of the two ways.
Otherwise we must use its combination with classes CEl , CElGr and CAt . In addition, in
general we usually have multiple options how to define the type hierarchy.

Example 17. Consider the example in Fig. 16, where EP and EQ denote production rules
outlined from original production rules EM and EN . In case (a) we exploit class CElGr and

596 I. Mlýnková, M. Nečaský

define groups P and Q that are referenced from element definitions of m and n. In case (b)
we combine classes CElGr , CCT and CCTDer and define complex type P to be the ancestor
of complex types of both elements m and n. Similarly, in case (cNote that the authors of
(Buneman et al., 2003) define keys with more key paths.) we define content model of m,
i.e., type mT, to be the ancestor of type nT derived by restriction.

For selecting the optimal choice we again exploit a thesaurus, but this time we do not
determine semantic similarity of element names, but their mutual hierarchy. The rules are
relatively simple:

• Relationships Broader Term/Narrower Term, which specify more/less general terms,
determine the broader term to be the candidate for ancestor.

• Relationships Use/Used For, which specify authorized/unauthorized terms, deter-
mine any of the terms to be the candidate for ancestor.

• Relationship Related Term determines related terms, for whom a common ancestor
is created.

• In other cases, i.e., when the terms are not related or we cannot say anything about
their semantic relationship, we do not exploit derived complex types.

Example 18. Consider again the example in Fig. 16. If we knew that “m” is broader term
of “n” (e.g., “employee” and “director”), we would choose schema c). If we knew that “m”
and “n” are related terms (e.g., “cat” and “dog”), we would choose schema (b). And if we
knew that “m” and “n” are not related, but their content models are so similar that they
were selected for merging, we would choose schema (a).

If we consider the resulting schema of existing approaches, i.e., two element definitions
that involve separate local specifications of their content models, we can see that any of
the three results is much more informative and precise.

3.8. User Interaction

Most of the previously described phases of general inference algorithm can be further
optimized with the usage of user interaction (UI). The optimal situation would be if a
user directly specified, e.g., the clusters of IG, the required merging rules, the outlined
automata, target XML Schema constructs etc. However, since our primary aim is auto-
matic inference, we cannot expect the user to execute the merging process, but to help it.
Another problem is that the amount of user decisions cannot be too high, otherwise no
one would exploit it.

In Vyhnanovská and Mlýnková (2010) we have proposed several cases when the in-
ference process can benefit from user interaction. In particular we discuss the situations
when the user can confirm/reject:

• clusters of IG to be merged, including clusters of elements with different names
(phase II),

• subautomata to be outlined (phase III),

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 597

• candidates for unordered sequences (phase III), and
• XML Schema constructs (i.e., type inheritance and shared fragments) to be used in

the target schema (phase VII).

Since all the cases are based on exploitation of a kind of similarity measure, we ex-
ploit a simple and straightforward two-threshold approach: If the particular similarity falls
below threshold1, the candidate is rejected automatically. If the distance falls between
threshold1 and threshold2, UI is required. And if the result of similarity measure is higher
than threshold2, the candidate is automatically confirmed.

4. Open Issues

Although each of the existing approaches brings certain interesting ideas and optimiza-
tions, there is still a space of possible future improvements. We describe and discuss them
in this section.

• User Interaction

In most of the existing papers the approaches focus on purely automatic inference
of an XML schema. The problem is that the resulting schema may be highly unnat-
ural. Although, e.g., the MDL principle evaluates the quality of the schema using a
realistic assumption that it should tightly represent the data and, at the same time, be
concise and compact, user preferences can be quite different. (Note that this is not
the same motivation as in case of papers Bex et al. (2006, 2007) that focus on real-
world DTDs and XSDs.) Hence, a natural improvement may be exploitation of user
interaction. Some of the existing papers (e.g., Ahonen, 1996) mention the aspect of
user interaction, typically in phase IV (see Section 3.4) of refinement of the result,
but there seems to be no detailed study and, in particular, respective implementation.
And, naturally, this problem is closely related to a suitable user interface which does
not require complex operations and decisions.

• Other Input Information

In all the existing works the XML schema is inferred on the basis of a set of positive
examples, i.e., XML documents that should be valid against the inferred schema.
As we have mentioned, the Gold’s theorem highly restricts the existing solutions
and, hence, the authors focus on heuristic approaches or limit the methods to par-
ticular identifiable classes of languages. But another natural solution to the problem
is to exploit additional information, such as an XML schema or XML queries. In
addition, there seems to be no approach that would exploit negative examples (i.e.,
XML documents that should not conform to the schema). In this case we can find a
real-world motivation again in the area of data evolution and versioning.

• XML Schema Simple Data Types

One of the biggest advantages of the XML Schema language in comparison to DTD
is its wide support of simple data types (Biron and Malhotra, 2004). It involves 44
built-in data types such as, e.g., string, integer, date etc., as well as user-
defined data types derived from existing simple types using simpleType con-
struct. In enables one to derive new data types using restriction of values of an ex-
isting type (e.g., a string value having length greater than two), list of values of an

598 I. Mlýnková, M. Nečaský

existing type (e.g., list of integer values) or union of values of existing data types
(e.g., union of positive and negative integers). Hence, a natural improvement of the
existing approaches is a precise inference of simple data types. Unfortunately, most
of the existing approaches omit the simple data types and consider all the values as
strings. As we have mentioned, two exceptions are proposed in Chidlovskii (2002),
Hegewald et al. (2006), but both the algorithms focus only on selected built-in data
types.

• XML Schema Advanced Constructs

The second big advantage of the XML Schema language are various complex con-
structs. The language exploits object-oriented features, such as user-defined data
types, inheritance, polymorphism, i.e., substitutability of both data types and ele-
ments etc. Although most of these constructs do not extend the expressive power of
XML Schema in comparison to DTD (Mlýnková, 2008), they enable one to spec-
ify more user-friendly and, hence, realistic schemas. Naturally, their usage is closely
related to the previously described problem of user-interaction, since the user can
specify which of the constructs are preferred.

• Integrity Constraints

Both DTD and XML Schema enable one to specify not only the structure of the
data, but also various semantic constraints. The current works focus mainly on the
ID, IDREF(S) attributes (Grahne and Zhu, 2002; Barbosa and Mendelzon, 2003)
and exploit various data mining approaches to find the optimal sets of keys and for-
eign keys. In Nečaský and Mlýnková (2009) we optimize the search strategy us-
ing analysis of XML queries. Unfortunately, all the existing works infer the keys
separately, i.e., regardless a possibly existing XML schema or on the basis of an
inference approach. Similarly, none of them focusses on any of the advanced con-
straints of XML Schema or Schematron. In addition, there are also more complex
XML integrity constraints (Opočenská and Kopecký, 2008) that could be inferred,
though they cannot be expressed in the existing schema specification languages so
far, functional dependencies (Yu and Jagadish, 2008) or even languages for express-
ing any integrity constraint in general, such as, e.g., Object Constraint Language

(OCL) (OMG, 2009). Their inference would extend the optimization of approaches
that analyze and exploit information on XML data from XML schemas.

• Other Schema Definition Languages

The DTD and XML Schema are naturally not the only languages for definition of
structure of XML data, though they are undoubtedly the most popular ones. The
obvious reason is that these two have been proposed by the W3C, whereas DTD is
even a part of specification of XML. Nevertheless, there are also other relatively pop-
ular schema specification languages, the two most popular ones, RELAX NG and
Schematron. The former language has higher expressive power than XML Schema
and DTD, since it enables one, e.g., to combine elements and attributes in the reg-
ular expressions. The latter one exploits completely different approach (since it is a
pattern-based, not grammar-based language) and, hence, it will require completely
different inference approach.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 599

5. Summary and Future Work

In general, the XML schema of XML documents is currently exploited mainly for two pur-
poses – data-exchange and optimization. In the former case we usually need the inferred
schema as a candidate schema further improved by a user using an appropriate editor, or in
cases when no schema is available. In the latter case the approaches exploit the knowledge
of the schema, i.e., the expected structure of the data, for optimization purposes such as,
e.g., finding the optimal storage or compression strategy. However, in general, almost any
approach that deals with XML data can benefit from the knowledge of their structure, i.e.,
XML schema. The only question is to what extent.

In this paper we focussed on the most popular group of approaches for semi-automatic
inference of XML schema for a given set of XML documents – heuristic methods. Their
popularity is given by the fact that their key aim is to provide natural and realistic results,
despite we cannot specify any special features of the resulting schemas.

The main contribution of this paper can be summed up as follows:

• A general framework that characterizes the classical phases of algorithm for heuristic
inference of XML schemas.

• A study of current approaches and their improvements of the particular phases of
the general inference algorithm.

• A detailed description of several optimization approaches we proposed in recent
years and their comparison with current approaches.

• A study of open issues to be solved in the area of schema inference in general.

Recently we have finished implementation of a general and extensible framework
called jInfer (Klempa et al., 2012a) that covers the general inference phases. Using plugins
it enables one to change the respective approachesand compare their influence on the infer-
ence process as well as results in general. (Note that a similar system, called SchemaScope,
focussing on the grammar-inferringapproaches, was described in Bex et al. (2008).) In the
next phase we will implement the current approaches and provide their detailed analysis
and comparison using nontrivial set of both real-world and synthetic data. And, finally, in
our future work we will focus mainly on the open issues stated in Section 4. Our primary
aim is to study the advantages of other input information (such as XML queries or XML
operations in general) and to infer broader information on the data, in particular integrity
constraints. Our preliminary results in this area using jInfer can be found in Švirec and
Mlýnková, 2012) ((2012)), Klempa et al. (2012b), Vitásek and Mlýnková (2012).

Acknowledgement. This work was partially supported by the Czech Science Foundation
(GAČR), grant number P202/10/0573.

References

Ahonen, H. (1996). Generating Grammars for Structured Documents Using Grammatical Inference Methods.
Report A-1996-4, Department of Computer Science, University of Helsinki.

600 I. Mlýnková, M. Nečaský

Barbosa, D., Mendelzon, A. (2003). Finding ID attributes in XML documents. In: Proceedings of Xsym 2003.
Lecture Notes in Computer Science, vol. 2824. Springer, Berlin, pp. 180–194.

Barták, R. (1998). On-Line Guide to Constraint Programming.
http://kti.mff.cuni.cz/ bartak/constraints/.

Bex, G.J., Neven, F., Van den Bussche, J. (2004). DTDs versus XML schema: a practical study. In: Proceedings

of WebDB ’04. ACM Press, New York, pp. 79–84.
Bex, G.J., Neven, F., Schwentick, T., Tuyls, K. (2006). Inference of concise DTDs from XML data. In: Proceed-

ings of VLDB ’06, Seoul, pp. 115–126.
Bex, G.J., Neven, F., Vansummeren, S. (2007). Inferring XML schema definitions from XML Data. In: Proceed-

ings of VLDB ’07, Vienna, pp. 998–1009.
Bex, G.J., Neven, F., Vansummeren, S. (2008). SchemaScope: a system for inferring and cleaning XML schemas.

In: Proceedings of SIGMOD ’08, Vancouver, pp. 1259–1262. ACM Press, New York.
Biron, P.V., Malhotra, A. (2004). XML Schema. Part 2. Datatypes, 2nd ed. W3C.

http://www.w3.org/TR/xmlschema-2/.
Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F. (2008). Extensible Markup Language (XML)

1.0, 5th ed. W3C. http://www.w3.org/TR/REC-xml.
Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.-C. (2003). Reasoning about keys for XML. Information

Systems, 28(8), 1037–1063.
Chidlovskii, B. (2002). Schema extraction from XML collections. In: Proceedings of JCDL ’02, Portland,

pp. 291–292. ACM Press, New York.
Dorigo, M., Birattari, M., Stutzle, T. (2006). Ant colony optimization – artificial ants as a computational intel-

ligence technique. Report TR/IRIDIA/2006-023, IRIDIA, Bruxelles, Belgium.
Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K. (2000). XTRACT: a system for extracting doc-

ument type descriptors from XML documents. SIGMOD Record, 29(2), 165–176.
Gold, E.M. (1967). Language identification in the limit. Information and Control, 10(5), 447–474.
Grahne, G., Zhu, J. (2002). Discovering approximate keys in XML data. In: Proceedings of CIKM ’02, McLean,

pp. 453–460. ACM Press, New York.
Grunwald, P.D. (2005). A Tutorial Introduction to the Minimum Description Principle. Centrum voor Wiskunde

en Informatica. http://homepages.cwi.nl/ pdg/ftp/mdlintro.pdf.
Han, Y.-O., Wood, D. (2007). Obtaining shorter regular expressions from finite-state automata. Theoretical Com-

puter Science, 370(1–3), 110–120.
Hegewald, J., Naumann, F., Weis, M. (2006). XStruct: efficient schema extraction from multiple and large XML

documents. In: Proceedings of ICDEW ’06. IEEE Computer Society, Washington, pp. 81–81.
Jain, A.K., Dubes, R.C. (1988). Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River.
Jelliffe, R. (2001). The Schematron – An XML Structure Validation Language using Patterns in Trees.

http://xml.ascc.net/resource/schematron/.
Kain, R.Y. (1972). Automata Theory: Machines and Languages. McGraw-Hill Inc., New York.
Klempa, M., Mikula, M., Smetana, R., Švirec, M., Vitásek, M. (2012a). jInfer XML Schema Inference Frame-

work. http://jinfer.sourceforge.net/modules/paper.pdf.
Klempa, M., Stárka, J., Mlýnková, I. (2012b). Optimization and refinement of XML schema inference ap-

proaches. In: Proceedings of ANT ’12, vol. 10, Niagara Falls, pp. 120–127. Elsevier, Amsderdam
Levenshtein, V.I. (1966). Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics

Doklady, 10(8), 707–710.
Linz, P. (2000). An Introduction to Formal Languages and Automata. Jones & Bartlett Publishers, 3rd ed.
Marian, A. (2002). Detecting changes in XML documents. In: Proceedings of ICDE’02. IEEE Computer Society,

Washington, pp. 41–52.
Mignet, L., Barbosa, D., Veltri, P. (2003). The XML web: a first study. In: Proceedings of WWW’03, Budapest,

pp. 500–510. ACM Press, New York.
Mlýnková, I. (2009). On inference of XML schema with the knowledge of an obsolete one. In: Proceedings of

ADC ’09. Australian Computer Society, Inc., Darlinghurst, pp. 77–84.
Mlýnková, I., Nečaský, M. (2009). Towards inference of more realistic XSDs. In: Proceedings of SAC ’09,

Honolulu, pp. 639–646. ACM Press, New York.
Mlýnková, I., Toman, K., Pokorný, J. (2006). Statistical analysis of real XML data collections. Proceedings of

COMAD’06. Tata McGraw-Hill, New Delhi, pp. 20–31.
Mlýnková, I. (2008b). Similarity of XML schema definitions. Proceeding of DocEng ’08, Sao Paulo, pp. 187–

190. ACM Press, New York.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 601

Moh, C.-H., Lim, E.-P., Ng, W.-K. (2000). Re-engineering structures from web documents. In: Proceedings of

DL ’00, San Antonio, pp. 67–76. ACM Press, New York.
Murata, M. (2002). RELAX (Regular Language Description for XML). http://www.xml.gr.jp/relax/.
Murata, M., Lee, D., Mani, M., Kawaguchi, K. (2005). Taxonomy of XML schema languages using formal

language theory. ACM Transactions on Internet Technology, 5(4), 660–704.
Nečaský, M., Mlýnková, I. (2009). Discovering XML keys and foreign keys in queries. In: Proceedings of

SAC ’09, Honolulu, pp. 632–638. ACM Press, New York.
Nierman, A., Jagadish, H.V. (2002). Evaluating structural similarity in XML documents. In: Proceedings of

WebDB’02, Madison, pp. 61–66. ACM Press, New York.
OMG (2009). Object Constraint Language Specification, Version 2.0.

http://www.omg.org/technology/documents/formal/ocl.htm.
Opočenská, K., Kopecký, M. (2008). Incox – a language for XML integrity constraints description. In: Proceed-

ings of DATESO’08. CEUR-WS.org, Desna – Cerna Ricka, Czech Republic, pp. 1–12.
Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N. (2004). XML Schema. Part 1. Structures, 2nd ed.

W3C. http://www.w3.org/TR/xmlschema-1/.
Touzet, H. (2005). A linear tree edit distance algorithm for similar ordered trees. In: Proceedings of CPM ’05.

Lecture Notes in Computer Science. Springer, Heidelberg, pp. 334–345.
Vitásek, M., Mlýnková, I. (2012, in press). Inference of XML integrity constraints. In: Proceedings of ADBIS ’12,

Poznan. Springer, Berlin.
Vošta, O., Mlýnková, I., Pokorný, J. (2008). Even an ant can create an XSD. In: Proceedings of DASFAA’08,

New Delhi, pp. 35–50. Springer, Berlin.
Švirec, M., Mlýnková, I. (2012). Efficient detection of XML integrity constraints violation. In: Proceedings of

NDT ’12, Dubai, UAE, pp. 259–273. Springer, Berlin.
Vyhnanovská, J., Mlýnková, I. (2010). Interactive inference of XML schemas. In: Proceedings of RCIS ’10,

Nice, pp. 191–202. IEEE Computer Society, Los Alamitos.
Wong, R.K., Sankey, J. (2003). On Structural Inference for XML Data. Report UNSW-CSE-TR-0313, School of

Computer Science, The University of New South Wales.
Yu, C., Jagadish, H.V. (2008). XML schema refinement through redundancy detection and normalization. The

VLDB Journal, 17(2), 203–223.

I. Mlýnková received her PhD degree in Computer Science in 2007 from the Charles
University in Prague, Czech Republic. She is an assistant professor at the Department of
Software Engineering of the Charles University and an external member of the Depart-
ment of Computer Science and Engineering of the Czech Technical University. She has
published more than 60 publications, 4 gained the Best Paper Award. She is a PC mem-
ber or reviewer of 15 international events and co-organizer of 3 international workshops
(X-Schemas@ADBIS, MoViX@DEXA, BenchmarX@DASFAA, all since 2009).

M. Nečaský received his PhD degree in Computer Science in 2008 from the Charles Uni-
versity in Prague, Czech Republic, where he currently works in the Department of Soft-
ware Engineering as an assistant professor. He is an external member of the Department of
Computer Science and Engineering of the Faculty of Electrical Engineering, Czech Tech-
nical University in Prague. His research areas involve XML data design, integration and
evolution. He is an organizer or PC chair of three international workshops. He has pub-
lished 15 refereed conference papers (2 received the Best Paper Award). He has published
3 book chapters and a book.

602 I. Mlýnková, M. Nečaský

Euristiniai XML schemų išvedimo metodai: išmoktos pamokos
ir neišspręstos problemos

Irena MLÝNKOVÁ, Martin NEČASKÝ

Pagrindinis dėmesys straipsnyje skirtas specifinei XML schemų išvedimų klasei, euristiniams iš-
vedimams. Skirtingai nuo gramatinių išvedimų, euristiniais išvedimais gautos schemos negali būti
aprašytos jokia konkrečia gramatika ir dėl to nieko negalima pasakyti apie jų savybes apibrėžiamas
kalbų teorija. Nepaisant šio fakto, euristinių išvedimų klasė yra plati ir populiari, nes žmogui tokių
išvedimų strategijos yra natūralios ir patogios. Straipsnyje aprašomos bendrosios euristinių algo-
ritmų savybės ir parodoma kaip, norint gauti labiau pagrįstus ir realistiškesnius rezultatus, galima
patobulinti ir optimizuoti atskirus tokių algoritmų žingsnius. Šiuo straipsniu siekta: (1) apžvelg-
ti euristinio išvedimo procesą ir skirtingas jo traktuotes; (2) apibendrinti mūsų mokslinės grupės
pateiktus pasiūlymus kaip tobulinti ir optimizuoti euristinio išvedimo procesą; (3) aptarti neišspręs-
tas problemas ir galimas mūsų rezultatų plėtros kryptis. Straipsnis turėtų skaitytojui padėti greitai
susipažinti su mūsų nagrinėjama tyrimų sritimi.

