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Abstract. Underperformance in higher frequency signal regions denoising is a common problem

for many denoising methods. Wavelet transforms are, generally, less prone to the problem than the

pure spatial or frequency domain transforms, but there is still much room for improvements. In this

paper, we propose a point-wise adaptive wavelet transform for signal denoising applications. It is

very efficient in denoising higher frequency regions, without compromising the performance on

smooth, lower frequency, regions. The transform uses statistical method of intersection of confi-

dence intervals rule to adapt to local signal properties. Its performance was extensively tested on

various signal classes. The results proved validity of theoretical assumptions and showed significant

performance improvements when compared to other denoising methods.

Key words: point-wise adaptation, wavelet selection, adaptive lifting scheme, adaptive wavelet

transform, ICI rule, signal denoising, edge-preserving denoising.

1. Introduction

Most of the real-world signals are corrupted by noise. Hence, it is necessary to employ

efficient signal denoising algorithms to improve signal quality. Wavelet transforms were

proved to be a valuable tool in signal denoising. Popularity of wavelet transforms was fur-

ther increased after the ladder structure (Sweldens, 1996) for transform calculation was

proposed. The structure is called the lifting scheme. The lifting scheme allows for more

efficient transform calculation, makes the perfect reconstruction property guaranteed, per-

forms all calculations in the spatial domain and makes it easy to introduce adaptivity to a

transform.

1.1. Adaptive Wavelet Transforms

Most denoising algorithms perform well on smooth signals or smooth signal regions. The

greatest difference in the algorithm efficiency can be noted for signals containing higher

*Corresponding author.



638 M. Tomic, D. Sersic

frequency features, such as discontinuities, spikes, bumps, or any other sudden changes in

local signal properties. Compactly supported wavelets stand out as an excellent performer

for such signal classes, but there is still much room for improvements.

The scale-adaptive (ScAT) and the space-adaptive (SpAT) lifting schemes were pro-

posed in Claypoole et al. (2003). ScAT performs adaptation on a scale-by-scale basis,

while SpAT adapts on a point-by-point basis. From a set of predictors, one which results

in the smallest prediction error is chosen. To eliminate the necessity of bookkeeping due

to a space-varying predictors, the update first framework was also proposed. Unusual ap-

proach of adapting the update filter, based on decision maps was proposed in Piella et al.

(2002), Piella and Heijmans (2002). A simple adaptation method, in which only two con-

ventional wavelets are used, was presented in Wu et al. (2004), in which choice of the

wavelet depends on a straightforward step-edge detection algorithm. Interesting approach

was taken in Chan and Zhou (1999). Instead of modifying the transform, signal itself is

modified at discontinuities. After the discontinuity is detected, signal values from one side

of the discontinuity are used to extrapolate its values to the other side of the discontinuity,

resulting in a smooth signal. After denoising, a reverse filters are used to restore discon-

tinuities. Finally, similar approach to the one taken in this paper was explored in Sersic

(2000). The basic idea was to use filter banks with more vanishing moments for smoother

parts of a signal, while for the transients and singularities, filter banks with less vanishing

moments were to be used.

In a separate research field, a successful denoising methods built upon local polyno-

mial approximation (LPA) and intersection of confidence intervals (ICI) rule were pro-

posed. The ICI rule statistical method was used as a tool for adaptive support selection.

First the 1-D case was examined (Katkovnik, 1999) and afterwards the ICI was used for

very efficient image denoising algorithms (Foi et al., 2007; Katkovnik, 2003). In attempt

to further improve the efficiency of the ICI method, relative ICI (RICI) method was pro-

posed in Lerga et al. (2011).

In this paper, we propose an adaptive denoising method based on a lifting scheme,

which efficiently utilizes the ICI to adapt the transform. By incorporating the ICI into the

lifting scheme, it becomes possible to very efficiently adapt to local signal properties,

on a point-by-point basis, as briefly presented in Tomic and Sersic (2012). Instead of

focusing on certain features detection, such as a discontinuities, the ICI allows us to detect

neighborhood of each point, which share similar statistical properties. This way, on each

scale and for each point, it becomes possible to select an appropriate wavelet basis, such

that the lifting filters do not span across two or more regions of different local properties.

The approach yields in significant reduction of visible denoising artifacts and general

improvement in denoising performance.The proposed method can be used as a standalone

1-D signal denoising method, as a part of more complex algorithms, such as medical

image denoising algorithm (Tomic et al., 2012a) or as a preprocessing step in many signal

analysis applications, such as Su (2011).

2. Rationale

A large number of wavelet basis functions exists. Some important properties of wavelets,

from the signal denoising point of view, are the support size, smoothness and symmetry.
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Fig. 1. Wavelet functions: (a) Haar, (b) Daubechies 9.
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Fig. 2. Blocks signal denoising: (a) original signal, (b) noisy signal, (c) signal denoised using Db9 and (d) signal

denoised using Haar wavelet.

For instance, two different wavelets are shown in Fig. 1 – Haar and Daubechies 9 (Db9).

Haar wavelet features short support and a step edge, while the Db9 has much longer

support, it is oscillatory and very smooth. Since reconstructed signal can be viewed as a

superposition of coarse signal approximation and scaled and translated wavelet functions,

it is easy to predict the effect of using either of the shown wavelets to denoise some typical

signals. Scaled and translated Haar wavelet very efficiently reconstructs sharp edges but

has difficulties with smooth signal regions. Smoothness and longer support of the Db9

wavelet represent the opposite case. It efficiently reconstructs smooth signal regions, but

is not able to do the same with higher frequencies in a signal, eventually leading to a

pseudo-Gibbs oscillations at sharp edges. This is illustrated in Fig. 2.
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Fig. 3. Sample signal with variable local properties.

The example points out general principle for wavelet basis selection. If a given signal

is characterized by smooth and slow transitions, i.e. low frequencies, longer and smoother

wavelet basis should be chosen. If the signal is characterized by high frequencies, shorter

wavelet should be chosen. Even for a class of stationary signals, there is no simple solu-

tion to decide the exact optimal wavelet shape or support length. Non-stationary signals

represent a more difficult scenario, as varying signal properties means it would be best to

use several different wavelet basis for different signal regions.

2.1. Adaptive Lifting Scheme Basic Concept

Let us examine the signal in Fig. 3. It features four smooth segments, connected by three

sharp edges. Our adaptive algorithm should ensure that the longest wavelet which does

not span the edge in a signal is used for each signal point. For instance, at the edge sam-

ples, Haar wavelet should be used as it allows for excellent edge reconstruction. As we

move away from the edge, longer wavelets should be used to allow for fine reconstruction

of smooth signal regions. If done right, the algorithm will combine good properties of

different wavelet basis into a single transform. Denoising scheme based on the transform

should perform well on both smooth regions and edges, contained in the same signal.

2.2. Definition and Detection of an Edge

Strategy of changing the wavelet basis as we approach the edge, or move away from it,

brings about another obstacle – edge detection. Edge detection is a problem per se. Before

trying to implement any of the detection algorithms, it is necessary to define what does

the edge exactly mean to our application.

It could be defined as a step edge, a spike or even any high frequency change (drawing

another question: What is a high frequency?). In this particular application we assume

that the signal can be modeled as a piece-wise polynomial function. We find the usable

definition of an edge to be: a point in a signal which divides two polynomial segments. It

is a rather broad definition, which includes much more than what common edge detectors

are trying to detect. To detect the existence of edges conforming to the given definition,

we use the statistical method presented in Katkovnik (1999) – Intersection of Confidence

Intervals (ICI) rule. As explained in more details later, the ICI rule helps us determine the

largest neighborhood about each signal point, which shares the same local properties.
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Fig. 4. Biorthogonal wavelet set for adaptive algorithm: (a) Haar (Bior1.1), (b) Bior2.2, (c) Bior4.4 and

(d) Bior6.6.

2.3. Wavelet Basis Set

It was shown in Daubechies and Sweldens (1998) that any wavelet transform with finite

filters can be decomposed into a finite sequence of simple lifting steps. Having many lifting

steps leads to an unnecessary algorithmic and computational complexity, while adding

little benefits. Out of the many existing wavelet families, we propose the biorthogonal

wavelets, which are “native” to the lifting scheme, to be used. Only two lifting steps are

required to construct such wavelets: a single predict and a single update step.

Figure 4 shows 4 wavelets used in the adaptive scheme. The wavelets are: Haar,

Bior2.2, Bior4.4 and Bior6.6. Should the adaptive algorithm perform well, the Haar

wavelet will be used about sharp edges in a signal, while the Bior6.6 will be used for

the smoothest signal regions.

Based on the results of the ICI rule, a set of lifting filters, constructing one of the four

wavelets, is chosen and used at each signal point. The adaptation is performed indepen-

dently for each point and on each scale.

3. Intersection of Confidence Intervals – ICI

The ICI is a statistical method which utilizes non-parametric local polynomial approxi-

mation (LPA) and confidence intervals (CI) theory to estimate the real value of a sample

in a noisy signal. We briefly present part of the method theory which is relevant and mod-
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ified for the adaptive lifting scheme, while the complete presentation and analysis of the

method can be found in Katkovnik (2003).

Let the signal:

y(x), y ∈ R
1, x ∈ R

1 (1)

be a piece-wise polynomial function, sampled on a regular or irregular grid:

x = x(n),

where index n corresponds to the n-th signal sample. Its noisy observations z(x) are given

by:

z(x) = y(x) + ǫ(x), (2)

where ǫ(x) ∼N (0, σ 2
ǫ ) is considered to be independent Gaussian white noise.

The aim of the method is to estimate real values of the unknown deterministic y(x),

from its noisy observations z(x). Each y(x) is considered to be lying on a polynomial

segment. The segment can be approximated by a polynomial of order m = 0, . . . ,M . We

are only interested in the polynomial value at a given point, so, instead of finding the

polynomial parameters, the non-parametric LPA route is taken.

3.1. Local Polynomial Approximation – LPA

Let the point x be a center point of the LPA, i.e., the point at which the function value y(x)

is to be estimated using the LPA kernels. Estimate for the point xs in the neighborhood of

x can be looked for as follows:

y(x − xs) = CT u(x − xs),

u(x) =
(

u1(x), u2(x), . . . , uM(x)
)T

,

C = (C1,C2, . . . ,CM )T , (3)

where u(x) ∈ RM is a vector of linearly independent 1D polynomials, of the power from 0

to M , while C ∈ RM is a vector of parameters for this model.

In order to find the coefficients C from (3), the following criterion function is applied:

Jh(x) =
∑

s

wh(x − xs)
(

z(xs) − y(x − xs)
)2

, (4)

where the window wh(x):

wh(x) =
w(x/h)

h2
,

∫

wh(x) dx = 1, (5)

formalizes localization of fitting with respect to the center x , while the scale parameter

h > 0 determines the window size.
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Estimates of parameters C are obtained by minimizing the criterion function (4) with

respect to the C:

Ĉ(x,h) = u−1

h

∑

s

wx(x − xs)u(x − xs)z(xs),

uh =
∑

s

wh(x − xs)u(x − xs)u
T (x − xs),

Ĉ(x,h) =
(

Ĉ1(x,h), . . . , ĈM (x,h)
)T

. (6)

Having obtained coefficients Ĉ, estimate of the function value at point xs follows,

from (3) and (6), as:

ŷh(x − xs) = ĈT u(x − xs) = uT (x − xs)Ĉ

= uT (x − xs)u
−1

h

∑

s

(

wh(x − xs)u(x − xs)z(xs)
)

. (7)

Let us assume that the polynomials u(x − xs) are orthonormalized with respect to the

window wh(x−xs). We shall denote the orthonormalizedset of polynomials as φ(x−xs).

The expression (7) can now be written as:

ŷh(x − xs) = φT (x − xs)φ
−1

h

∑

s

(

wh(x − xs)φ(x − xs)z(xs)
)

. (8)

Considering that φh = IMxM , and substituting φT (ds) = φT (x − xs), expression (8) be-

comes:

ŷh(x − xs) =
∑

s

(

wh(x − xs)φ
T (ds)φ(x − xs)z(xs)

)

,

which can be further simplified to:

ŷh(x − xs) =
∑

s

gh(x − xs)z(xs),

gh(x − xs) = wh(x − xs)φ
T (ds)φ(x − xs), (9)

showing that the estimate can be obtained by filtering the noisy signal with the FIR filter,

given by its impulse response gh(x − xs).

3.2. Idea of the ICI

Let us consider the LPA kernels using estimation order m and window of size h. In case

the center point of LPA lies on a polynomial segment whose order is 6 m, the kernels

provide perfect estimate of the function real value, for any window size h > m. In reality,

the original signal y(x) is composed of many different polynomials and also corrupted by
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Fig. 5. Probability distribution functions of ŷ(x), for growing window sizes hi .

noise. Perfect reconstruction is highly unlikely, but widening of the estimation window

can improve ŷ(x) accuracy and lower its variance.

The problem with growing estimation window arises when the enlarged window in-

cludes points which lie on a different polynomial segment. LPA kernel estimators be-

come biased and variance alone cannot be looked upon as a measure of accuracy. Should

the window be further extended, estimation bias could cause significant worsening of the

ŷ(x), regardless of the low estimate variance. The effect is depicted in Fig. 5.

It is evident that an unbiased estimator can result in an unacceptably high estimate

variance, while at the same time lowering of the variance, by extending the estimation

window, can result in an unacceptable estimation bias. The ICI rule considers both of the

variables and, as shown in Stankovic (2004), provides optimal bias-to-variance trade-off.

3.3. Determining Support Size – ICI Rule

Let us examine confidence intervals (CI) for the ŷ(x). Their upper (U) and lower (L)

limits are given by:

U = ŷ(x) + zc · σŷ,

L = ŷ(x) − zc · σŷ , (10)

where the critical level zc = χ1−α/2 is the (1 − α/2)-th quantile of the standard Gaussian

distribution and defines the probability that the true value y(x) is contained within the CI

limits.

To make the expression (10) more accurate, the bias has to be considered. The upper

bound of the estimation bias (Stankovic, 2004) is given by:

ω̄(x,h) < γ · σŷ ,

γ =
(
√

(m + 1)
)−1

. (11)

Then, from (10) and (11), the expressions for CI limits are:

U = ŷ(x) + Ŵ · σŷ ,

L = ŷ(x) − Ŵ · σŷ , (12)
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ŷ
h

j
a
n
d

C
I

li
m

it
s

(a) (b)

Fig. 6. CIs for ŷ(15). Filter support is growing to the right: (a) sample noisy signal and (b) CI limits.

where Ŵ = γ +χ1−α/2 is a free parameter, which defines the method sensitivity. Too large

or too small parameter Ŵ value results in, respectively, oversmoothing or undersmoothing

the signal.

Let us calculate CIs for estimators of growing estimation windows, i.e., growing sup-

ports: H = {Hi, i = 1, . . . ,N}, with length hi of each succeeding support being larger

than the previous one: {hi | hi < hi+1}. Maximum lower and minimum upper CI limits

are recorded for each Hi (Katkovnik et al., 2002):

L̄i+1 = max[L̄i ,Li+1],

U i+1 = min[U i,Ui+1],

i = 1,2, . . . ,N, L̄1 = L1, U 1 = U1.

The ICI rule states that the estimator producing the most accurate estimate ŷ(x) should

be the one with the largest support Hi , for which the condition:

L̄i 6 U i (13)

is still satisfied. The respective support shall be denoted as H+. It is to be expected that

any support larger than H+ would include signal points which belong to a region with

different local properties. This is illustrated in Fig. 6. It can be seen in Fig. 6(b) that the

y(15) should be estimated using H8, as it is the the largest filter support for which the

condition (13) still holds.

4. Edge Preserving Lifting Scheme – ICI-EPL

Let us consider the lifting scheme realization of the wavelet transform (Fig. 7). In the

predict step, filter P is used to predict values of the odd-indexed signal sample, based

on a certain number of even-indexed samples, and vice versa. Because, for conventional

wavelets, filter P is same for every signal sample, we get a denoising performance trade-

off – longer filter P results in better performance in smooth signal regions, while shorter P
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Fig. 7. Single level lifting scheme decomposition.

results in better performanceabout edges in a signal. In order to avoid the trade-off, the ICI

rule can be used to determine the filter P support for each signal sample, independently.

4.1. Lifting Filters

As explained in Section 3.3, the ICI rule considers LPA kernels (9), while lifting filters

used in the lifting scheme are Neville filters (Kovacevic and Sweldens, 2000). There are

two options to consider – either Neville filters will be used for the ICI rule, or the LPA

type kernels will be used in the lifting scheme. Let us briefly examine both options.

4.1.1. Neville Filters and the ICI Rule

Essentially, Neville filters of order N are also LPA kernels. They are interpolating filters

which are able to perfectly reconstruct any polynomial whose order is m < N . The same

is true for the LPA kernels. Difference between the ICI utilization of LPA kernels and

Neville filters is in the relationship of order of estimation and support size.

LPA kernels used for the ICI rule all share the same estimation order, set to a value

of m = const, regardless of the kernel support size. On the other hand, as the support of

Neville filters grow, so does their order of estimation, which is always equal to: m = h − 1.

If used for the ICI rule, both filter types must have growing support, but in the LPA kernel

case, estimation order is fixed, while for the Neville filters it grows with the support. Im-

portant consequence is relationship of estimate variance to support size. Both estimator

types are FIR filters and the respective estimate variances are given by:

ŷ(x) =
∑

k

gh(k)y(x − k),

Var(ŷ) = σ 2

ŷ =
∑

k

g2

h(k) · σ 2

y(x−k). (14)

Considering that σy(x−k) = σǫ , the variance follows as:

Var(ŷ) = σ 2

ŷ = σ 2

ǫ ·
∑

k

g2

h(k). (15)

The variance is directly proportional to the sum of squared filter/kernel coefficients,

and, as per (10), the confidence interval width is directly proportional to the variance. In

the LPA kernel case the variance and the CI width are getting lower as the support grows,
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Fig. 8. Effect of growing variance of Neville filters on the ICI rule efficiency.

while for the Neville filters, they are getting higher. The ICI rule efficiency is based on the

shrinking CI widths, as shown in Fig. 6. The effect of expanding CI widths can be observed

in Fig. 8. The figure shows plot of CI bars for a sample signal, when using Neville filters

of order N ∈ 1,2,3,4,5,6,7. It can be seen that the expanding CIs are detrimental to the

efficiency of the ICI rule, as it slows or even disables the breaching of the condition (13).

4.1.2. LPA Kernels and the Lifting Scheme

LPA kernels as proposed in Katkovnik (1999) cannot be directly used in the lifting scheme.

It was assumed that the kernels use every support point for the approximation. Also, in (9),

the center point of the LPA was assumed to always be equal to xs . It leads to ds = 0 and

to a modified expression:

gh(x − xs) = wh(x − xs)φ
T (0)φ(x − xs). (16)

Because of the assumptions, the LPA kernels are not suitable for inclusion into the

lifting scheme, as it presumes a polyphase decomposition. Minor modifications to the

original approach are necessary to generate kernels which use samples from only one

signal phase to predict values of samples from the other signal phase. Let us introduce a

rectangular asymmetrical window function:

wh(x − xs) = 1/h,

and assume all points of the support H to belong to the same signal phase. Samples from

the other phase now lie at the half-integer grid points. To define the point whose value is to

be estimated, the ds in (9) shall be set to a proper half-integer value. For instance, given a

support length h = 4, and setting the ds = 1.5 results in a symmetrical kernel, estimating

the point in the center of the support. Such kernels can now be upsampled and used in the

lifting scheme as predictors P .

Problem with the approach is that the primary purpose of filter P is wavelet construc-

tion, and not only achieving a good prediction, so we must examine the wavelets which

get constructed using the LPA kernels. Figure 9 shows wavelets in case LPA kernels with
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Fig. 9. Synthesis wavelets from LPA kernels with estimation order m = 2. Support length: (a) h = 6 and

(b) h = 8.
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Fig. 10. HeaviSine signal denoised using wavelet transforms based on: (a) LPA kernel, m = 2, h = 8 and

(b) Neville filter h = 8.

estimation order m = 2 are used. Plots are provided for support lengths h ∈ {6,8}. If we

compare the resulting wavelets with the ones from Neville filters, shown in Fig. 4, we

can see some general similarity in shape but there is a significant difference in regularity.

Wavelets constructed using Neville filters are very smooth, while the wavelets from LPA

kernels contain numerous singularities.

Given that the reconstructed signal is a sum of the coarse signal approximation and

translated and scaled wavelet functions, negative influence of such wavelets on general

denoising performance is easily anticipated. It would be difficult to reconstruct smooth

signal regions without denoising artifacts in form of, mostly, small fluctuations about the

real signal value, being clearly visible. The effect is shown in Fig. 10. The example com-

pares two denoised HeaviSine signals. One is denoised using the wavelets resulting from

Neville filters with support length h = 8, while the other is denoised using the wavelets

resulting from LPA kernels with m = 2 and the same support length, h = 8.

4.2. Combining the Advantages

We showed that the Neville filters work excellent for wavelet construction but are not

suitable to be used for the ICI rule. On the other hand, LPA kernels can be used with the

ICI rule to achieve efficient support size determination, but wavelets they construct are
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inferior to the ones constructed by Neville filters. To explore the advantages of both filter

types, we propose the signal decomposition in the lifting scheme to be broken into two

separate steps.

In the first step, on each scale and for each point, the ICI rule with the symmetrical

LPA estimators of order m, with set of growing supports:

Hr = {Hm,i, i = 1, . . . ,N}

of length:

{hm,i | hm,i < hm,i+1}

are used to find the largest admissible support (denoted by ‘+’) H+
m of length h+

m. Based on

the H+
m even-indexed points (denoted as H+

m,e), the estimators predict value of one of the

H+
m odd-indexed points (denoted as H+

m,o), and vice versa. Since symmetrical estimators

are assumed, the supports Hm,i also grow symmetrically. Ideally, samples which comprise

the support H+
m would not belong to two (or more) signal regions with different local

properties. Asymmetrical estimators are not considered as they have negative impact on

overall denoising performance.

In the second step, actual decomposition is performed by substituting the chosen LPA

kernels with Neville filters of the same support H+
m . The substitution can be justified by

the fact that the resulting smooth wavelets will have at least the same number of vanishing

moments as if the LPA kernel estimators were used. Possible additional vanishing mo-

ments would only provide smoother reconstruction but would have no negative impact on

edge preservation.

4.2.1. Choosing the Estimation Order

Basically, any estimation order m can be chosen for the LPA kernels, although differences

in actual denoising performance are not very significant. Another factor to consider when

choosing the estimation order is a potential for support growth. Because employing longer

wavelets do not bring further performance improvements, we have decided the longest

wavelet to be the Bior6.6. In effect, the longest filter support that can be used for the ICI

rule is of length h = 6. Too large estimation order m would, thus, limit the potential for

support growth. For instance, should we chose the order m = 3, minimum support length

would have been h = m + 1 = 4. Since the support is grown symmetrically, only two

filters would have been considered by the ICI algorithm, which is not enough to explore

its benefits or ensure reasonable reliability.

As well as limiting support growth potential, larger estimation order values also en-

tirely exclude shorter wavelets. It means that longer wavelets would be used even at step

edges. This is in harsh contradiction with the basic idea of adaptation and can severely

lower transform performance about edges in a signal.

Simulations showed that the estimation order m = 1 proved to be enough for optimal

denoising performance so it is the order we propose to be used in the ICI-EPL.
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4.2.2. Support Verification

Since we opted to set the kernel estimation order to m = 1, the resulting symmetrical

estimators are simple averaging filters:

PN (z) =
1

N

N−1
∑

k=0

z−k.

As a result, the more the support grows, the lesser is the impact of added samples

(Hm,i+1 \ Hm,i ) on the prediction result. It means that some edges might still show up

in the final support H+
m . Small denoising performance improvements can be achieved by

further examining the H+
m .

In order to verify the support and increase probability that it does not contain any

sudden changes in signal statistics, two asymmetrical LPA kernel estimator sets are intro-

duced. Each set is independently used in the ICI algorithm as a set of filters with growing

supports. They predict values of the, respectively, second and next to the last points of

H+
m . Their supports are growing from boundaries of the H+

m to the right and to the left,

respectively. The ICI algorithm results in supports HL+
m and HR+

m , whose lengths (hL+
m

and hR+
m ) are 6 h+

m. The asymmetrical estimators ensure that samples added in each step

of the ICI algorithm carry higher weight, which increases the probability of recognition

of changes in local signal properties.

In case that:

min
[

hL+
m , hR+

m

]

< h+
m,

it is possible that the ICI rule did not indicate change in signal properties fast enough and

that the H+
m contains signal samples from different segments. Our strategy is to contract

the H+
m by one filter tap from both sides. The verification step is then repeated until:

hL+
m = hR+

m = h+
m.

5. Results and Discussion

To investigate performance of the proposed denoising scheme, we use the usual test sig-

nals: Blocks, Bumps, Doppler, HeaviSine, Piece-Polynomial and Piece-Regular, and the

Blocks-HeaviSine composite signal. Additive white Gaussian noise was added to each of

the signals. Standard deviations of σǫ ∈ {5%,10%,15%} of total signal magnitude were

considered.

We compared the ICI-EPL to the original ICI method, as proposed in Katkovnik

(1999), and to 5 widely used conventional wavelet transforms: Haar, Bior2.2, Bior4.4,

Db3 and Db9. To eliminate influence of threshold selection on the performance compari-

son, we used oracle thresholding, i.e. the optimal threshold value, for each of the wavelet

transforms. The ICI-EPL parameter Ŵ value was chosen the same way.
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Table 1

RMSE values of denoised signals for additive Gaussian noise with σǫ = 5% of total signal magnitude.

RMSE multiplied by 10
2 .

Wavelets ICI ICI-EPL

Blocks 1.22–2.70 2.20 0.89

Bumps 1.91–2.53 2.25 1.94

Doppler 1.66–2.49 2.01 1.69

HeaviSine 1.14–1.41 1.14 1.09

Piece-Polynomial 1.21–2.47 1.73 0.95

Piece-Regular 1.72–2.32 1.80 1.41

Blocks-HeaviSine 1.31–2.15 1.57 1.10

Table 2

RMSE values of denoised signals for additive Gaussian noise with σǫ = 10% of total signal magnitude.

RMSE multiplied by 10
2 .

Wavelets ICI ICI-EPL

Blocks 2.71–4.85 3.81 2.25

Bumps 3.67–4.67 4.00 3.73

Doppler 3.15–4.12 3.77 3.09

HeaviSine 1.91–2.23 2.29 2.08

Piece-Polynomial 2.50–4.27 3.35 2.22

Piece-Regular 3.12–4.27 3.20 2.96

Blocks-HeaviSine 2.40–3.77 2.71 2.25

Table 3

RMSE values of denoised signals for additive Gaussian noise with σǫ = 15% of total signal magnitude.

RMSE multiplied by 10
2 .

Wavelets ICI ICI-EPL

Blocks 4.09–6.54 5.04 3.67

Bumps 5.21–6.36 5.64 5.33

Doppler 4.43–5.57 5.24 4.36

HeaviSine 2.58–2.93 3.18 2.85

Piece-Polynomial 3.71–5.53 4.75 3.63

Piece-Regular 4.50–5.63 4.63 4.47

Blocks-HeaviSine 3.49–4.97 3.68 3.43

5.1. Objective Quality – RMSE

Objective performancemeasures are given in terms of the root mean square error (RMSE)

and presented in Tables 1–3. In case of signals which contain singularities, it can be seen

that the ICI-EPL easily, and in some cases by a significant margin, outperforms other

considered transforms. In all other cases, the ICI-EPL has a performance comparable to

the best achieved denoising result.

5.2. Subjective Quality – Visual Inspection

RMSE is a commonly used objective measure for denoising performance, however, it

is also beneficial to visually inspect denoised signals, as there is often a gap between

objective and subjective perception of denoised signal quality.
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Fig. 11. Blocks signal denoising, σǫ = 10% of total signal magnitude: (a) original signal, (b) noisy signal,

(c) signal denoised using optimal wavelet transform (Haar) and (d) signal denoised using ICI-EPL.

5.2.1. Blocks Signal

Blocks signal, Fig. 11(a), is a piece-wise constant signal, characterized by sharp step edges

between constant-value signal regions. Of the fixed wavelets, Haar wavelet is optimal

transform for denoising, as its shape perfectly fits the signals step edges. Figure 11(b)

shows noisy signal (σǫ = 10% of total signal magnitude), while Figs. 11(c) and (d) show,

respectively, signals denoised using the Haar wavelet and the ICI-EPL. The ICI-EPL ad-

vantage of ≈ 20% in RMSE is also clearly visible in denoised signal plots. The ICI-EPL

shows exceptional edge reconstruction and reconstruction of shorter duration constant-

value regions, while in case of the Haar wavelet, denoised signal exerts visible spikes and

roughnesses near edges.

5.2.2. Bumps Signal

Bumps signal, Fig. 12(a), is characterized by a series of bumps (or spires). Except near

the bump peaks, the signal can be considered to be smooth. Figure 12 shows denoising

results for a high noise level case – σǫ = 15% of total signal magnitude. Of the tested

conventional wavelets, the Bior2.2 performed the best for this type of signal. In terms of

the RMSE, the ICI-EPL scores ≈ 2.3% worse result than the Bior2.2, but in terms of the

visual quality of denoised signal, a different conclusion can be made.

ICI-EPL performance at zero value regions is comparable to the Bior2.2 performance,

although there are several unwanted spikes. Still, as can be seen in Fig. 12(d), the false
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Fig. 12. Bumps signal denoising, σǫ = 15% of total signal magnitude: (a) original signal, (b) noisy signal,

(c) signal denoised using optimal wavelet transform (Bior2.2) and (d) signal denoised using ICI-EPL.

spikes are easily distinguished from the real bumps in a signal. When we compare the

bumps reconstruction, ICI-EPL performance is far superior. The first series of bumps is

badly corrupted in the Bior2.2 case, while the ICI-EPL successfully conserved all three

bumps in the series. Similar observation can be made for the fourth series of bumps, where,

unlike the Bior2.2 case, all three bumps can be distinguished in the ICI-EPL case. Also,

bump magnitudes in the ICI-EPL denoised signal are much closer to the original signal

magnitudes.

Following above considerations and a fact that the bumps in the Bumps signal carry

most of the useful signal information, we can conclude that the ICI-EPL performed signif-

icantly better in the presented high noise scenario, although the RMSE suggests slightly

lower performance.

5.2.3. Blocks-HeaviSine Composite Signal

The last signal to be inspected is a composite Blocks-HeaviSine signal, Fig. 13. By com-

bining the two signals, we can test how well the ICI-EPL is able to adapt to a substantially

different local properties of the same signal – step edges of the Blocks signal part and

mostly smooth shapes of the HeaviSine signal part. Figure 13 shows denoising results,

for σǫ = 5% of total signal magnitude. The ICI-EPL achieved ≈ 18% lower RMSE than

the second best transform – Haar wavelet. The large difference in performance can also
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Fig. 13. Blocks-HeaviSine signal denoising, σǫ = 5% of total signal magnitude: (a) original signal, (b) noisy

signal, (c) signal denoised using optimal wavelet transform (Haar) and (d) signal denoised using ICI-EPL.

be confirmed by visual inspection. The Blocks part of the denoised composite signal fea-

tures almost perfect edge reconstruction, while the HeaviSine part of the signal is much

smoother and more accurately reconstructed than in the Haar wavelet case, which points

to a success of the adaptive algorithm.

5.3. Conclusion

In this paper, a point-wise adaptive lifting scheme for signal denoising was proposed. The

goal was to develop an edge preserving transform, where edge is not considered to be only

a step edge, but also any other sudden change in local signal properties. The adaptative

algorithm selects appropriate wavelet basis, on each decomposition scale and for each

signal sample, independently. In the lifting scheme P step, we use the statistical method of

intersection of confidence intervals (ICI) rule to determine the neighborhood of samples

which share the same local properties as the sample whose value is being predicted. This

allows us to choose lifting filters which do not span across the edge between two regions

with different local properties. In effect, longer and smoother wavelets are used for lower

frequency regions, while shorter wavelets are used near edges in a signal.

To evaluate the efficiency of the proposed method, we used different signal classes and

several levels of additive noise. In terms of the objective quality (RMSE), we showed that

in most cases, the proposed method easily outperforms the original ICI smoothing method
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and all the considered, commonly used, conventional wavelet transforms. When this was

not the case, obtained results were comparable to the transform yielding the best result

for a given signal. In terms of the subjective quality (visual quality) the difference was

even more noticeable. Edge preserving nature of the transform could be clearly seen, as

denoised signals did not exhibit edge oversmoothing nor usual unwanted visual artifacts,

such as ringing.

Simulation results clearly showed that the proposed method performs very well about

edges in a signal, which is often the crucial requirement in signal processing. As such, we

see a great potential for its usage not only in signal denoising, but also as a preprocessing

step in signal analysis applications.
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Taškinės adaptyvios vilnelių transformacijos taikymas triukšmams
iš signalų šalinti

Mladen TOMIC, Damir SERSIC

Nesugebėjimas pašalinti triukšmų iš signalo aukštų dażnių srities yra dažna triukšmų pašalini-

mo metodų problema. Nors vilnelių transformacijos yra šiek tiek efektyvesnės šiuo požiūriu nei ki-

tos erdvinės ar dažninės transformacijos, tačiau ir čia susiduriama su sunkumais. Straipsnio autoriai

triukšmams šalinti siūlo naudoti taškinę adaptyviąją vilnelių transformaciją. Trumpalaikėms signalo

savybėms įvertinti panaudojama pasikliautinųjų intervalų sankirtos taisyklė. Todel siūlomas meto-

das pasižymi efektyviu triukšmų pašalinimu iš aukštų dažnių srities, tuo pačiu neprarandant efek-

tyvumo žemų dažnių srityje. Metodo efektyvumas buvo eksperimentiškai ištirtas su keletu signalų

klasių. Gauti rezultatai patvirtino teorines prielaidas ir parodė siūlomojo metodo pranašumą prieš

kitus triukšmų pašalinimo metodus.


