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Abstract. In this paper, a modified version of the discrete wavelet transform (DWT), distinguishing
itself with visibly improved space localization properties and noticeably extended potential capabili-
ties, is proposed. The key point of this proposal is the full decorrelation of wavelet coefficients across
the lower scales. This proposal can be applied to any DWT of higher orders (Le Gall, Daubechies
D4, CDF 9/7, etc.). To open up new areas of practical applicability of the modified DWT, a novel
exceptionally fast algorithm for computing the DWT spectra of the selected signal (image) blocks
is presented. In parallel, some considerations and experimental results concerning the energy com-
paction property of the modified DWT are discussed.
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1. Introduction

The discrete wavelet transform (DWT) has a huge number of applications in science, en-
gineering, mathematics and computer science. Surely, this is conditioned not only by at-
tractiveness of wavelet properties,such as compact support, dilating relation, vanishing
moments, smoothness, etc., but also by fairly easy access to computer software packages
that include fast and efficient algorithms to perform wavelet transforms.

First and foremost, wavelets have been applied in computer science research areas
such as signal processing (time series analysis, noise reduction, feature extraction, texture
analysis and classification, etc. (Donoho and Johnstone, 1995; Perlibakas, 2004; Zhang et

al., 2005; Molavi and Sadr, 2007; Liu et al., 2009; Chaovalit et al., 2011; Kaganami et al.,
2011), data (digital signal, image, video) compression (Shapiro, 1993; Said and Pearlman,
1996; Christopoulos et al., 2000; Jensen and Cour-Harbo, 2001; Vetterli, 2001; Sudhakaret
et al., 2005; Song, 2006; Valantinas and Kančelkis, 2010), data hiding techniques for
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images (Lai and Chang, 2006; Yang et al., 2012), data mining (data management, data
mining tasks and algorithms, etc. (Shahabi et al., 2000; Hand et al., 2001; Prabakaran et

al., 2006), and computer graphics (multi-resolution data representation, multi-resolution
rendering, etc. (Stollnitz et al., 1996; Lin and He, 2011).

Furthermore, for control applications, the wavelet transform is used in motion tracking,
robot positioning, identification and both linear and nonlinear control purposes (Purwaret
et al., 2007; Nandhakumar and Selladurai, 2011). Finally, wavelets are a powerful tool for
the analysis and adjustment of audio signals (Darlington et al., 2002; Kumar et al., 2010).

Wavelet analysis is an indispensable technique for the study of algorithms that use
numerical approximation and can be highly computationally efficient, in the first instance
for solving ordinary and partial differential equations (Mehra and Kevlahan, 2008).

The distinguishing feature of the wavelet transform is that individual basis func-
tions are localized in space. Full localization in space means that numerical values of
wavelet coefficients at the same scale are specified exclusively by signal (image) blocks
that cover the whole signal (image) and do not overlap. Unfortunately, only the simplest
Haar wavelet transform (Rao and Bopadikar, 2002; Phang and Phang, 2008), most fre-
quently used as an educational study, is fully localized in space. Higher order wavelet
(Le Gall, Daubechies D4, CDF 9/7, etc.) transforms (Jensen and Cour-Harbo, 2001;
Rao and Bopadikar, 2002) are partially localized in space since the signal (image) blocks
which specify numerical values of adjacent wavelet coefficients at the same scale overlap.
This results in some limitations to the practical application of higher order wavelet trans-
forms, especially in such areas where block-processing of digital data is preferable, e.g.
the image pattern recognition, the signal (image) feature extraction, localization of defects
in textural images, locally progressive image encoding, etc.

In this paper, a new modified version of the discrete wavelet transform (DWT) that
distinguishes itself with apparently improved space localization properties is proposed.
The essence of this proposal is a full decorrelation of wavelet coefficients across the lower
scales. To show the extended potential capabilities of the proposed version of DWT, an
alternative faster algorithm for computing the DWT spectra of the selected signal (im-
age) blocks is presented. The latter algorithm explores the space localization properties
intrinsic to the modified version of DWT.

The rest of the paper is organized as follows. Section 2 introduces the discrete wavelet
transform and describes the procedures for finding the discrete wavelet coefficients of a
digital signal (image). Section 3 deals with factors ensuring the improved space localiza-
tion properties of the DWT and proposes a novel fast algorithm for computing the DWT
spectra of the selected signal (image) blocks, thereby giving rise to new real-time appli-
cations of the discrete wavelet transform. Some commentary on the energy compaction
property of the developed version of DWT and the experimental analysis results are pre-
sented in Section 4.

2. Implementing the Discrete Wavelet Transform

The one-dimensional discrete wavelet transform (DWT) itself represents an iterative pro-
cedure, each iteration of the DWT applies the scaling function to the data input. If the
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original data input (digital signal) X has N (N = 2n, n ∈ N) values, the scaling function
will be applied in the wavelet transform iteration to calculate N/2 averaged (smoothed)
values. In the ordered wavelet transform the smoothed values are stored in the upper half
of the N element input vector. The wavelet function, for each iteration of the wavelet
transform, is also applied to the data input. If the original signal has N values, the wavelet
function will be applied to calculate N/2 differences that reflect changes in the data. In
the ordered wavelet transform, the differenced values are stored in the lower half of the N

element input vector. On the next iteration, both the scaling and the wavelet functions are
applied repeatedly to the ordered set of smoothed values calculated during the preceding
iteration. After a finite number of iterations (n steps) the DWT spectrum Y of the digi-
tal signal X is found. The vector Y comprises the only smoothed value, obtained in the
n-th iteration, and the ordered set of differenced values, obtained in the n − 1 preceding
iterations.

It should be noted that the inverse DWT is obtained by applying the inverse of each of
the above mentioned steps in the opposite order.

Now, let S(i) = (s
(i)
0 s

(i)
1 s

(i)
2 . . . s

(i)

2n−i−1
)T and D(i) = (d

(i)
0 d

(i)
1 d

(i)
2 . . . d

(i)

2n−i−1
)T be

the result of the application of the DWT scaling and wavelet functions to the input
or intermediate data vector S(i−1) (i ∈ {1,2, . . . , n}), respectively (here, S(0) = X =
(x0x1x2 . . . xN−1)

T , i.e. s
(0)
k = xk , for all k = 0,1, . . . ,N − 1). The discrete DWT spec-

trum Y of the data vector X is obtained in n iterations and takes the form:

Y =
(

s
(n)
0 d

(n)
0 d

(n−1)
0 d

(n−1)
1 d

(n−2)
0 d

(n−2)
1 d

(n−2)
2 d

(n−2)
3 d

(n−3)
0 d

(n−3)
1 . . .

d
(1)
0 d

(1)
1 . . . d

(1)
N/2−1

)T
. (1)

Theoretically, the i-th (i ∈ {1,2, . . . , n}) iteration of the above computational proce-
dure can be realized using the DWT matrix TDWT of order (n − i + 1), i.e.

(

S(i)

D(i)

)

= TDWT(n − i + 1) · S(i−1). (2)

Here we observe that S(n) = (s
(n)
0 ) and D(n) = (d

(n)
0 ).

The internal structure of the matrix TDWT = TDWT(n − i + 1), i ∈ {1,2, . . . , n}, de-
pends, mainly, on the coefficient values of scaling and wavelet functions of a particular
DWT (expression (2)). For instance, in the case of the discrete Haar wavelet transform
(HT), the scaling function coefficients are – h0 = 1/

√
2 and h1 = 1/

√
2, while the wavelet

function coefficient values are – g0 = h1 = 1/
√

2 and g1 = −h0 = −1/
√

2. So, the HT
matrices take the form:

THT(1) = 1√
2

(

1 1

1 −1

)

,

THT(2) = 1
√

2









1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1









,
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THT(3) =
1

√
2

























1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

























and so on.
On the other hand, the discrete Le Gall wavelet transform (DLGT) has five scaling and

three wavelet function coefficients. The scaling function coefficients are – h0 = −0.125,
h1 = 0.25, h2 = 0.75, h3 = 0.25 and h4 = −0.125, whereas the wavelet function coeffi-
cient values are – g0 = −0.5, g1 = 1 and g2 = −0.5. Correspondingly, the DLGT matrices
have the form:

TDLGT(1) = −0.125 0.25
(

0.75 0.25

−0.5 1

)

−0.125

−0.5
,

TDLGT(2) =

−0.125 0.25








0.75 0.25 −0.125 0

−0.125 0.25 0.75 0.25

−0.5 1 −0.5 0

0 0 −0.5 1









−0.125

−0.5

,

TDLGT(3)

=

−0.125 0.25 















0.75 0.25 −0.125 0 0 0 0 0

−0.125 0.25 0.75 0.25 −0.125 0 0 0

0 0 −0.125 0.25 0.75 0.25 −0.125 0

0 0 0 0 −0.125 0.25 0.75 0.25

−0.5 1 −0.5 0 0 0 0 0

0 0 −0.5 1 −0.5 0 0 0

0 0 0 0 −0.5 1 −0.5 0

0 0 0 0 0 0 −0.5 1

















−0.125

−0.5

and so on.
It is easy to see that the matrices TDLGT(n) (n = 1,2,3, . . .) contain some elements

which lie outside the matrix. Keeping in mind that the matrices TDLGT(n) are applied
to the data vectors of size N = 2n, at both ends of the data vector the so-called “edge”
problem occurs. Several approaches to handling the “edge” problem are practised, namely:
(1) treating the data vector as if it were periodic; (2) treating the data vector as if it were
mirrored at the ends; (3) calculating special scaling and wavelet functions that are applied
at the start and end of the data vector (Gram-Schmidt orthogonalization).

In the case of the discrete Daubechies D4 wavelet transform (D4), we have: h0 =
(1 +

√
3 )/4

√
2, h1 = (3 +

√
3 )/4

√
2, h2 = (3 −

√
3, )/4

√
2, h3 = (1 −

√
3 )/4

√
2, for

the scaling function, and g0 = h3, g1 = −h2, g2 = h1, g3 = −h0, for the wavelet function.
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TheD4 matrices are of the form:

TD4(1) =
(

h0 h1

g0 g1

)

h2 h3

g2 g3
,

TD4(2) =









h0 h1 h2 h3

0 0 h0 h1

g0 g1 g2 g3

0 0 g0 g1









h2h3

g2g3

,

TD4(3) =

























h0 h1 h2 h3 0 0 0 0

0 0 h0 h1 h2 h3 0 0

0 0 0 0 h0 h1 h2 h3

0 0 0 0 0 0 h0 h1

g0 g1 g2 g3 0 0 0 0

0 0 g0 g1 g2 g3 0 0

0 0 0 0 g0 g1 g2 g3

0 0 0 0 0 0 g0 g1

























h2h3

g2g3.

and so on. As it can be seen, the “edge” problem manifests itself again.
To become familiarized with some other discrete wavelet transforms (integer-to-

integer Le Gall wavelet transform, Cohen-Daubechies-Feauveau (CDF) 9/7, etc.) and
their matrices, you can refer to (Cohen et al., 1992; Adams and Kossentine, 2000; open
internet resources).

In practice, to compute the DWT spectrum Y (expression (1)) of the data vector X of
size N = 2n (n ∈ N), efficient procedures, called Lifting Schemes, are applied (Sweldens,
1997). For instance, in the case of HT, the discrete spectrum Y is found as follows:

s
(i)
k = h0 · s(i−1)

2k + h1 · s(i−1)
2k+1 = 1

√
2

(

s
(i−1)
2k + s

(i−1)
2k+1

)

, (3)

d
(i)
k = g0 · s(i−1)

2k + g1 · s(i−1)
2k+1 = 1

√
2

(

s
(i−1)
2k − s

(i−1)
2k+1

)

, (4)

for all k = 0,1, . . . ,2n−i − 1 and i ∈ {1,2, . . . , n}.
The inverse HT is defined by:

s
(i−1)
2k = 1√

2

(

s
(i)
k + d

(i)
k

)

, s
(i−1)
2k+1 = 1√

2

(

s
(i)
k − d

(i)
k

)

, (5)

where k = 0,1, . . . ,2n−i − 1 and i ∈ {1,2, . . . , n}.
To compute the discrete DLGT spectrum Y of the data vector X of size N = 2n (n ∈

N), the following fast procedure (Lifting Scheme) is applied:

d
(i)
k = s

(i−1)
2k+1 − 1

2

(

s
(i−1)
2k + s

(i−1)
2k+2

)

, s
(i)
k = s

(i−1)
2k + 1

4

(

d
(i)
k−1 + d

(i)
k

)

, (6)

for all k = 0,1, . . . ,2n−i − 1; here s
(i−1)

2n−i+1 := s
(i−1)

2n−i+1−2
, d

(i)
−1 := d

(i)
0 and i ∈ {1,2, . . . , n}.
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The “edge” problem, which takes place at both ends of the data vector and which
determines the partially localized nature of the discrete Le Gall wavelet transform,
here(expression (6)) is solved by treating the data vectors S(i) (i ∈ {0,1, . . . , n − 1}) as if
they were mirrored at the ends.

The inverse DLGT is specified by:

s
(i−1)
2k = s

(i)
k −

1

4

(

d
(i)
k−1 + d

(i)
k

)

, s
(i−1)
2k+1 = d

(i)
k +

1

2

(

s
(i−1)
2k + s

(i−1)
2k+2

)

, (7)

for all k = 0,1, . . . ,2n−i − 1 and i ∈ {1,2, . . . , n}.
The Lifting Scheme used to find the discrete D4 spectrum of the data vector X of size

N = 2n (n ∈ N) is presented below. For all i ∈ {1,2, . . . , n} and k = 0,1, . . . ,2n−i − 1},
the following steps are realized:

1. s̃
(i)
k = s

(i−1)
2k +

√
3s

(i−1)
2k+1 , d̃

(i)
k =

√
3

4
s̃
(i)
k+1 − 2 −

√
3

4
s̃
(i)
k − s

(i−1)
2k+3 , where

s
(i−1)

2(2n−i−1)+3
= s

(i−1)

2n−i+1+1
:= s

(i−1)
1 , s̃

(i)

2n−i := s̃
(i)
0 .

2. s
(i)
k =

√
3 − 1
√

2

(

s̃
(i)
k + d̃

(i)
k

)

, d
(i)
k =

√
3 + 1
√

2
d̃

(i)
k . (8)

Here, the “edge” problem is solved by treating the data vectors S(i) (i ∈ {0,1, . . . , n − 1})
as if they were periodic.

The inverse D4 transform is specified, for all i ∈ {1,2, . . . , n} and k = 0,1, . . . ,

2n−i − 1}, as follows:

1. d̃
(i)
k =

√
3 − 1
√

2
d

(i)
k , s̃

(i)
k =

√
3 + 1
√

2
s
(i)
k − d̃

(i)
k .

2. s
(i−1)
2k = s̃

(i)
k −

√
3s

(i−1)
2k+1 , s

(i−1)
2k+1 =

√
3

4
s̃
(i)
k − 2 −

√
3

4
s̃
(i)
k−1 − d̃

(i)
k−1, (9)

where s̃
(i)
−1 := s̃

(i)

2n−i−1
and d̃

(i)
−1 := d̃

(i)

2n−i−1
.

The more detailed material on the development of Lifting Schemes for various DWT
(expressions (3)–(9)), can be found in a tutorial (Sweldens, 1997), and some interesting
ideas behind lifting – in the books (Jensen and Cour-Harbo, 2001; Van Fleet, 2006).

Also, in order to compute the DWT spectrum of a two-dimensional digital image X of
size N1 × N2 (Ni = 2ni , ni ∈ N,, i = 1,2), the one-dimensional DWT should be applied
N1 + N2 times, i.e. N2 times along the first spatial axis and N1 times along the second
spatial axis.
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3. Extending Potential Capabilities of the Discrete Wavelet Transform

The characteristic feature of the discrete wavelet transform (DWT) is that individual basis
functions are localized in space. As it was mentioned above, full localization in space (or
the equivalent full decorrelation of wavelet coefficients) means that numerical values of
wavelet coefficients that are computed at the same scale are specified exclusively by signal
(image) blocks that cover the whole signal (image) and do not overlap. Unfortunately,
only the simplest Haar wavelet transformis fully localized in space, higher order wavelet
transforms (Le Gall, Daubechies D4, CDF 9/7, etc. Jensen and Cour-Harbo, 2001; Rao and
Bopadikar, 2002) are partially localized in space since signal (image) blocks which specify
numerical values of adjacent wavelet coefficients overlap. This gives some limitations
to the practical application of higher order DWT, especially in such areas where block-
processing of digital data is foreseen, e.g. the signal (image) feature extraction, locally
progressive signal (image) encoding, localization of defects in textural images, etc.

3.1. Full Decorrelation of Wavelet Coefficients at Lower Scales

In the paper, full decorrelation of DWT spectral coefficients across the lower scales, lead-
ing to notably improved space localization properties of the transform, is achieved by
partitioning the original data vector (digital signal) X = S(0) of size N (N = 2n, n ∈ N)
into a set of 2n−p non-overlapping blocks S

(0)
j (j = 0,1, . . . ,2n−p − 1) of a previously

prescribed size 2p (1 6 p < n) and by transferring the earlier mentioned “edge” problem
(Section 2) to those blocks.

Computing the modified DWT spectrum Y of X = S(0) is carried out in accordance
with the generalized iterative procedure presented below:

(a) If i ∈ {1,2, . . . , p}, then

(

S
(i−1)
j

) TDWT(p−i+1)−−−−−−−→
(

S
(i)
j

D
(i)
j

)

, for all j = 0,1, . . . ,2n−p − 1;

(b) If i ∈ {p + 1,p + 2, . . . , n}, then

(

S
(i−1)
2j

S
(i−1)
2j+1

)

TDWT(1)−−−−→
(

S
(i)
j

D
(i)
j

)

, for all j = 0,1, . . . ,2n−i − 1.

Evidently,S(i)
j = (s

(i)
j ), Di

j = (d
(i)
j ), for all i ∈ {p,p+1, . . . , n} and j = 0,1, . . . ,2n−i −1.

As it can be seen, in the above scheme, not only the non-overlapping component blocks
S

(0)
j (j = 0,1, . . . ,2n−p − 1) of the original data vector X but also non-overlapping

component blocks S
(i)
j (j = 0,1, . . . ,2n−p−i − 1) of the intermediate data vectors S(i)

(i ∈ {0,1, . . . , p − 1}), as well as data vectors (s
(i)
2j s

(i)
2j+1)

T (i ∈ {p,p + 1, . . . , n − 1};
j = 0,1, . . . ,2n−i − 1), are processed by treating them as if they were periodic or mir-
rored at the ends.
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This way, the improved full localization in space is ensured for all wavelet coefficients
across the i-th (i ∈ {p,p + 1, . . . , n}) scale.

The modified DWT spectrum Y , as before (Section 2), is obtained in n iterations and
can be represented in the form

Y = (s
(n)
0 d

(n)
0 d

(n−1)
0 d

(n−1)
1 d

(n−2)
0 d

(n−2)
1 d

(n−2)
2 d

(n−2)
3 . . . d

(1)
0 d

(1)
1 . . . d

(1)
N/2−1)

T .

Following this insight, we have developed new iterative procedures (Lifting Schemes)
for computing the modified DWT spectrafor one-dimensional digital signals.

In the case of DLGT, the developed iterative procedure (Lifting Scheme) is of the form
(Valantinas, 2009):

d
(i)
k =

[

s
(i−1)
2k+1 − s

(i−1)
2k , k ∈ {li − 1,2li − 1, . . . , qili − 1},

s
(i−1)
2k+1 − 1

2
(s

(i−1)
2k + s

(i−1)
2k+2 ), otherwise,

(10)

s
(i)
k =

[

s
(i−1)
2k + 1

2
d

(i)
k , k ∈ {0, li,2li, . . . , (qi − 1)li},

s
(i−1)
2k + 1

4
(d

(i)
k−1 + d

(i)
k ), otherwise,

(11)

for all k = 0,1, . . . ,2n−i − 1 and i ∈ {1,2, . . . , n}; here: li = 2p−i , qi = 2n−p, for i =
1,2, . . . , p , and li = 1, qi = 2n−i , for i = p + 1,p + 2, . . . , n. Evidently, liqi equals the
size of S(i), i = 1,2, . . . , n.

A new modified lifting scheme for the inverse DLGT has also been developed (Valanti-
nas, 2009), namely:

s
(i−1)
2k =

[

s
(i)
k − 1

2
d

(i)
k , k ∈ {0, li,2li, . . . , (qi − 1)li},

s
(i)
k − 1

4
(d

(i)
k−1 + d

(i)
k ), otherwise,

(12)

s
(i−1)
2k+1 =

[

d
(i)
k + s

(i−1)
2k , k ∈ {li − 1,2li − 1, . . . , qili − 1},

d
(i)
k + 1

2
(s

(i−1)
2k + s

(i−1)
2k+2 ), otherwise,

(13)

for all k = 0,1, . . . ,2n−i − 1 and i ∈ {1,2, . . . , n}.
The modified Lifting Scheme used to find the discrete modified Daubechies D4 spec-

trum of the digital signal X of size N = 2n (n ∈ N) is presented below.
For all k = 0,1, . . . ,2n−i − 1} (i ∈ {1,2, . . . , n}), the following steps are realized:

1. s̃
(i)
k = s

(i−1)
2k +

√
3s

(i−1)
2k+1 , d̃

(i)
k =

√
3

4
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k+1 −

2 −
√
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4
s̃
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k+1 := s̃
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k−li+1, for k ∈ {li − 1,2li − 1, . . . , qi li − 1}; li =

2p−i , qi = 2n−p, for i = 1,2, . . . , p, and li = 1, qi = 2n−i , for i = p + 1,p + 2, . . . , n.

2. s
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k =

√
3 − 1
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)

, d
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k . (14)
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The modified inverse Daubechies D4 transform is specified by (for all k = 0,1, . . . ,

2n−i − 1 and i ∈ {1,2, . . . , n}):

1. d̃
(i)
k =

√
3 − 1
√

2
d

(i)
k , s̃

(i)
k =

√
3 + 1
√

2
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(i)
k − d̃
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k .
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(i)
k −

√
3s

(i−1)
2k+1 , s

(i−1)
2k+1 =

√
3

4
s̃
(i)
k −

2 −
√

3

4
s̃
(i)
k−1 − d̃

(i)
k−1, (15)

where s̃
(i)
k−1 := s̃

(i)
k+li−1, d̃

(i)
k−1 := d̃

(i)
k+li−1, for k ∈ {0, li,2li, . . . , (qi − 1)li}.

Obviously, the modified DWT spectrum of a two-dimensional digital image X of size
N1 × N2 (Ni = 2ni , ni ∈ N, i = 1,2) is obtained by repeated use of the one-dimensional
modified DWT, i.e. N2 times along the first spatial axis and then N1 times along the second
spatial axis.

3.2. Computing the DWT Spectra of the Selected Signal (Image) Blocks

To exhibit the extended potential capabilities of the modified DWT (Section 3.1), here
a new generalized approach is proposed for developing fast computational algorithms to
find the DWT spectra of the selected signal or image blocks (regions of interest – ROI).
The proposed approach refers to the assumption that the modified DWT spectrum of the
original signal (image) is known.

3.2.1. One-Dimensional Case

To begin with, we briefly investigate the situation concerning the one-dimensional case.
Let

Y =
(

s
(n)
0 d

(n)
0 d

(n−1)
0 d

(n−1)
1 d

(n−2)
0 d

(n−2)
1 d

(n−2)
2 d

(n−2)
3 . . . d

(1)
0 d

(1)
1 . . . d

(1)
N/2−1

)T

be the modified DWT spectrum of the digital signal (data vector) X = (x0x1x2 . . . xN−1)
T ,

N = 2n, n ∈ N. Each decorrelated wavelet coefficient d
(i)
j (i ∈ {p,p + 1, . . . , n}, j ∈

{0,1, . . . ,2n−i − 1}) can evidently be put into a one-to-one correspondence with the sig-
nal block X

(i)
j = (x2i ·jx2i ·j+1 . . . x2i(j+1)−1)

T , as the numerical value of d
(i)
j is specified

uniquely by X
(i)
j .

Let us denote the DWT spectrum of the signal block X
(i)
j by Y

(i)
j . Obviously, X(n)

0 = X

and Y
(n)
0 = Y .

To find Y
(i)
j , the following generalized algorithmic steps should be realized:

1. The very first spectral coefficient, i.e. the smoothed value s
(i)
j in Y

(i)
j should be com-

puted using a newly developed generalized scheme (Fig. 1), where j0 = j , jr = ⌊jr−1/2⌋,
for all r = 1,2, . . . , n − i; here ⌊x⌋ stands for the integral part of the real number x .

2. The remaining spectral coefficients in Y
(i)
j should be extracted from the modified

DWT spectrum Y of X, i.e. they should be identified with the ordered set of wavelet
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Fig. 1. The generalized scheme for finding the smoothed value s
(i)
j in the DWT spectrum Y

(i)
j of the signal

block X
(i)
j

.

coefficients

{

d
(i)
j , d

(i−1)
2j , d

(i−1)
2j+1 , d

(i−2)
4j , d

(i−2)
4j+1 , d

(i−2)
4j+2 , d

(i−2)
4j+3 , d

(i−3)
8j , . . . , d

(i−3)
8j+7 , . . . ,

d
(1)

2i−1·j , d
(1)

2i−1·j+1
, . . . , d

(1)

2i−1(j+1)−1

}

.

Thus, the DWT spectrum Y
(i)
j of the signal block X

(i)
j of a size not less than 2p is

computed and takes the form:

Y
(i)
j =

(

s
(i)
j d

(i)
j d

(i−1)
2j d

(i−1)
2j+1 d

(i−2)
4j . . . d

(1)

2i−1·j d
(1)

2i−1·j+1
. . . d

(1)

2i−1(j+1)−1

)T
. (16)

Below, some particular cases are presented.
In the case of the discrete Haar transform (HT; Haar wavelets are fully localized in

space), application of the generalized scheme (Fig. 1) leads to the following result:

s
(i)
j = 1√

2n−i
s
(n)
0 +

n−i
∑

r=1

(−1)jr−1

√
2r

· d(i+r)
jr

, (17)

for all i ∈ {1,2, . . . , n} and j ∈ {0,1, . . . ,2n−i − 1}.
In the case of the discrete Le Gall wavelet transform (DLGT), we have:

s
(i)
j = s

(n)
0 − 1

2

n−i
∑

r=1

(−1)jr−1 · d(i+r)
jr

, (18)

for all i ∈ {p,p + 1, . . . , n} and j ∈ {0,1, . . . ,2n−i − 1}.
In the case of the discrete Daubechies D4 transform (D4):

s
(i)
j =

1
√

2n−i
s
(n)
0 −

n−i
∑

r=1

(−1)jr−1

√
2r

· d(i+r)
jr

, (19)

for all i ∈ {p,p + 1, . . . , n} and j ∈ {0,1, . . . ,2n−i − 1}.
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Fig. 2. The generalized scheme for computing the (modified) DWT spectrum Y (k1,k2) of the selected image
block X(k1,k2).

Consistent patterns of the above relationships (expressions (17)–(19)), as well as
knowledge of the detailed scheme for the direct evaluation of DWT spectra for data vec-
tors (expressions (3), (4), (6) and (8), make it possible to compare both approaches (direct
evaluation, proposed procedure), i.e. to estimate time expenditures associated with them.
Comparative analysis results are presented in Section 4.

3.2.2. Two-Dimensional Case

Now, let X = [X(m1,m2)] be a two-dimensional grey-level image of size N ×N (N = 2n,
n ∈ N) and let Y = [Y (k1, k2)] be its two-dimensional modified (full decorrelation of
wavelet coefficients across the scales not higher than p, 1 6 p < n) DWT spectrum.

Consider a wavelet coefficient Y (k1, k2), k1, k2 ∈ {1,2, . . . ,2n−p+1 − 1}. Evidently,
indices k1 and k2 can be presented in the form: k1 = 2n−i1 + j1, k2 = 2n−i2 + j2, where
i1, i2 ∈ {1,2, . . . , n}, j1 ∈ {0,1, . . . ,2n−i1 − 1}, j2 ∈ {0,1, . . . ,2n−i2 − 1}.

It can be proved that the spectral coefficient Y (k1, k2) is associated with the image
block X(k1,k2) = [X(m̃1, m̃2)], where (m̃1, m̃2) ∈ Vk1

× Vk2
and Vkr = {jr2ir , jr2ir +

1, . . . , (jr + 1)2ir − 1}, r = 1,2. In other words, the numerical value of Y (k1, k2) is
uniquely specified by X(k1,k2).

Let us denote the (modified) DWT spectrum of the image block X(k1,k2) by Y (k1,k2) =
[Y (k1,k2)(u1, u2)], where ur ∈ {0,1, . . . ,2ir − 1}, r = 1,2.

Below, a new generalized scheme is proposed for finding the two-dimensional (modi-
fied) DWT spectrum Y (k1,k2) of the image block X(k1,k2) (Fig. 2).

In Fig. 2, the very first step is associated with repeated application of the generalized
scheme (Fig. 1) to the selected rows of the DWT spectrum Y of X, namely, to the rows
with serial numbers k∗

1 ∈ {0} ∪ SV ∪ {k1} ∪ ℑk1
(notation is clarified in the algorithm

below). If we were interested in the image block X(1,k2), then the scheme (Fig. 1) would
have been applied to all rows of the DWT spectrum Y . The second step (Fig. 2) completes
evaluation of the DWT spectrum Y (k1,k2) of the image block X(k1,k2), i.e. it applies the
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same generalized scheme (Fig. 1) to the selected columns of the intermediate data array,
i.e. to the columns with serial numbers k∗

2 ∈ {∗} ∪ {k2} ∪ ℑk2
.

So, we emphasize it once again, derivation of precise algorithmic formulae for finding
the DWT spectra of the selected image blocks should match the main ideas presented in
Fig. 2. Based on this understanding, the following algorithm has been developed.

Algorithm

1. Whatever the DWT, the following sets are formed:

SV = {α0, α1, . . . , αn−i1}, α0 = k1, αs = [αs−1/2], s = 1,2, . . . , n − i1,

SH = {β0, β1, . . . , βn−i2}, β0 = k2, βt = [βt−1/2], t = 1,2, . . . , n − i2,

ℑkr = {kr} ∪
{ ir−1

⋃

q=1

ℑkr (q)

}

,

ℑkr (q) =
{

2q · kr ,2q · kr + 1, . . . ,2q · (kr + 1) − 1
}

, r = 1,2.

2. Now, the wavelet coefficients Y (k1,k2)(0,0), Y (k1,k2)(u1,0) (u1 = 1,2, . . . ,2i1 − 1)
and Y (k1,k2)(0, u2) (u2 = 1,2, . . . ,2i2 − 1) of the image block X(k1,k2) are found in
accordance with the formulae given below, namely:

(a) In the case of Harr wavelet transform (HT),

Y (k1,k2)(0,0) = 1√
22n−i1−i2

Y (0,0) + 1√
2n−i2

n−i1
∑

s=1

(−1)αs−1

√
2s

· Y (αs,0)

+ 1
√

2n−i1

n−i2
∑

t=1

(−1)βt−1

√
2t

· Y (0, βt )

+
n−i1
∑

s=1

n−i2
∑

t=1

(−1)αs−1+βt−1

√
2s+t

· Y (αs , βt ), (20)

Y (k1,k2)(u1,0) =
1

√
2n−i2

Y
(

k∗
1 ,0

)

+
n−i2
∑

t=1

(−1)βt−1

√
2t

· Y
(

k∗
1 , βt

)

, (21)

Y (k1,k2)(0, u2) = 1

2n−i1
Y

(

0, k∗
2

)

− 1

2

n−i1
∑

s=1

(−1)αs−1

2s
· Y

(

αs , k
∗
2

)

, (22)

for all u1 = 1,2, . . . ,2i1 − 1 and u2 = 1,2, . . . ,2i2 − 1; k∗
1 and k∗

2 are the u1-th and
the u2-th elements of the sets ℑk1

and ℑk2
, respectively (numbering of elements in

ℑk1
and ℑk2

starts with one);
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(b) In the case of Le Gall wavelet transform (DLGT),

Y (k1,k2)(0,0) = Y (0,0) − 1

2

n−i1
∑

s=1

(−1)αs−1 · Y (αs,0)

−
1

2

n−i2
∑

t=1

(−1)βt−1 · Y (0, βt )

+ 1

4

n−i1
∑

s=1

n−i2
∑

t=1

(−1)αs−1+βt−1 · Y (αs , βt ), (23)

Y (k1,k2)(u1,0) = Y
(

k∗
1 ,0

)

− 1

2

n−i2
∑

t=1

(−1)βt−1 · Y
(

k∗
1 , βt

)

, (24)

Y (k1,k2)(0, u2) = Y
(

0, k∗
2

)

− 1

2

n−i1
∑

s=1

(−1)αs−1 · Y
(

αs , k
∗
2

)

, (25)

for all u1 = 1,2, . . . ,2i1 − 1 and u2 = 1,2, . . . ,2i2 − 1; k∗
1 and k∗

2 are the u1-th and
the u2-th elements of the sets ℑk1

and ℑk2
, respectively.

(c) In the case of Daubechies D4 wavelet transform, the wavelet coefficients of
the image block X(k1,k2) are found using the expressions:

Y (k1,k2)(0,0) =
1

√
22n−i1−i2

Y (0,0) +
1

√
2n−i2

n−i1
∑

s=1

(−1)αs−1

√
2s

· Y (αs,0)

+ 1√
2n−i1

n−i2
∑

t=1

(−1)βt−1

√
2t

· Y (0, βt )

+
n−i1
∑

s=1

n−i2
∑

t=1

(−1)αs−1+βt−1

√
2s+t

· Y (αs , βt ), (26)

Y (k1,k2)(u1,0) = 1
√

2n−i2
Y

(

k∗
1 ,0

)

+
n−i1
∑

t=1

(−1)βt−1

√
2t

· Y
(

k∗
1 , βt

)

, (27)

Y (k1,k2)(0, u2) =
1

√
2n−i1

Y
(

0, k∗
2

)

+
n−i1
∑

s=1

(−1)αs−1

√
2s

· Y
(

αs , k
∗
2

)

, (28)

for all u1 = 1,2, . . . ,2i1 − 1 and u2 = 1,2, . . . ,2i2 − 1; k∗
1 and k∗

2 are the u2-th and
the u2-th elements of the sets ℑk1

and ℑk2
, respectively.

3. Whatever the DWT, the remaining spectral coefficients are derived directly from the
DWT spectrum Y = [Y (k1, k2)] of X, i.e.

Y (k1,k2)(u1, u2) = Y
(

k∗
1 , k∗

2

)

, (29)
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for all u1 = 1,2, . . . ,2i1 − 1 and u2 = 1,2, . . . ,2i2 − 1; k∗
1 and k∗

2 are the u2-th and
the u2-th elements of the sets ℑk1

and ℑk2
, respectively.

4. The end. The two-dimensional modified DWT spectrum of the image block X(k1,k2)

is computed, i.e. Y (k1,k2) = [Y (k1,k2)(u1, u2)], where u1 ∈ {0,1, . . . ,2i1 − 1} and
u2 ∈ {0,1, . . . ,2i2 − 1}.

The efficiency of the above computational algorithms (expressions (20)–(29) for find-
ing the DWT spectra of the selected image blocks (ROI) of size 2p × 2p (8 6 p 6 n − 1,
n = log2 N ; N × N being the size of the original image X), in comparison with direct
evaluation of DWT spectra for the same blocks (Lifting Scheme; Section 2), is discussed
in Section 4.

4. Experimental Analysis Results

First and foremost, the efficiency of the newly developed algorithms for finding the DWT
spectra of the selected signal (image) blocks (Section 3.2) was analysed. In the one-
dimensional case, the analysis was done for signal blocks of size 2p (8 6 p 6 n − 1;
N = 2n being the size of the signal X). The achievable speed gains (Table 1) were ex-
pressed in terms of ρ = τd/τpr , where τd specifies the time needed for direct evaluation
of DWT spectra for the indicated signal blocks (Section 2) and τpr – for the time needed
by the proposed algorithmic steps (Section 3.2.1).

As it can be seen (Table 1), the performance of the developed approach to finding the
DWT spectra of the selected signal blocks (ROI) depends directly on the size of ROI, i.e.
the greater the size of ROI, the higher comparative performance is achieved.

In the two-dimensional case, the achievable impressive speed gains, expressed in terms
of ρ = τd/τpr , where τd specifies the time needed for direct evaluation of DWT spectra
for the indicated image blocks (Section 2) and τpr – for the time needed by the proposed
algorithm (Section 3.2.2), are presented in Table 2.

Undoubtedly, fast passage from the modified DWT spectrum of the digital signal (im-
age) under processing to DWT spectra of the selected signal (image) blocks (ROI; Table 1
and Table 2) opens the door to many new real-time applications of the modified version
of DWT, for instance, signal (image) feature extraction in the wavelet domain, signal (im-
age) pattern recognition, locally progressive signal (image) encoding, the detection and
localization of defects in textural images, etc. Some interesting applications of the modi-
fied DLGT for locally progressive encoding of ROI in a digital signal (image), where the

Table 1
A comparison of two approaches to finding the DWT spectra for the selected signal blocks of size 2p .

N p

8 9 10 11

HT DLGT D4 HT DLGT D4 HT DLGT D4 HT DLGT D4

1024 5.25 87.1 13.2 5.56 122 27.1 – – – – – –
2048 4.81 76.3 12.8 4.94 127 26.5 5.76 160 54.3 – – –
4096 3.33 76.3 12.6 5.22 122 25.7 5.67 172 53.0 5.50 238 108.5
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Table 2
A comparison of the two approaches to finding the DWT spectra of the selected image blocks of size 2p × 2p .

N × N p

8 9 10

HT DLGT D4 HT DLGT D4 HT DLGT D4

512 × 512 29.8 526 379 – – – – – –
1024 × 1024 19.5 505 281 21.9 678 401 – – –
2048 × 2048 12.0 489 255 17.2 648 375 20.1 629 383

achievable speed gains appear to be significant, are presented in Valantinas (2009) and
Kančelkis and Valantinas (2012).

On the other hand, the digital data processing (especially, compression) performance is
closely related to the energy compaction property of the transform, i.e. how the energy of
the transform is distributed among its coefficients (Hsu and Wu, 1997; Singh and Kumar,
2010). The latter distribution is commonly characterized by the rate of downtrend of the
transform (spectral) coefficients, as their serial numbers increase. The faster the downtrend
of spectral coefficients, the better the energy compaction property is prescribed to the
transform.

To evaluate the downtrend of spectral coefficients of a particular discrete transform,
the hyperbolic image filters can be used. The hyperbolic image filtering idea is itself rather
simple (Zinterhof and Zinterhof, 1993). Let X = [X(m1,m2] (m1,m2 ∈ {0,1, . . . ,N −
1}) be a two-dimensional digital image and let Y = [Y (k1, k2] be its two-dimensional
discrete spectrum. Now, if M (1 6 M < (N − 1)2) is a priori chosen integer, then only
those spectral coefficients Y (k1, k2) whose serial numbers k1 and k2 satisfy the condition
k1 · k2 6 M should be stored. When reconstructing the image (obtaining its estimate X̃),
the remaining spectral coefficients Y (k1, k2) (k1 · k2 > M) are set to zero, i.e. the hyper-
bolic image filtering idea utilizes the supposition that the human eye is less sensitive to
changes in higher frequencies than in lower ones.

Thus, the higher the quality of the restored image X̃ (the image compression ratio being
fixed), the better energy distribution is incidental to the discrete transform in question.

In this paper, to evaluate tentatively the energy compaction property of the modified
DWT, in comparison with its basic version, hyperbolic filtering was applied to the standard
grey level image Lena.bmp of size 256 ×256 (Fig. 3(a); USC SIPI Image Database), with
a view to highlight and compare the quality of restored images (image estimates), in the
mean squared error

δ = δ(X, X̃) =
(

1

N2

N−1
∑

m1,m2=0

(

X(m1,m2) − X̃(m1,m2)
)2

)1/2

sense (Table 3).
As it can be seen (Table 3), in the case of DLGT the quality of restored images remains,

practically, unchanged provided decorrelation of wavelet coefficients is made at the scale
p ∈ {6,7}. These facts are worthy of note when applying a particular modified DWT to
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   (a)   (b)   (c) 

 
Figure 3. Test image Lena.bmp and some of its estimates; (a) original image 256×256; (b) image Fig. 3. Test image Lena.bmp and some of its estimates; (a) original image 256×256; (b) image estimate (β = 5,

δ = 9.1; DLGT); (c) image estimate (β = 10, δ = 14.2; D4).

Table 3
Analysis of the energy compaction property of the modified DWT, based on hyperbolic filtering of the digital

image Lena.bmp, 256 × 256.

Image
compression
ratio, β

DWT The modified version of DWT

p = 4 p = 5 p = 6 p = 7

DLGT D4 DLGT D4 DLGT D4 DLGT D4 DLGT D4

2 4.2 6.6 4.6 12.5 4.4 17.3 4.3 19.7 4.2 6.7

5 9.1 11.3 11.2 15.0 10.2 19.2 9.4 21.5 9.2 11.5

10 13.1 14.2 16.6 16.9 15.4 20.6 14.1 23.0 13.4 14.8

15 15.3 16.8 19.5 18.7 18.1 21.8 16.5 21.8 15.7 17.0

digital image (signal) compression. In other real-time applications, such as image feature
extraction, localization of defects in textural images, etc., difficulties of the type described
are not encountered.

5. Conclusion

In this paper, a new modified version of the discrete wavelet transform (DWT) is pro-
posed. This new version of DWT is characterized by apparently improved space local-
ization properties of the transform, i.e. by significantly better decorrelation of wavelet
coefficients across the (lower) scales. The developed generalized ideas can be applied to
any DWT of higher order (Le Gall, integer-to-integer Le Gall, Daubechies D4, CDF 9/7,
etc.).

This proposed modified version of DWT has made it possible to develop an original
algorithm for extremely fast computation of the DWT spectra for smaller image blocks
(ROI, selected at the user’s request). The procedure applies the improved space local-
ization properties of the modified DWT and relies on the fact that the modified DWT
spectrum of the original image is known.

We strongly believe that the proposednew developments will find various applications
in implementing efficient and up-to-date digital data processing technologies in areas such
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as image (signal) pattern recognition, image (signal) feature extraction, locally progressive
image (signal) encoding associated with transmitting graphical data across a low commu-
nications channel (say, Internet), localization of defects in textural images and so on. In
other words, we openly believe that the proposed novel ideas will capture the attention of
research in the field.

In the short term, similar research concerning the reversible Le Gall wavelet transform
(facilitating lossless compression of digital images), as well as CDF 9/7 transform, is
supposed. In parallel, some real-time applications, associated with locally progressive
image encoding and analysis of textural images, are planned.
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G.Viščiūtė is a doctoral student at the Department of Applied Mathematics of Kaunas
University of Technology (Lithuania). She received her MS degree in mathematics from
the University in 2010. Her main research interests include image analysis, wavelet theory,
fractal technologies and time series forecasting techniques.

Diskrečiųjų bangelių transformacijų lokalizavimo erdvėje savybių
gerinimas

Jonas VALANTINAS, Deividas KANČELKIS, Rokas VALANTINAS,
Gintarė VIŠČIŪTĖ

Šiame straipsnyje siūloma nauja modifikuota diskrečiosios bangelių transformacijos (DBT) versi-
ja, pasižyminti akivaizdžiai geresnėmis lokalizavimo erdvėje savybėmis bei ženkliai padidėjusio-
mis potencinėmis praktinio panaudojimo galimybėmis. Pasiūlymo (požiūrio) esmė – užtikrinama
pilnoji spektrinių DBT koeficientų dekoreliacija aukštuose dažniuose. Pateiktas požiūris gali būti
pritaikytas bet kuriai aukštesnės eilės DBT (Le Gall, Daubechies D4, CDF 9/7 ir pan.). Siekiant pa-
demonstruoti atsivėrusias naujas potencines modifikuotos DBT praktinio panaudojimo galimybes,
sudaryta originali išskirtinai greita DBT spektro apskaičiavimo pasirinktiems signalo (vaizdo) blo-
kams procedūra. Kartu straipsnyje pateikiami ir aptariami eksperimento, skirto modifikuotos DBT
energijos pakavimo savybėms tirti, rezultatai.


