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Abstract. Image synthesis techniques are present in a wide range of applications as they leverage the

amount of information required for creating realistic visualizations. For fast hardware rendering they

usually employ a triangle-based representation describing the geometry of the scene. In this paper,

we introduce a new and simple framework for performing on-the-fly refinement and simplification

of meshes completely on the GPU. As we aim at making easy the integration of level-of-detail man-

agement into the creation workflow of artists, the presented method is easy to be implemented. We

only need a coarse mesh, its displacement map and a geometry shader. At rendering time, we em-

ploy a geometry shader to parallelize the tessellation and displacement steps. The tessellation step

performs uniform refinement or simplification operations by applying a fixed subdivision criterion.

Our method also exploits coherence by taking advantage of the last computed mesh. We provide a

method which offers a flexible integration with standard 3D tools, easy to be implemented, coher-

ence exploitation and wholly processed by the GPU.
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1. Introduction

Nowadays, realism of 3D scenes is usually proportional to their degree of geometrical

complexity. Despite latest technological advances, the existing bandwidth bottleneck be-

tween applications and graphics hardware continues limiting the size of the geometric

objects that can be transmitted to obtain interactive frame rates. This limitation directly

affects the realism of the rendered scene.

For interactive applications, one possible solution to reduce the cost of representing a

3D scene consists in employing mesh refinement techniques. These techniques represent

a surface as a coarse polygonal mesh plus a height map or displacement function which

describes the difference between the original and the coarse mesh. Later, in the rendering

stage, the coarse mesh suffers two consecutive operations: tessellation and displacement.

In the tessellation step, a more detailed mesh is generated while maintaining mesh

topology. Then, in the displacement step, resulting vertices are traslated to their final po-

sition by sampling the displacement function. This framework offers a differential and

key improvement, as the data required to describe the coarse mesh plus the displacement
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function is considerably smaller than the refined mesh. Subdivision surfaces, spline-based

surface representation, hierarchical height and other computer graphics techniques can be

expressed by means of this framework.

This kind of methods have usually been implemented on the GPU by means of vertex

or pixel programs. On the one hand, the vertex shader stage offers us a straightforward

implementation of the displacement step. However, in this stage, we are unable to create

new geometry, which makes the tessellation step almost unapproachable. On the other

hand, the fragment shader stage can also solve the displacement step by adding surface

details when color texturing takes place. In general, these approaches convert a coarse

mesh into a rectangular image. The tessellation step consists in an image upscaling oper-

ation and subsequently, the displacement step is performed in the fragment shader stage.

Nevertheless, these methods present some disadvantages: difficulty in handling the level

of detail, non-existing coherence among consecutive frames and performance penalty due

to silhouettes and visibility computations.

The Shader Model 4.0 has introduced a new stage between the vertex shader stage

and the rasterizer, called the geometry shader (Blythe, 2006). The geometry shader is

able to generate new vertices and primitives, being the tessellation step ideally suited to

be implemented within this kind of shaders. Moreover, it is also possible to implement

the displacement step by modulating the tessellated mesh with a displacement function.

Finally, the result can be delivered to the rasterizer unit.

In this paper, we propose an approach for refinement and simplification of triangle

meshes on the GPU. It is based on the following key features:

• A flexible integration into artist’s creation workflow. We employ displacement

maps obtained from standard tools such as Pixologic ZBrush, http://www.

pixologic.com or 3D Studio MAX, http://www.autodesk.com/3ds

max (see Fig. 1). In this way, special data formats or data structures are not required,

making our approach more accessible to the final users.

• Fully-GPU refinement and simplification. We employ the geometry shader stage to

move dynamic mesh refinement completely to GPU, considerably relieving the CPU.

We perform both tessellation and displacement steps in this stage.

• Coherence exploitation. We take advantage of the information obtained in earlier

refinement or simplification operations. Thus, we avoid the need of starting from

the coarse mesh and perform the whole refinement in each frame. In this way, we

are able to obtain the same rendering performances as the ones obtained with static

meshes (i.e. refined during a preprocessing step and stored on the GPU).

• Avoidance of cracks and holes. A set of fixed triangle-based operations is used to

avoid cracks in our refinement algorithm.

Our GPU-based refinement method does not need to transmit geometry through the

graphics BUS. The coarse mesh is stored once for all on the GPU and the target mesh

is completely generated in the graphics hardware. Hence, we are able to increase detail

independently from CPU, which makes this work particularly interesting for applications

requiring a huge refinement depth, such as CAD or scientific visualization. Moreover,
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Fig. 1. Mesh refinement. On the left we offer the coarse mesh (6,364 triangles). In the middle we show its

normal, texture and displacement maps. On the right we display the tessellated, displaced and lighted mesh on

the GPU (1,086,122 triangles).

we make use of standard tools to generate the displacement maps in such a way that the

preprocessing stage does not require costly processes or the construction of special data

structures. In this sense, we also facilitate the utilization of our approach in final applica-

tions.

This paper is organized as follows. The remaining of Section 1 presents the main fea-

tures of Shader Model 4.0. Then, Section 2 covers the latest work on tessellating meshes.

Afterwards, Section 3 thoroughly describes our proposed framework. Section 4 presents

the results obtained with our algorithms. Lastly, Section 5 concludes the performed work

and proposes lines of work for extending this solution.

2. Technical Background

2.1. Shader Model 4.0

The Shader Model 4.0, whose pipeline is shown in Fig. 2, uses the same processor core

to implement vertex, geometry and fragment processing. Separate processors with differ-

ent capabilities were used for different stages of the earlier GPUs. The previous Shader

Model with separate processors for vertex and pixel units was prone to under-performance.

This new Shader Model dynamically allocates the available processing resources to ver-

tex, geometry or pixel units as demanded by the load. This greatly improves the resource

utilization.
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Fig. 2. The shader model 4.0 graphics pipeline.

An important advantage of this unified architecture is uniform access to the texture

memory for all shaders (the vertex textures supported by Shader Model 3.0 were slow

Asirvatham and Hoppe, 2005). This allows the use of textures to store regular geome-

try and also their access both in vertex and geometry shaders. This feature, together with

geometry generation on the geometry shader, makes it possible to render huge geometry

completely created on the shaders. Some of the applications which can take direct advan-

tage of the above scenario are renderingof Geometry Images (Gu et al., 2002) or rendering

huge meshes or terrains with dynamic LOD. Therefore, unified shaders allow us to store

geometry in form of textures and enables an efficient access to them from the shaders.

These features enable, for the whole geometry, to be stored and rendered from GPU

memory. This fact can increase the rendering speed especially if the geometry is quite

regular. Terrains are good examples of such geometry when represented using regular

heightmaps. The 2D array of heights can be stored in textures on the GPU and accessed

by the shaders quickly for rendering (Szirmay-Kalos and Umenhoffer, 2008). These con-

cepts parallel our work, although we aim at applying them to the refinement of arbitrary

triangular meshes.

2.2. Mutiresolution Models

One of the main objectives of multiresolution models consists of minimizing the number

of polygons that are sent to the graphics pipeline without affecting the visual quality of

the resulting image.

The simplest method to create a multiresolution model is to generate a fixed set of

approximations. In a given instant, the graphics application could select the approximation
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Fig. 3. From left to right, original object and three levels of detail of the ogre model.

to visualize. In this case, a series of discrete levels of detail would be used, as seen in

Fig. 3. This multiresolution model would consist of a set of levels of detail and some

control parameters to change between them.

Instead of creating individual levels of detail, continuous multiresolution models

present a series of continuous approximations of an original object. The simplification

method employed offers a continuous flow of simplification operations to progressively

refine the original mesh.

The main advantage of these models is their better granularity, that is, the level of detail

is specified exactly, and the number of visualized polygons is adapted to the requirements

of the application. This granularity is usually of a few triangles, as the difference between

contiguous levels of detail is usually of a vertex, an edge or a triangle. Moreover, the spatial

cost is lower since the information is not duplicated. Obviously, the management of the

level of detail in these models is an essential point, that is, the amount of time required to

visualize a level of detail should not never exceed the time required to visualize the object

at its maximum resolution.

One of the first models to offer a neat solution to a continuous representation of polyg-

onal meshes was Progressive Meshes (Hoppe, 1996). It simplifies a mesh M =Mn in

consecutive approximations M i by applying a sequence of n edge collapses:

M =Mn
Collapsen−1

−−−−−→Mn−1
Collapsen−2

−−−−−→ · · ·
Collapse0

−−−−→M0. (1)

The reverse operation can also be performed, recovering more detailed meshes from

the simplest mesh M0 by using a sequence of vertex splits:

M0
Split0
−−−→M1

Split1
−−−→ · · ·

Splitn−1

−−−−→Mn
=M. (2)

3. Related Work

Height fields are natural representations in a variety of contexts, including water and

terrain modeling. In these cases, height maps are provided by simulation or measure-

ment processes. They are gray scale images and can thus also be generated by 2D
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drawing tools (Pixologic zbrush, http://www.pixologic.com; Discreet 3D Stu-

dio MAX, http://www.autodesk.com/3dsmax) (see Fig. 1). They can also be

the result of surface simplification when the difference between the detailed and coarse

surface is computed (Cignoni et al., 1998; Blasco, 2002; Ati normalmapper tool, http:

//ati.amd.com/developer/tools.htmlAti03). In this way, height and nor-

mal maps construction are closely related to tessellation (Gumhold and Hüttner, 1999;

Doggett and Hirche, 2000; Doggett et al., 2001; Moule and Mccool, 2002; Espino et al.,

2005) and subdivision algorithms (Catmull, 1974; Boubekeur and Schlick, 2005). Dis-

placement maps can also be the result of rendering during impostor generation, when

complex objects are rasterized to textures in order to be displayed instead of the origi-

nal models (Jeschke et al., 2005). By copying not only the color channels but also the

depth buffer, the texture can be equipped with displacement values (Oliveira et al., 2000;

Mantler et al., 2007). Thus, although it is not new the idea of combining displacement

mapping with texture lookups (Guskov et al., 2000), the new features in Shader Model

4.0 offers us the opportunity of performing displacement mapping methods directly on

the GPU and in a reliable way.

Gu et al. (2002) introduced Geometry Images, which capture geometry as a simple

2D array of quantized points. As opposed to remeshing an irregular mesh into one with a

semi-regular connectivity, they proposed a technique to remesh an arbitrary surface onto a

completely regular structure called a geometry image. With the introduction of faster tex-

ture fetchs in the shaders (common in the current vertex, geometry and fragment shaders)

a geometry image can be rendered with high efficiency. However, this scheme does not

provide level of detail features although improvements to this work introduced level of

detail by means of mip mapping (Hernández and Rudomin, 2006).

On the other hand, according to Boubekeur and Schlick (2008), existing mesh refine-

ment methods can be classified in direct and indirect refinement. Indirect refinement meth-

ods include pure geometry synthesis approaches, which mainly work in object-space, and

direct ones, which are a kind of image processing algorithms (Bokeloh and Wand, 2006).

Some authors have employedprecomputedpattern-basedmethods which need to trans-

mit a coarse mesh through the BUS to be later refined on the GPU pipeline. These meth-

ods usually make use of vertex shaders (Ji et al., 2005; Boubekeur and Schlick, 2005;

Dyken et al., 2008; Tatarchuk, 2008; Boubekeur and Schlick, 2008; Dyken et al., 2009)

or geometry shaders (Lorenz and Döllner, 2008) to emit these precalculated patterns for

each coarse triangle of the mesh by copying it from vertex buffers. In general, memory

footprint for these patterns is usually significant.

A recent method by Boubekeur and Schlick (2005), Boubekeur and Schlick (2008)

proposed the idea of barycentric interpolation to perform refinement. By means of a vertex

program, it replaces each coarse triangle by a precomputed tessellated triangle, which

is then displaced according to a procedural function. However, it does not make use of

geometry shader units to create geometry. Instead, tessellated triangles are all stored in

video memory which noticeably increases its spatial cost and, moreover, the coarse mesh

always needs to be transmitted through the BUS.
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Table 1

Characterization of tessellation models.

Authors Type GPU usage Coherence Patterns

complexity

Boubekeur and Schlick (2005) Direct Vertex No Very low

Bokeloh and Wand (2006) Indirect Vertex, pixel Yes –

Dyken et al. (2008) Direct Vertex, pixel No Medium

Lorenz and Döllner (2008) Direct Vertex, pixel, geometry Yes Medium-high

Boubekeur and Schlick (2008) Direct Vertex No High

Dyken et al. (2009), Direct Vertex, pixel No Medium

Our approach Indirect Vertex, pixel, geometry Yes Low

3.1. Characterization of Tessellation Models

Table 1 presents a comparison of the most recent methods from those considered in this

review. The description takes into account the following aspects:

• Type: it indicates whether the refinement method is direct or indirect;

• GPU usage: it shows which GPU units are programmed;

• Coherence: it indicates whether the solution uses coherence to reuse calculations;

• Patterns complexity: it offers an estimation of the complexity of the tessellation pat-

terns used. The complexity refers to the amount of patterns, their variability and the

dependence to the model to be tessellated.

It is worth mentioning that our approach has also been included in this comparison. In

this way, it can be seen how we have a low pattern complexity, how we exploit the latest

graphics hardware and how we exploit coherence in contrast to many previous solutions.

More precisely, we do not make use of precomputed patterns to refine a mesh. We use a

fixed and uniform subdivision criterion to perform tessellation and a displacement map to

compute the new vertices positions on the mesh. In brief, having initially computed the

displacement map, we tessellate the mesh and, then, the provided (u, v) domain coordi-

nates are used in the geometry shader to derive the actual vertices from the displacement

map. Hence, a combination of tessellation and displacement mapping can be done by us-

ing the geometry shader stage and its amplification capabilities. As our approach mainly

works in object-space, it falls into the category of indirect refinement methods (Boubekeur

and Schlick, 2008).

Complexity and an efficient GPU usage have usually been a barrier when implement-

ing rendering methods in standard 3D tools. Our method provides a low complexity but

exploiting, at the same time, graphics hardware. It also provides an easy integration into

creation tools.

4. Mesh Refinement

This Section introduces a new approach to render triangle meshes by exploiting the fea-

tures of Shader Model 4.0. The workflow architecture that we use is presented in Fig. 4.
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Fig. 4. Architecture of our mesh refinement approach.

As previously commented, we represent a surface as a coarse polygonal mesh plus

a displacement function describing the difference between the original and the coarse

mesh. Thus, we first pre-compute the coarse mesh and the displacement map. All these

components are stored, once for all, on the GPU: coarse mesh as a vertex buffer object

and the displacement map as a texture. In Fig. 4, they are represented as Refined Mesh and

Displacement map, respectively. To clarify, we underline that Refined Mesh is employed

in two contexts. On the one hand, it is used as input and output of the tessellation and

displacement steps performed in the geometry shader. On the other hand, it is used as

input to the fragment shaders for rendering on screen. Initially, the contents of the Refined

Mesh correspond to the coarse mesh.

To create a differential displacement map, we need a pair of models: an original high

detailed model and a simplified low-polygonal model or coarse model. We thus extract the

differential displacement data by means of a technique to generate it. In our approach, we

make use of a technique which exploits the precise information on models’ vertex corre-

spondence. In particular, ZBrush (Pixologic zbrush,http://www.pixologic.com)

falls in this kind of techniques and is the software tool that we used in our examples. It

provides a one-to-one correspondence between all the vertices of the simplified model

and some of the vertices of the original model. Although there is no established standard

for displacement maps, the most common representation is based on texture mapping ap-

proach, where each mesh vertex is bound with a pair [0,1] range values which provides

a mapping into the conventional (s, t) texture space of the displacement map, while the

map itself is a two-dimensional image. As previously mentioned, during the initialization

step, displacement is computed once for all and stored in video memory as a texture.

At rendering time, two successive operations are performed on the Refined Mesh: tes-

sellation, for generating a refined mesh topology at the desired level of detail, and displace-

ment, for translating each newly inserted vertex to its final position, obtained by sampling

the continuous displacement function. More precisely, in the tessellation step we calculate
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Fig. 5. Basic triangle operations performed in our approach. Edges forcing a split are marked with circles. One

triangle split operation step means a subdivision in four new triangles. One triangle collapse operation means

discard three triangles and amplify the other one to its original attributes.

an edge-based refinement for each triangle in a geometry shader and tessellate the triangle

directly within the rendering pipeline. This can be done recursively by rendering the re-

sults of the geometry stage into a vertex buffer (Refined Mesh) and refeeding them into the

pipeline (see Stream Output in Fig. 2). In the displacement step, we add small-scale geo-

metric details by moving the vertex of the generated triangles along a vector provided by

the displacement function. In our approach, the displacement of each vertex is constrained

along its normal vector.

4.1. Tessellation

The tessellation step needs further explanation. The goal of the tessellation is to split tri-

angles that do not approximate the input height map exactly enough into smaller ones. To

maintain a continuous mesh topology at the same time, neighboring triangles must share

the same tessellation along their common edge. As triangle-based refinement decisions

can result in a differing refinement for the common edge of adjacent triangles, refinement

decisions must be taken purely edge-based (Pulli and Segal, 1996) to guarantee a contin-

uous topology.

Consequently, the first step to refine a triangle is to decide which of its edges need to

be split. This refinement decision basically depends on the application, but predominately

various error metrics can be applied. Possible error metrics include the height difference

between an edge’s spanning vertices as well as estimated object-space and screen-space

errors between the coarse and the refined edge.

Depending on the result of the refinement decision, new vertices can be inserted along

each respective edge. As we aim at uniform refinement of meshes, we always produce the

same level of tessellation in the whole mesh by inserting one vertex at the midpoint of

each edge. These decisions results in only one possible tessellation for each triangle (see

Fig. 5). There are several reasons for not inserting more than one vertex along each edge:

• Simplicity: the most important reason is that one case of tessellation can be quickly

handled. Increasing the number of splits yields in different cases for each triangle,

including complicated refinement configurations.

• Expensive conditionals: more cases of tessellation require more conditional state-

ments within the geometry shader, which are still very time-consuming on current

graphics hardware.
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• Geometry shader output limit: the output of the geometry shader stage is currently

limited to 1,024 floats per call. With one split per triangle edge, this limit is never

exceeded, avoiding problematic cases of incomplete refinements.

4.2. Coherence

Coherence means taking advantage of the last information obtained in the refinement of

the mesh. The use of coherence reduces the time spent by the mesh refinement process

on avoiding the repetition of tessellations that have already been performed. As a result,

the refined mesh always represents the current tessellated mesh and, contrary to other

approaches (Boubekeur and Schlick, 2005; Boubekeur and Schlick, 2008; Dyken et al.,

2009), we are able to go forward and backwards in the refined mesh without the need

of starting from the coarse mesh every frame and refine it until a target refined mesh

resolution is achieved. In this way, we take advantage of coherence in transitions between

different refined meshes.

Until now, we have only discussed one tessellation step. However our approach is re-

cursive and it increases the mesh resolution iteratively. Shader programs however, cannot

use recursion, not even statically. The only way to apply a shader recursively is to employ

multiple render passes, only asserting that the data format does not change in between the

calls.

Therefore, the output of a geometry shader pass must be captured in a buffer to be

reused in a consecutive pass. A technique that provides this functionality for OpenGL is

transform feedback (Barthold and Brown, 2008). To increase performance, the rendering

pipeline can be aborted after the application of the geometry shader if more than one pass

is scheduled.

The special advantage of this course of action is that the fragment stage needs to be

passed only once even if the approach employs several rendering passes. This becomes

very important when complex fragment shaders are applied to add visual details, as their

costs remain constant with this proceeding.

Only two pieces of information need to be stored in the transform feedback buffer: the

vertex positions and the texture coordinates. The vertex positions are interpolated while

tessellating triangles and the texture coordinates are used to interpolate height, normal

and texture values for new vertices from the corresponding maps.

After a rendering pass is complete, the transform feedback buffer is bound as a vertex

buffer for the next rendering pass. To allow for more than one pass, a second buffer is used

as transform feedback buffer for the second pass. These two buffers alternately operate as

source vertex buffer and target transform feedback buffer. More than these two buffers are

never required.

The described procedure is used as a dynamic level of detail algorithm. As our ap-

proach purely operates on the GPU, the CPU merely has to start it each frame and can

then concentrate on other calculations. If the CPU regularly checks whether the transform

feedback buffer is ready and there is enough time left for the current frame, it can reapply

the refinement process to the result of the previous frame to further improve mesh detail.
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Alternatively to this refinement process with coherence, we also could perform a typ-

ical refinement method by always starting from a coarse mesh and obtain a deeper refine-

ment level with a multi-pass geometry shader rendering. This alternative method is also

analyzed in the Section 5.

4.3. Rendering

It is important to underline that the coarse mesh uploaded to the Refined Mesh buffer is

initialized with the height values from the displacement map before it enters the recursion

loop. This has the positive effect that the shader can perform faster as it has to conduct

texture lookups only for newly generated vertices as opposed to looking up a height value

for every output vertex.

Algorithm 1 CPU-side rendering loop

// Refinement step

if newRefinementLevel() then

if lastVBOused is Even then

BindVertexBuffer(VB1)

RenderToVertexBuffer(VB0)

lastVBOused← 1

else

BindVertexBuffer(VB0)

RenderToVertexBuffer(VB1)

lastVBOused← 0

end if

end if

// Render Refined Mesh

if lastVBOused is Even then

RenderToScreen(VB1)

else

RenderToScreen(VB0)

end if

Algorithm 1 shows the basic pseudo-code associated to CPU-side rendering loop. The

newRefinementLevel function determines if a new refinement level has been reached on

the GPU. Such a situation could be computed by comparing the output triangle count of

the geometry shader from two consecutive passes. If the difference is too small, no new

refinement is needed and the mesh is directly rendered. Another method could also be

to control if the mesh resolution exceeds the displacement map resolution which would

produce over-refined triangles scenarios.

After the pass on the GPU has been computed, the mesh is rendered and the resulting

mesh is stored in the corresponding vertex buffer. We alternately render the contents of
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Fig. 6. Mesh refinement of the senna mesh. From left to right, coarse mesh with 6,364 triangles, and mesh

refinements with 25,456, 101,824 and 407,296 triangles.

one vertex buffer and store the results in the other one. This way, it never needs more than

two buffers, no matter how many loops are actually passed. Finally, we render the resulting

mesh to the screen. In this way, when no refinements are required, we obtain rendering

performances equal to the one obtained with static meshes.

As previously mentioned, the essential workflow of our algorithm in the graphics

pipeline is illustrated in Fig. 4. In each call, the geometry shader first checks if the triangle

needs refinement or simplification by means of the CalculateRefinementLevel function.

This method determines the recursion depth of the algorithm. This can be a fixed number

or a dynamically calculated one. That depends on situational circumstances such as the

viewer’s distance to the object. Furthermore, the refinement step can be avoided if no addi-

tional detail is needed. Thus, the results of this function can be to refine, to simplify or no

operation with the current refined mesh, avoiding degenerate situations such as one-pixel

micro-polygons or stripe-shaped triangles.

On the one hand, refinement operation computes three new vertices and emits four

new triangles. Tessellation decisions are discussed in Section 4.1. On the other hand, sim-

plification is performed by discarding some triangles and modifying others. Finally, the

OutputTriangles method emits the triangle or triangles to the corresponding vertex buffer

bound.

5. Experimental Results and Discussion

All results were obtained on a Mac Pro 2.8 GHz with 4 GB of RAM and with an NVidia

Geforce 8800 GT video card with 512 MB of memory at a view port of 800×600. Imple-

mentation was performed in GLSL as the shader programming language; OpenGL was

used as the supporting graphics library and C++.

In Fig. 6, we present the evolution in the refinement of the senna mesh. The coarse

mesh, located in GPU memory, is composed of 6 364 triangles. At runtime, this mesh is

progressively refined in real-time by using our approach. We have used a single height-

map to displace the refined tessellation. Regarding memory usage, we have no memory

overhead on the CPU side as all data are located on GPU. On GPU side, we store the coarse

mesh plus the displacement and texture map. In the case of the senna mesh, we uploaded

6 364 triangles and a displacement map of 4 096× 4 096 which offers us a maximum tes-

sellation level of up to 8M triangles at a cost of around 8 MB in video memory. Moreover,
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Fig. 7. Comparison between a coherence and a non-coherence approach. For the largest target mesh size (1.6M

triangles), the coherence method offers a performance that is around 35% faster than the no coherence refinement

solution.

we compared our approach with a well-know multiresolution model: Progressive Meshes

(Hoppe, 1996). From version 5.0, it has been included in the Microsoft DirectX graphics

library. We can observe an improvement of around four times in the speed between using

our approach and Progressive Meshes.

Figure 7 presents the times required in the graphics pipeline to perform two types of

refinements on the same model. Refinement with coherence and with no coherence (see

Section 4.2). In brief, coherence always maintains the current refined mesh in memory and

it does not need to start from a coarse mesh and refine it to a target mesh size, which is the

case of the no coherence refinement. Thus, while providing the same final image quality,

we can observe a gain by comparing both types of refinement of around 35 per cent of

time with a target mesh size of 1.6M triangles. This can explained by a more intensive use

of the geometry shader, that is, refinement with coherence do not need as many passes as

the no coherence solutions.

Finally, Fig. 8 shows the rendering frame rate obtained for the senna model for different

target mesh sizes. The measure integrates the tessellation and displacement step. It clearly

appears that refinement does not have a high influence in the performance of the GPU,

that is, rendering times are more limited by the GPU capabilities than by our refinement

method. Moreover, by using coherence, we always fit into memory the number of triangles

to be rendered and we do not need to always transmit a coarse mesh from the CPU which

becomes a bottleneck on the graphics BUS in most of the precomputed pattern-based

approaches.

6. Conclusions and Future Work

We have presented a method for geometry synthesis by mesh refinement that efficiently

combines new GPUs capabilities and displacement mapping. As it enables us to increase
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Fig. 8. Frame rate measures for a linear transition among different mesh resolutions.

detail independently from CPU, it is suitable for applications that requires a huge refine-

ment depth, such as CAD or scientific visualization. The CPU processing is reduced to

select the appropriate buffer with no transmission of any mesh to the GPU at rendering

time.

Our method offers a flexible integration with standard 3D tools, such as Pixologic

ZBrush or 3D Studio Max, that makes it easier to be implemented in final applications.

Moreover, it goes further on GPU geometric processing, since it consistently performs

geometry synthesis in object space. It also offers a flexible and efficient method for non-

precomputed pattern-based approaches. In contrast to these approaches, we are able to

render a refined mesh almost independently of the amount of available memory (the only

limitation is the storage on GPU of the maps).

As future work, we would like to explore adaptive refinement by using our method. By

offering an edge-based tessellation decision instead of a triangle-based, we would obtain

more precise tessellations. However, new possible triangulations should be applied.

Another interesting line is the appearance of a more general and optimized tessellation

support that will be introduced by future hardware for the upcoming Direct3D 11 (Gee,

2008), which adds three more pipeline stages (hull shader, tessellator, and domain shader).
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Vaizdų skyros analizė 3D modelių atvaizdavimui

Francisco RAMOS, Miguel CHOVER, Oscar RIPOLLES

Vaizdų sintezės metodai yra pritaikomi daugybėje sričių, kadangi sumažina reikiamą informacijos

kiekį kuriant realistines vizualizacijas. Aparatūriniame lygmenyje atvaizdavimas vyksta vaizduoja-
mo objekto geometrijos aprašymus trikampiais. Šiame straipsnyje autoriai pristato naują, paprastą
karkasą skirtą realiu laiku patikslinti ir supaprastinti trikampių tinklą, skaičiavimus atliekant grafi-
niame procesoriuje. Tikslui pasiekti reikalingas pradinis tinklas, pakeitimų žemėlapis ir informacija
apie atvaizduojamo objekto sudaromus šešėlius. Atvaizdavimo etape objekto sudaromi šešėliai yra
panaudojami išlygiagretinant mozaikos sudarymą ir pakeitimų žemėlapio perskaičiavimui. Siūlo-
mas metodas atsižvelgia į prieš tai buvusioje iteracijoje gautus rezultatus.


