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Abstract. Brain Computer Interfaces (BCI) are devices that use brain signals for control or com-
munication. Since they don’t require movement of any part of the body, BCI are the natural choice
for assisted communication when a person is unable to move.

In this article, BCI based communicator for persons in locked-in state is described. It is based on
P300 brain response of the user, thus does not require prior training, movement or imagination of
movement. Auditory paradigm is selected in order to apply the communicator in cases where visual
ability is also impaired. The communicator was designed to prove also whether low cost hardware
with reduced electrode set could be used efficiently in everyday environment, without the need for
expert personnel.

The design of the communicator is described first, followed by detailed analyses of the perfor-
mance when used by either healthy or disabled subjects. It is shown that auditory paradigm is the
primary factor that limits the accuracy of communication. Hardware characteristics and reduced
electrode set influence the accuracy in a negative way as well, while different questions and answer
types produce no major differences.
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1. Introduction

Locked-in syndrome (LIS) is the state in which a person can not consciously control his
or her own body, nor it can communicate in any way with others (Wolpaw et al., 2002;
Birbaumer and Cohen, 2007). This state could be the consequence of some progressive
disease, such as Amyotrophic lateral sclerosis (ALS), or the consequence of a stroke or a
brain injury due to an accident. For some of these patients it is hard to establish the state
of consciousness because they are unable to show to others that they are conscious and
that they understand what others are saying. Therefore, the rates of misdiagnosis, where
such patients’ states have been confused with either a coma or a semi-coma, are very high
(Schnakers et al., 2008; Guger et al., 2018). In these states, complete immobility is a big
problem, but an even bigger problem is the inability to communicate with others (Sellers
and Donchin, 2006).
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Brain Computer Interfaces (BCI) use neurological signals originating in the brain to
control external devices or computers (Wolpaw et al., 2002; Birbaumer and Cohen, 2007)
and therefore are the natural choice for assisted communication when a person is un-
able to move. Neurological electrical signals can be recorded in different ways: from the
scalp using electroencephalography (EEG), from the dura mater or cortical surface using
electrocorticography (ECoG). Other types of signals and recording devices, such as mag-
netoencephalography (MEG), positron emission tomography (PET), functional magnetic
resonance imaging (fMRI), electromiogram (EMG), and optical imaging such as near in-
frared spectroscopy (NIRS), are also used. The approaches using EMG have the advantage
of using rather small equipment, while at the same time, being very sensitive and able to
detect the tiniest muscle movements. In Lesenfants et al. (2016) the authors proposed an
EMG-based method which enabled them to assess the consciousness of a patient. How-
ever, if no voluntary motor control is possible, then an EMG-based approach cannot be
used. For the patients with preserved eye movements, often a very successful approach in
establishing communication is to use eye tracking devices (Käthner et al., 2015). In re-
cent years eye tracking devices have become increasingly advanced and allow the system
to precisely access which part of the computer screen the person is looking at. These de-
vices, in combination with augmentative and alternative communication software (AAC),
such as Tobii Dynavox Communicator 5 or Grid 3,2 enable a person to communicate ef-
ficiently by using their eyes only. EEG is a primary choice for the BCIs for persons with
LIS, to be used at home or on a daily basis, due to its non-invasive nature and reduced
dimensions, among all the above mentioned technologies.

Researches of BCIs based on EEG signals are primarily using slow cortical poten-
tials (SCPs) (Birbaumer et al., 2000), periodic signals in 8–30 Hz frequency band – mu
rhythm or sensorimotor rhythm (SMR) (Kevric and Subasi, 2017; Nguyen et al., 2015)
from sensorimotor cortex generated before movement or during imagination of movement,
and event-related brain potentials (ERPs), primarily P300 (Birbaumer and Cohen, 2007;
Shen et al., 2015; Sellers et al., 2014). P300 is a positive change in EEG signals origi-
nating over the parietal cortex of the brain, and occurs around 300 ms after the expected
event or stimulus takes place. P300 is the optimal choice for EEG based BCIs for persons
with LIS since it does not require neither training nor imagination of movement. The latter
feature is important since it is probable that EEG signals related to movement deteriorate
and vanish during a prolonged immobility (Birbaumer and Cohen, 2007).

Farwell and Donchin (1988) first used “oddball” paradigm to elicit the P300 response:
an “oddball” is a relatively rare but “targeted” stimulus presented within a series of fre-
quently occurring “non-target” stimuli (Sellers and Donchin, 2006; Sellers et al., 2014;
Farwell and Donchin, 1988). The most frequently used experimental set-up is a 6 × 6 ma-
trix of letters where rows and columns are randomly illuminated. The user focuses on a
(desired) letter and when the row or column with the desired letter is illuminated, P300
response occurs. Various designs exist, and recently a four-choice display was proposed,
where the four letters flash and the participant attends to the letter corresponding to the

2Tobii AB, Karlsrovägen 2D, S-182, 53 Danderyd, Sweden.
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answer to the question: “Y” (yes), “N” (no), “P” (pass), or “E” (end) (Sellers and Donchin,
2006; Sellers et al., 2014). In this type of visual P300 based systems, the user still must
be able to control eye movements and focus. When the visual system is not preserved,
auditory (Hill et al., 2005), vibro-tactile (Guger et al., 2018), somatosensory P300 based
systems and even hybrid systems (Ortner et al., 2017) could be used. The latter systems are
slower and their effectiveness has not been thoroughly tested (Birbaumer and Cohen, 2007;
Halder et al., 2010).

In this paper, a BCI based communicator for persons with LIS is described. It is an
auditory based P300 design and therefore it can be used in most severe cases of LIS or
complete LIS. The design of the communicator is described in the next section, while
analyses of system performance is provided in Section 3. Finally, conclusions are given,
along with directions of future research and improvements.

2. Communicator Design

2.1. Auditory Paradigm

In our design of EEG based BCI for person with LIS, we use auditory based P300
“speller”, where the user responds to 5 different words. We have 2 types of questions:
“yes/no” questions, and questions with names of the persons, cities, etc. In “yes/no” ques-
tions, “yes” or “no” could be desired (“target”) answer, while 3 more “dummy” (“non-
target”) words are added in order to resemble oddball paradigm. The words were chosen
with an intention to keep the duration of the words short and similar. In questions with
names, one name is desired or the “target” name, while the others are “non-target” names.
More than two answers were used since it was established that P300 amplitude is inversely
related to the relative probability of the evoking stimulus, and directly related to its task
relevance (Kachenoura et al., 2008).

During the experiment the possible answers or stimuli were normalized and played at
a moderate sound level, with an inter stimulus interval of 1 second, and the stimuli were
randomly shuffled in a segment. This inter stimulus interval is much longer than the inter-
val usually used in visual experiments (around 300 ms). This is an obvious disadvantage of
auditory paradigm, since long inter stimulus interval increases the time needed to obtain
the answer. However, in the case of persons with LIS, the primary scope of the communi-
cator is the establishment of elementary communication or even the determination of the
state of consciousness, while the speed of communication is of secondary importance.
Total time for reproducing answers for one question was around 3 minutes.

“Yes/no” questions are obviously the simplest ones, providing for binary information
only. Questions with names are added for two reasons. First, it allows the multiple choice
(e.g. questions like “Which part of your body hurts” or “What would you like to drink/eat?”
could be asked in the future). Secondly, in cases when it is necessary to establish the state
of consciousness of the person, familiar names could elicit response more easily than
non-familiar names (Schnakers et al., 2008) and therefore they can serve in the initial
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phase of using the communicator by the person with complete LIS. Also, several types of
attention enhancementwere tried. In Schnakers et al. (2008) it was established that in cases
when persons were instructed to mentally count the number of occurrence of “target”, the
P300 response was more pronounced with respect to cases where subjects were instructed
to give a “mental counting”. In order to test other options, finger counting, tapping and
mental tapping have been tested as well. In finger counting type of response the subject
was asked to finger count the correct answers, and in tapping the subject was supposed
to press the key (on regular PC keyboard), using only one finger, every time he heard the
correct answer. In mental tapping type of response, the subject was asked to imagine him
tapping the key on a keyboard. Although the options involving the movement of hand or
fingers are not options for persons with LIS, testing was done in order to establish whether
these types of response have any potential for improvement of P300 detection.

2.2. Hardware and Software

The EEG signals were obtained with Emotiv’s Epoc3 EEG headset. This EEG device was
selected due to its low cost and mobility but also because of simple and fast electrodes
placement suitable to everyday use, while maintaining the 10–20 international standards
of electrode placement. The data recorded using the headset are of good EEG quality
and comparable to the data obtained with research grade devices (Badcock et al., 2013).
Nonetheless, the comparison between the results obtained with Emotiv Epoc and the re-
search grade device has been conducted, and provided in Section 4.

Emotiv Epoc has 14 bit resolution, EEG data is internally sampled at 2048 Hz and then
down sampled to 128 Hz, signal bandwidth is 0.2–43 Hz, and digital notch filters at 50 Hz
and 60 Hz are used. The EEG headset consists of 14 gold plated electrodes which make
direct contact with the detachable electrode tips. These electrode tips have foam which is
soaked in saline solution and sits on the scalp, adapted to the scalp topology. The saline
solution acts as a good conductive medium for small voltage fluctuations. The electrodes
are pre-attached to the headset with fixed arms to point at the locations: AF3, F3, F7,
FC5, T7, P7, O1, O2, P8, T8, FC6, F8, F4, AF4, Common Mode Sense (CMS) at the
left mastoid M1 and Driven Right Leg (DRL) at right mastoid M2. Since some electrode
positions typically used in P300 detection (e.g. Cz, electrodes in the parietal region) are
not available, tests are conducted in order to verify whether the present configuration of
electrodes could produce reliable results.

Data acquisition and processing is done in OpenVIBE software platform (Renard et

al., 2010). The OpenVIBE’s acquisition client is used to obtain raw EEG data and the
algorithm for EEG data processing was built using the OpenVIBE Designer. Apart from
being a free open source software, OpenViBE allows us to run the classifier and the whole
BCI software in real time as the data is getting acquired from the EEG headset. Data
preprocessing includes additional filtering using a 4th order Butterworth band-pass filter
with a lower cutoff frequency of 1 Hz and a higher cutoff frequency of 20 Hz, with a
pass band ripple of 0.5 dB, and down sampling by a factor of 4. An epoch, a slice of

3EMOTIV, Inc., San Francisco, CA 94102 USA.
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1 second of data after stimulus onset, is considered in following analyses. No artifact
removal was done in this stage, although it can improve the overall performance of the
system (Minguillon et al., 2017). Manual artifact removal was not done since the proposed
communicator should work in everyday situations where data analysis experts are not
available. Automatic artifact removal was not applied since all the data processing needs
to be done in real time. Also, answers are repeated 30 times in order to be less affected by
discarding some of the segments due to artefacts.

Linear Discriminant Analysis (LDA) classifier (Hoffmann et al., 2008) is used to cor-
rectly classify responses of the user. LDA classifier computes a discriminant vector that
separates the “target” and “non-target” classes. LDA classifier is simple to use because it
is nonparametric. Also, it was established that LDA classifier gives good results for P300
classification (Krusienski et al., 2008).

However, this BCI communicator uses auditory paradigm which is less reliable than
visual speller paradigm (Lopez-Gordo et al., 2012; Klobassa et al., 2009) and the used
headset has a reduced number of electrodes. Therefore, in order to obtain an acceptable
accuracy of classification, it is needed to further enhance and preprocess the data prior to
the classification. There are numerous contributions dealing with spatial filtering (Rivet et

al., 2009; Rivet and Souloumiac, 2013) and blind source separation (Wolpaw et al., 2002;
Albera et al., 2008; Xu et al., 2004; Bayliss and Ballard, 1999; Hill et al., 2004; Wang and
James, 2006; James and Hesse, 2005) for P300 speller designs, and in this case spatial
filtering based on xDAWN algorithm was used (Rivet and Souloumiac, 2013). xDAWN
algorithm is specially designed for P300 speller paradigm.

Only the basic idea behind the algorithm is explained, while more detailed explana-
tions can be found in Rivet et al. (2009), Rivet and Souloumiac (2013). The basic idea is
to automatically estimate P300 subspace from raw EEG signals. P300 evoked potentials
are then enhanced by projecting raw EEG on the estimated P300 subspace. The algorithm
derives its name from the following model for the recorded data X:

X = DA + N, (1)

where X ∈R
(Nt×Ns ) is the matrix of recorded EEG signals, Ns is the number of sensors,

Nt is the number of temporal samples, D ∈R
(Nt×Ne) is the Toeplitz matrix defined from

the set of stimuli onsets and estimated durations of the ERP, Ne is the number of temporal
samples of the ERP (1 s in our case), and matrix N is the on-going activity of the user’s
brain as well as artifacts. DA represents the synchronous response with target stimuli. The
least square estimation of response A, Â = (DT D)(−1)DT X, is different than classical
epoching of matrix X when synchronous response A extents over several consecutive
stimuli. That is generally the case for visual P300 spellers, but not in our case, where inter
stimulus interval is 1 s, which excludes the possibility of overlapping responses. xDAWN
algorithm estimates Nf spatial filters (with Nf < Ns ) in order to enhance the synchronous
response:

XU = DAU + NU, (2)
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where U ∈ R
(Ns+Nf ) is the spatial filter matrix. The idea is similar to principal component

analysis (PCA) of Â, where recorded signals are projected on the Nf main components
associated with the Nf largest principal values. In xDAWN algorithm, the spatial filters
U are designed in order to maximize signal to signal plus noise ratio. Finally, the model
(1) can be rewritten as:

X = DA′WT
+ N ′, (3)

where A′ is synchronous response of reduced dimension, W is its spatial distribution over
sensors, and N ′ is the noise term. The enhanced signals are then computed by:

Ŝ = XÛ = DA′
+ N ′′. (4)

N ′′ is the matrix that includes noise and artifacts, transformed by spatial filtering. Spatial
filters can be computed by two QR factorizations and one singular value decomposition,
or by using generalized eigenvalue decomposition of pair of covariance matrices (Rivet
and Souloumiac, 2013).

3. Experimental Procedure

The subjects were briefed about the experiment and asked to keep the movements at min-
imum to avoid artifacts. They were asked to focus on a fixed point, to make sure that there
are minimum eye movement artifacts.

The experiment has a training phase and an operational phase. During the training
phase, the subject was asked a question the answer of which was known a priori, and such
data were used to train both the spatial filter and the classifier. The training phase was
conducted only once at the beginning of the session. During the operational phase the
responses were classified in real time. The subject was asked questions and the classifier
would classify the data based on the subject’s selection. At the end of each trail healthy
subjects were asked to verify the answer, while the disabled subjects were asked only those
questions that had as a priori known answers.

A series of 5 sessions was conducted with the same subject on different days, and each
session comprised of 5 questions. Once a question was asked, the 5 answers were played
by the system in the form of 30 random segments, in such a way that the last stimulus of
the previous segment was never the same as the first stimulus of the next segment. This
and shuffling of stimuli in the segment ensured that the subject was not able to predict the
played stimuli. As there were 30 audio events for each kind of answers, there were a total
of 150 stimuli per question which means 150 epochs were considered for classification.

4. Analyses of Performance

The system was tested on 39 participants, 7 females and 32 males, aged between 22 and
29. 25 participants were healthy subjects that did not suffer any past physical, neurological
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Table 1
Tests performed for each subject. Number of tests performed with different modes of attention “enhancers”

(mental counting (mc), mental attention (ma), finger counting (fc), tapping (tt) and mental tapping (mt)), type
of EEG device used and type of questions used are given. Conditions: Traumatic Brain Injury (TBI),

Amyotrophic Lateral Sclerosis (ALS), Neuronal Ceroid Lipofuscinosis 2 (CLN2), Muscular Dystrophy (MD),
Locked-In Syndrome (LIS).

Subject Condition No. of rec. ma mc fc tt mt Epoc/Quickamp “yes-no”/“names”

H-LBZ – 2 0 2 0 0 0 Quickamp 2/0
H-LBN – 5 0 5 0 0 0 Epoc 5/0
H-IM – 2 0 2 0 0 0 Epoc 2/0
H-DM – 8 2 2 2 2 0 Epoc 4/4
H-DS – 10 2 2 2 2 2 Epoc 5/5
H-DM – 8 2 2 2 2 0 Epoc 4/4
H-FS – 8 2 2 2 2 0 Epoc 4/4
D-IO TBI 4 4 0 0 0 0 Epoc 2/2
H-IP – 8 2 2 2 2 0 Epoc 4/4
H-KJ – 8 2 2 2 2 0 Epoc 4/4
H-KB – 8 2 2 0 2 2 Epoc 4/4
H-LB – 10 2 2 2 2 2 Epoc 5/5
H-LR – 10 2 2 2 2 2 Epoc 5/5
H-ZD – 9 1 2 2 2 2 Epoc 5/4
D-ZF ALS 4 2 2 0 0 0 Epoc 2/2
H-VJ – 10 2 2 2 2 2 Epoc 5/5
D-SD CLN2 5 5 0 0 0 0 Epoc 2/3
H-ST – 10 2 2 2 2 2 Epoc 5/5
H-SK – 8 2 2 2 2 0 Epoc 4/4
H-NA – 8 2 2 2 2 0 Epoc 4/4
H-RN – 10 3 2 2 2 1 Epoc 6/4
H-MJ – 8 2 2 2 2 0 Epoc 4/4
H-MK – 8 2 2 0 2 2 Epoc 4/4
H-MP – 8 2 2 2 2 0 Epoc 4/4
H-AGZ – 4 0 4 0 0 0 Quickamp 3/1
H-CZ – 5 2 3 0 0 0 Quickamp 3/2
H-FZ – 6 3 3 0 0 0 Quickamp 4/2
H-MZ – 6 3 3 0 0 0 Quickamp 4/2
D-IO2 TBI 5 5 0 0 0 0 Epoc 3/2
D-LC MD 2 2 0 0 0 0 Epoc 1/1
D-MK MS 4 2 2 0 0 0 Epoc 2/2
D-ML LIS 4 2 2 0 0 0 Epoc 2/2
D-MZ TBI 4 0 4 0 0 0 Epoc 1/3
D-MJ MS 4 0 4 0 0 0 Epoc 2/2
D-ND MS 4 0 4 0 0 0 Epoc 2/2
D-PC MD 3 0 3 0 0 0 Epoc 2/1
D-SC MD 4 0 4 0 0 0 Epoc 2/2
D-VS LIS 3 0 3 0 0 0 Epoc 2/1
D-MS LIS 5 0 5 0 0 0 Epoc 2/3

or psychiatric disorder, while 14 (12 male and 2 female) participants had some form of
disability, varying from highly disabled with no motoric control, to locked in (multiple
sclerosis, ALS, traumatic brain injury, dystrophy). On average 6 trials (questions) were
recorded per each subject (Table 1). Different test conditions will be explained later in
text.
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Disabled subjects had various types of motor impairments. Not all of them were in
LIS, but our primary goal was to test proposed communicator in real world situations (in
not ideal situations, e.g. subjects unable to control movements, not fully accessible head
positions, lying positions, etc.).

In the following, True Positive rate (TP), False Positive rate (FP) and Accuracy are
given. The results are obtained from Open WIBE classifier. TP rate is calculated as a
ratio of the number of positive answers correctly classified and the total number of posi-
tive answers. FP rate is similarly calculated as a ratio of the negative answers incorrectly
classified as positive and the total number of negative answers. Accuracy is calculated as
a ratio of the sum of true answers (True Positive and True Negative) and the total sum
(Positive and Negative).

Overall average accuracy of classification during the operational phase was 75%. This
average accuracy is lower than one reported for visual P300 speller (Sellers and Donchin,
2006; Sellers et al., 2014; Krusienski et al., 2008), which was expected for auditory
paradigm (Halder et al., 2010; Simon et al., 2015). The minimum accuracy obtained was
65%, while the maximum accuracy achieved was 90%. Minimum, average, and maximum
accuracy for each subject is given in Table 2. The usual accuracy is around 70–80% and
we can say that trained subjects (subjects which attended to the experiment more than just
a few sessions) tend to perform better.

Table 2 also gives information transfer rate (ITR) calculated as:

ITR = log2 N + P log2 P + (1 − P) log2

[

(1 − P)/(N − 1)
]

, (5)

where ITR is given in bits/question, N is number of possible targets (5 in our case) and P

is classifier accuracy (Wolpaw et al., 1998; Yuan et al., 2013).
Low ITR are obtained, but that was expected since our primary goal is to develop a

BCI system that can be used to establish basic communication in cases were more efficient
communicator types cannot be used.

4.1. Hardware Comparison

As already mentioned in Section 2.2, Emotiv Epoc was selected due to its low cost, porta-
bility and ease of use, while its major disadvantage was the reduced number of electrodes.
Therefore, the same system was tested with a different hardware and electrode set, Quick
amp with 32 gel electrode set, and 24 bit A/D converter. In this case, there were more elec-
trodes in the central and the parietal region, which could be beneficial to P300 detection.
Table 3 gives the classification accuracy for the two devices, as well as the percentage of
true positives (TP) and false positives (FP). Both mean values and standard deviations are
given for TP and FP.

As it can be seen, Quickamp device with more electrodes, especially at central and
parietal regions has higher accuracy by more than 4%. More detailed results of comparison
between the two hardware amplifiers and electrode sets are given in Fig. 1. It shows the
false positives versus true positives scores of measurements acquired during classifier
training in auditory P300 experiment with Emotiv Epoc and BrainProducts QuickAmp
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Table 2
Number of recordings, minimum, average, maximum accuracy, standard deviation of the accuracy and
information transfe rate (ITR) for each subject during testing. Prefix H in subject code indicates healthy

subjects, while D indicates disabled ones.

Subject No. of recordings min acc max acc avg stdev ITR

H-LBZ 2 77.0 80.5 78.8 2.5 1.2
H-LBN 5 73.6 83.0 76.1 3.9 1.0
H-IM 2 75.4 76.0 75.7 0.5 1.0
H-DM 8 74.7 90.4 80.7 4.8 1.2
H-DS 10 69.6 77.6 73.7 2.9 1.0
H-DM 8 71.6 80.1 76.1 2.4 1.1
H-FS 8 70.1 77.1 74.3 2.0 1.0
D-IO 4 72.0 76.0 74.8 1.9 1.0
H-IP 8 73.2 78.1 76.2 1.7 1.1
H-KJ 8 70.0 79.6 74.9 3.5 1.0
H-KB 8 65.1 78.4 75.4 4.3 1.0
H-LB 10 68.8 78.5 74.0 2.8 1.0
H-LR 10 69.6 78.8 73.3 3.0 0.9
H-ZD 9 72.3 78.8 75.2 2.2 1.0
D-ZF 4 70.1 78.3 74.7 4.0 1.0
H-VJ 10 69.9 82.0 75.9 3.0 1.0
D-SD 5 71.2 76.1 74.3 2.1 1.0
H-ST 10 64.7 79.3 73.9 4.4 1.0
H-SK 8 71.6 83.1 77.8 4.2 1.1
H-NA 8 73.9 79.1 75.4 1.6 1.0
H-RN 10 68.5 80.1 74.5 3.4 1.0
H-MJ 8 69.7 78.7 73.9 2.8 1.0
H-MK 8 70.0 80.9 75.4 3.5 1.0
H-MP 8 73.2 78.8 75.0 2.0 1.0
H-AGZ 4 74.1 83.9 79.8 4.4 1.2
H-CZ 5 76.3 89.3 80.7 5.0 1.2
H-FZ 6 78.1 85.1 80.7 2.4 1.2
H-MZ 6 76.5 80.5 78.9 1.4 1.2
D-IO2 5 71.9 78.2 74.7 2.7 1.0
D-LC 2 72.3 75.5 73.9 2.3 1.0
D-MK 4 70.7 74.9 72.7 2.0 0.9
D-ML 4 68.4 78.1 72.6 4.1 0.9
D-MZ 4 69.7 75.5 74.0 2.8 1.0
D-MJ 4 72.4 79.6 75.7 3.0 1.0
D-ND 4 68.7 75.8 72.4 3.0 0.9
D-PC 3 72.3 78.0 75.4 2.9 1.0
D-PC 4 68.7 77.9 74.8 4.2 1.0
D-VS 3 70.6 72.9 72.0 1.2 0.9
D-MS 5 71.3 78.8 75.2 2.9 1.0

Average 71.5 79.3 75.5 2.9 1.0

devices. For each trial or question, 5 fold cross validation was done and the average values
of all cross validation results for each question are given in Fig. 1. Ideally, the classification
should give results located at the left upper position, corresponding to TP of 1 (or 100%)
and FP of 0 (0%).
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Table 3
Mean values and standard deviations for false positives (FP),
true positives (TP), and classification accuracy for Emotiv

Epoc and Quickamp.

Epoc Quickamp

FP (%) 12.6 ± 2.9 8.0 ± 3.1
TP (%) 25.4 ± 6.1 31.7 ± 7.1
Accuracy (%) 75.0 79.9

Fig. 1. False positives versus true positives of the results acquired during classifier training in auditory P300
experiment with Emotiv Epoc (x) and BrainProducts QuickAmp devices (⋄). The dotted line represents a random
guess, a 50-50 guess-miss. Measurements above the line have a greater percentage of guess and measurements
below it have a greater percentage of miss.

4.2. Audio vs Visual Stimuli Comparison

In order to perform comparison between audio and visual stimuli performance, seven ad-
ditional healthy subjects were tested with visual P300 speller and EPOC device. Table 4
gives classification accuracy for auditory paradigm and visual P300 speller, as well as the
percentage of true positives (TP) and false positives (FP). Both mean values and standard
deviations are given for TP and FP. For visual P300 speller, 6 × 6 matrix was used in
standard set-up: a single row or column was randomly illuminated for 200 ms, and inter
stimulus interval was 300 ms. Visual P300 speller is much faster than the proposed au-
ditory paradigm and therefore the number of epochs is greater. All other parameters for
preprocessing, xDAWN algorithm and classifier have not changed. Visual P300 speller
usually has higher accuracy than one obtained here, but to obtain higher accuracy a greater
number of electrodes has to be employed.
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Table 4
Mean values and standard deviations for false positives (FP),
true positives (TP), and classification accuracy for auditory

and visual experiments.

Auditory Visual

FP (%) 12.2 ± 3.2 2.4 ± 0.3
TP (%) 26.0 ± 6.5 15.8 ± 4.4
Accuracy (%) 74.4 84.0

Fig. 2. False positives versus true positives of the measurements acquired during classifier training in auditory
(x) and visual (⋄) P300 experiment. One trial in auditory experiment is data acquired for one question, and one
trial in visual experiment is data acquired for 1 character.

As expected, visual paradigm has better accuracy, by more than 9%. There is however
an interesting characteristic of auditory stimuli; the percentage of true positives is signif-
icantly greater than the same measure for visual stimuli. It means that in auditory case,
the system is better to correctly classify P300 when it occurs. On the other side, during
visual stimuli, misclassification of P300 in its absence occur on average in only 2.4% of
cases. This is more clearly visible in Fig. 2. This was expected, since it was reported by
the examined persons that subjectively it was much easier to spatially focus attention in
the visual experiment than in the auditory experiment.

Fig. 3 gives Receiver Operating Characteristic curves for targets, for auditory (left)
and visual (right) P300 experiment. Upper left corner represents a perfect classifier with
no false positives (100% specificity) and no false negatives (100% sensitivity). Again, it
is visible that ROC curve for visual experiment is closer to upper left corner of the ROC
space, thus indicating better performance for the visual experiment.
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Fig. 3. ROC curves for auditory (AUD) and visual (VIS) P300 experiment. Area under ROC curve is 0.61 for
auditory experiment and 0.73 for visual experiment.

Table 5
Mean values and standard deviations for false positives (FP),

true positives (TP), and classification accuracy for healthy and
disabled persons.

Healthy Disabled

FP (%) 11.8 ± 3.3 13.3 ± 2.5
TP (%) 26.5 ± 6.8 24.3 ± 5.1
Accuracy (%) 75.8 74.2

4.3. Healthy vs Disabled Comparison

The BCI communicator was firstly tested on healthy subjects, and later the system was
tested on 14 disabled subjects. Since primarily it was designed to help the disabled persons
communicate with their caregivers, it was important to test its applicability in realistic
situations. Table 5 gives the comparison between healthy and disabled subjects.

The values presented in Table 5 were obtained in same way as in previous comparisons.
The accuracy was slightly smaller for disabled subjects, but often the testing conditions
couldn’t be arranged in such an optimal way as for healthy subjects. Therefore these results
are suggesting that the approach taken in the system presented was suitable for the disabled
subjects. This conclusion is confirmed in Fig 4, showing a clear overlappingof results from
healthy and disabled persons.

4.4. Question Type Comparison

In Section 2.1. the reasons were given why two types of questions were used, “yes/no”
questions, and “names” questions. It was important to see whether the different types of
questions have different classification accuracy. Since training “name” questions include
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Fig. 4. False positives versus true positives of the measurements acquired during classifier training in auditory
(x) and visual (⋄) P300 experiment. One trial in auditory experiment is data acquired for one question, and one
trial in visual experiment is data acquired for 10 letters.

Table 6
Mean values and standard deviations for false positives (FP),
true positives (TP), and classification accuracy for “yes/no”

and “names” questions.

“yes/no” “names”

FP (%) 11.9 ± 3.3 12.4 ± 3.1
TP (%) 26.3 ± 7.2 25.6 ± 5.5
Accuracy (%) 75.7 75.2

familiar names, it was possible that this type of questions result in a more pronounced
and easier to detect P300 response. This may be desirable in the training phase, although
it might have provided overoptimistic results. Generally, a longer word could have also
caused more variability and more difficulty in the classification. Once again, the compari-
son of “yes/no” questions and “names” questions, as provided in Table 6 and Fig. 5, show
that the system performs in a similar manner for different type of questions.

4.5. Selection Type Comparison

Finally, different modes of attention “enhancers” were tested in order to gain more insights
in possible improvements of system performance. Mental counting (mc), mental attention
(ma), finger counting (fc), tapping (tt) and mental tapping (mt) were tested. Results given
in Table 7 and Fig. 6 were tested with analysis of variance (ANOVA) test which confirmed
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Fig. 5. False positives versus true positives of the measurements acquired during classifier training in auditory
P300 experiment for “yes/no” (x) and “names” (⋄) questions.

Table 7
Mean values and standard deviations for false positives (FP), true positives (TP), and
classification accuracy for different modes of attention “enhancers” (mental counting

(mc), mental attention (ma), finger counting (fc), tapping (tt) and mental tapping (mt)).

ma mc fc tt mt

FP (%) 12.3 ± 2.6 12.0 ± 3.5 12.0 ± 3.8 12.5 ± 3.2 12.0 ± 1.9
TP (%) 25.4 ± 5.4 25.9 ± 6.9 27.2 ± 8.8 25.7 ± 5.7 27.1 ± 4.0
Accuracy (%) 75.3 75.5 75.8 75.1 75.9

that there were no significant differences between different forms of attention enhancers
(p value of 0.92). Mental counting was easy to perform and an effective way of attention
enhancer.

5. Conclusions

In this paper, a BCI communicator for persons with LIS is described. It is based on P300
ERPs and auditory paradigm which are suitable for most severe cases of LIS when even
visual system cannot be used. The system is also based on low cost, portable, mobile and
easy to mount hardware, in order to obtain a communicator for everyday use. With the
present design choices, the system has several drawbacks, the major ones being the use of
auditory paradigm which is slower and less reliable than the visual one, a smaller number
of electrodes and the lack of electrodes in standard positions.
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Fig. 6. False positives versus true positives of the measurements acquired during classifier training in auditory
P300 experiment for different modes of attention “enhancers” (mental counting (mc), mental attention (ma),
finger counting (fc), tapping (tt) and mental tapping (mt)).

In order to test whether the performance of the system is satisfactory, several compar-
isons were performed and results were given. It was shown that the auditory paradigm and
the selected hardware give lower scores when compared with the visual experiment and
with a better hardware, but nonetheless the system still can be used. There is no major
difference in the results provided by either healthy or disabled persons. Finally, different
choices of questions and answer types have similar results, therefore either choice can be
used.

Future improvements include the use of other signal processing techniques for blind
source separation and possibly the inclusion of other types of EEG signals, in order to
enhance the classification accuracy.
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