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Abstract. This paper is devoted to research aspects of the convergence rate 
of conservative difference schemes (d.s.) with time-adaptive grids in cases, where 
a space grid is irregular and the third boundary-value problem is considered for 
one-dimensional linear parabolic equations. The unconditional convergence of 
created d.s. ill proved in a c-metric a.t the rate O(h2+T~/2) 
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Introd uction. Unconditional converged conservative and 
non-conservative difference schemes (d.s.) with time-adaptiv~ grids 
were constructed (Matus, 1990; 1991; 1993) for the large-scale set 
of mathematical physics problems. Numerical simulation of the 
problems with singularities in a solution demonstrates a high-level 
efficacy of numerical methods of this type. 

The analysis of theoretical aspects (stability, convergence) of 
d.s. with time-adaptive grids is a non-trivial problem even in the 
linear case (Matus, 1991; 1993), because in this case it is impossible 
to use well-known a priori estimates of Samarskii (1977). The lat­
ter circumstance. is explained by the fact that methods, discussed 
above, may be transformed to d.s. with variable (and, in addition, 
discontinuous) weights defined for the whole grid of nodes. 

The aim of this paper is to generalize the results obtained by 
Matus (1993) both to the case of an arbitrary grid of nodes 811. 
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(with weaker requirements to smoothness of a differential problem 
solution) and to the case of parabolic equations with boundary 
conditions of the third type. 

1. Statement of the problem. Let us preliminarily intro­
duce necessary designations. There is a finite number of lines 
x = xv, V = 0,1, ... , va, in the Qto = {o ~ x ~ L, ° ~ t ~ to} re­
gion, which are parallel to the axis Ot, and XVI < X V2 for VVI < V2 .• 

Designate 

av = Ov x (0, to] = (xv < x < Xv+l, 0< t ~ to), 

v = 0,1, ... ,110 - 1, Xo = 0, xVo = Lj 
vo-I 

Qto = L a v , 

v=o 

Now we can formulate the first boundary-value problem for a 
linear heat conduction equation 

au a ( aU) &t = ax Ie(z,t) ax + f(x,t), (x,t) E Qto' 

° < leI ~ Ie(x, t) ~ le2, leI. le2 = const, 

u(x,O) = uo(x), u(O,t) = I'l(t), u(L,t) = 1'2{t). 

(1.1) 

(1.2) 

(1.3) 

We suppose the next sentences about the exact solution of f he 
problem (1.1) - (1.3) u(x,t) and functions f(x,t),Ie(x,t) are true: 

10. The functions Ie(x,.t),/(x,t) can have the first type breaks 
for lines x = xv, V = 1,2, ... , va - 1. Conjugation conditions, fulfilled 
for each break line, are: 

[uJ/z" = u(xv + 0, t) - u(xv - 0, t) = 0, 

[1e::1L" =0, v=I,2, ... ,vo-1. 

20. Outside of break lines x = Xv the functions u(~, t), Ie(x, t), 
f(x, t) have all necessary bounded derivations that will be necessary 
for future discussions. 

Let us remark that some aspects of an existence and unique­
ness of the solution of the problem (1.1) - (1.3) under given as-
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sumptions for a smoothness have been investigated by Samarskii 
and Fryazinov (Samarskii, 1960; Samarskii and Fryazinov, 1961) . 

2. Creation and realization of d.s.Let us introduce an 
irregular (non-uniform) space grid 

~A= {Xi = Xi-l +hi , i=I,2, ... ,N, Xo=O, xN;::L}, 

that all break lines x;:: x" pass over nodes of ~A. Besides, we con­
sider the following two types of a time grid - with time steps equal 
to T and T;:: Tip, respectively (p) 1 is an integer): 

Cih;:: {tj;:: jT, j;:: O,I, ... ,io, Tio = to}, 
wro ;:: {ti+a/p ;:: (i + o:/p}T, 0:;:: 0,1, ... ,p, i = 0,1, ... ,io -1}. 

We suppose a priori that we can fiI}d a good enough approxi­
mate solution in the domain 

by applying the small time step TO only. But it is possible to use 
the big time step T in the area w{ = W1l.ro \~ without an essential 
precision red uction (see fig. 1 ). 

t 
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! ! ! ! ! 
! ! 
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Fig. 1. Ti,me~adaptive grid. 

We want to construct conservative d.s. of unconditional sta­
bility which would permit to calculate a numerical solution of the 
initi~l problem for 0: ;::1,2, .. ~.,p-,1 in .the domains ~~ onlYi j = 
0,1, .•.. ,jo - 1, and outside the adaptation zone ~ for integer time 
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layers tj only. That makes it possible to substantially reduce the 
total amount of computation in cases m~ - m{ ~ N. Remark that 
practical approaches of interpolation or extrapolation in solving 
this problem lead to correlations between hand t (conditional sta­
bility). 

U sing the integral interpolation method the initial problem is 
approximated by the difference one 

, ' 'r 

where: 

( )/ .i+Ot/p ( ) m,Ot = Y{Ot) - Y(Ot-l) TO, Y{Ot) = Yi = Y Xi, tj+Ot/p , 

_{a, i=1,2 ... ,m{+1,m~,m~+1, ... ,N-l, 
fTOt - • j j 

fT, a=m1+2, ... ,m2-1, 
(2.3) 

V(C1 .. ) = fTOtt1{Ot) + (1 - fTOt)V(Ot-l), fT = const > '0, 

and template functionals a, cp are defined in the usual way (Samars­
kii, 1977) 

a = k(Xi_O.5,tj), 

A = 0.5(hi + hii.t}. 

Other designations are taken from Samarskii (1977), too. 
The realization of d.s~ with a time~adaptive grid in the case of 

a regular space grid "'h is detail~din' (Matus,1993). Now we will 
briefly describe our computation process organization. Owing to 
Lemma 1 (the lemma on the algebra.ic equivalence of d.s,', Matus, 
1990), difference equations (2.1) may be written in the form 

(~(Ot) -tl)/(aTo) = (~Y~)j -t:,~)(Ot)', (x,t) c:w{, 
,!"',1/f.~~' (all~)(""})j~ '<P~~~)' (,~,'t) 'E~. 

. , ., ' ". ' ' . '. ;;.; t . <,' ' :, ' .;''': i, .' :, ~ " l " ~ <: ;; , 
This' <[s;' amounts to .<system' of th~-point ~gebraic' equa- , 

, • '.: '; 0' - . i' i ~ .! I,,' " I,. • , . ~. !, : " " ~ , • . ,: I ' \ .". '\ . ' . 

tions'for 'each fractional tune layer a = 1,2, ... ,p; the coefficients 
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of these equations are independent of Y(a-l) values for (x, t) E wi; 
sufficient conditions of the pivot method stability and d.s. conser­
vatism conditions are satisfied. Therefore, by using the opposed 
pivot algorithm, we may calculate an unknown function Yea) in the 
adaptation zone ~ only for Q = 1,2, ... ,p - 1. When Q = P the nu­
merical solution must be found for all Xi E W1/. by the usual mode. 

REMARK 1. If we apply ordinary implicit conservative d.s. to 
the general case, 8Np arithmetical operations are necessary to com­
pute an approximate solution for tj < t~tH~' t E W TO (Hockney 
and Estwood, 1987). SInce we don't calculate a solution of a dif­
ference problem for Cl' = 1,2, ... ,p -1 in the region wi, that makes it 
possible to save 2N(p-l) operations, ifm{ - in{ <: N. For instance, 
if p ~ 5, the total economy Qfarithmetical operations is 20%. For the 
non-linear case this economy may be even more significant, because 
of 'the iteration process used (Matus, 1990). . 

3. Stability. It is possible to show that a conservative d.s. 
with homogeneous boundary conditicins belongs to the so-called 
"initial family of d.s." (Safilarskii, 1977) for a.ny coefficient k(x, t) 
that is Lipshitz-continuous with respect to time with some constant 
co .. In that case the sufficient stability condition 

B(t) ~ 0.5ToA(t), 'Vt E W TO ' 

is true for 

t -1 
0< Co .J 

And by virtue of Theorem 12 (Samarskii, 1977, page 377), the a 
priori estimate " 

" . IIY(a)IIA .. ..;l :E; Ml (IlYOIlAo:o +tlfPoIU-t+ Hcp(a-l)IIAi'l 
, 0.0 d-1 

.. '. ;'-1,,·:·:1 :' : : .... .' cr";l~: ',,':. 

+ L E T911(A-lfP)fj~,lin4 E Tiill(A7 l fP)rj;tll)' (3.1) 
j'=O k=l k=l ' 

holds. 
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Here 

N-l 

(y, v). = L: liiYiVi, lIyII2 = (y, y) .. , 
i=1 

A - A(t I) Ml = eO.SCofo. j,1: - j+1: p , 

'. 
4. Approximation error and convergence. Substituting 

y = z + u into (2.1) - (2.2), we obtain the problem for the method 
error 

Zi,a = (azOl)(q .. »)~ + ..p(a-l), (4.1) 

zp = 0, Z(a),O = Z(a),N = 0, (4.2) 

where (Samarskii, 1977) we represent the approximation error 
..p(a-l) in the form 

.I 

..p(a-l) =71l(a-l)~ + 712(a-I)~ + ..pl(a-l), 

71l(a-l) =To(O'a - 0.5)(a'U~ka) = O(TO), 

( ) (0.5) (k ,)H(a-o.5)/P 
712(a-l) = aU~,i (a) - U (i-O.5) 

+ 0 125h~(il - /,)H(a-o.5)/P - O(h~ + t2 ) 
. I (i-O.5) - I 0, 

..pl(a-l) =0(1i~ + TO), 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Unfortunately, we cannot use the a priori estimate in negative 
norm on the right-hand side of (3.1) to find the accuracy of our d.s., 
owing to the dependence of O'a on a grid node (Xi,tHa/p), 'hi,a = 

0(1). On the other hand, since the initial solution is not smooth, we 
cannot apply all the variety ofa priori estimates of Matus (1993). 
Matus (1993) investigated the convergence of conservative d.s. with 
time-adaptive grids in the case when the space grid Wh is regular 
and there exist high order limited derivations. In addition, it ought 
to be noted that, becaus~of a discontinuity ofthe~eight function 
0' a in the nodes where the; regions.w{ and ~ join,. both the local 
approximation 

..p(a-I) = O(Ii + TO + Toh- 1), 
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and the etror in the norm L2 

IltP(~-1)IIL2 = 0(1 + TO + 1"0';'-1/2) 

are only of conditional type. 
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We apply both the scalar product (y, v). (see above) and next 
definitions for the proof of convergence: 

N 

(y,v] = 2: h; 1/i Vi , lIyll = (y,y], IIz(O')II~ = (a(Q),z(a)~], 
;=1 

Q () II 1/2 -1/2 11 2 ' Q Qj 
(a) V =. a(a) V(a)~ + a(a) 172(a) , (0) = I 

Ilvlle = mcu: lVii, h = mcu: hi. 
O';i';N 1'i,N 

Theorem 4.1. Let u(~,t), k(x, t), I(x, t) satisfy conditions 10-
2°, then, for (f ~ 0.5 + e:, 0 < e: ~ 1, conservative d.s. (2;1) -, (2.2) un­
conditionally converges in the c-metric such that for small enough 
TO < TO and all Q = 1, ... ,p, i = 0, 1, ... ,j() - 1 the following estimate 

2 1/2 
IIZ(a)IIC ~ c(h + TO ), 

holds, c = canst:> 0 is independent of h"TO,y(Ot). 

Pro<!i. Multiply (as scalar) both parts of equation (4.1) by 
2Tozr,a and consider the scalar products separately. It is evident 
that 

27"0:(Zt,a, Zt,a). = 2TOUZt,erIl2 . 

Applying Greens' formula, modify the expression 

2To(zt,a, (az~)(7",»z). = -2ro(zt~,a, (az~)«7 .. )] 
= -lIz(a)U~ + IIz(a-1)1I~ - 2Tg(O'a -O.5)a(a), zl~,al 

+ TO (at,a, Z(a-1)t] + 2THzf~,a, (1 - O'a)af,aZ(a-1)~J. 

Using Cauchy-Bunyakovskii's ineq~ality, and the e:-inequality, we 
have 

2Tollzf,al12 + 21"5 (O'er - 0.5 - e:/4)a(a), zl,~,a] + II z(a)m 

~ (1 + Toc1)lIz(a_1)m + 2To(Zf,a, tP(a-1)}., 

C1 = co(l + 4COTOC1(p - 1)2). 
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Taking into account (4.3) - (4.6) and using the summation by parts 
formula, Cauchy-Bunyakovskii inequality, and the c-inequality, we 
arrive at 

2To(Zf,a. tP(Ot-l) .. :: ~2TO( ~~Ot. 7Jl(Ot-l)]+ 

+ 2To(Zf,Ot. "'l(Ot-I). - 2To(Zfto,Ot. 7J2(Ot-l)], 

- 2To(Zft',Ot. 7Jl(Ot-l)] + 2To(Zf,Ot. tPl(Ot-l»" ~ (c/4)T~(a(Ot), zft',Ot] 

+ 2rollzf,Otll2 + i o(4(rtkl)"'"11l7Jl(0t-:l)1I2 + 0.5I1tPl(Ot_dI2), 

- 2To(Zfie,Ot, 7J2(Ot-ol ~ -2(Z(Ot)~,7J2(0t)] + 2(Z(Ot-l~' '72(Ot-l)] 

+ 2TOllz(0t_1)1I~+ (c/4)rg(a(~), Zf.f,Ot] + rocall'7;,OtW, 

Ca = (1 + 8T~)/(2kl)' 

By the use of 

. ". , . 

we obtain the followi'ug inequality 

2T~«O'Ot - 0.5 - t)2)a(Ot),zf~,Ot] + Q(Ot)(z) 
. .' .. 2 . 1/2 2 

~ Q(Ot-l)(Z) + TOC2I1 Z(0t-1)1I1 + lIa(Ot) 7J2(Ot)1I . 

-lIa(Ot1~~)7J2(0t",,1)W+TOlltP2(~_1)1I2, C2 = Cl+ 2 .. 

Applying the condition of the theorem 0' ~ 0.5+t and (4.5), we find 

where 

UtPa( Ot-1) 112= 4( Tockl)-:111'71(0t_l)1I2 + O.511"'1(~~i) 112 

+ C511'12l,Ot1l2 + cs/l'72(Ot)H 2 + c7111J2(Ot_dI2, (4.8) 

C4= 4C2. C5 =(1 +2t+.8TO')/(2k1), . CS= (2k l +co'k:i)/(4ki),' 

C7 = (4k1C4_ + 2kl + 3cok2)/(4ki). 

Summing (4.7) over 0: = 1, ... , p, we obtain 
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because j = 0, 1, ... ,jo - 1 is arbitrary: 

Thus, for arbitrary j = 0,1, ... ,jo - 1, a = 1, ... iP we derive 
from (4.7) 

We obtain from the last expression and (4.3) - (4.6), (4.8) that, 

II 1/2 -1/2' II (2 1/2) 
a(ar)Z(a)!' + a(ar) '72(ar) ,~C8 h ·+1'0 ., 

es = const > 0 is independent of hi, TO, Year). Using the triangle in­
equality, we find 

With the help of difference analogs of imbedding theorems (Sa-
marskii, 1977) it is easy to show that " . " '. 

c = const > 0 is independent of hi, To, Year)' 

5. The thi~d; boundary-value p~oblem. Let us sho~ that 
the idea of a time-adaptive grid can b~ used in the caseofthethird 
type boundary conditions too.kt functi()nsu(x, t),k(x, t), f(x, t) 

-'" , , " ' I. • 

be smooth enough in . 

Q#o == {(:c,t): O<.t ~ to, x En}, , n={x; 0 <:c < L}. 

We consider the third boundary-value problem for the linear 
,heat conduction equation 
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au a ( aU) 
at = axk(x, t) 03; + f(x, t), (x, t) E Qto' 

0< kl ~ k(x, t) ~ /1:2, kl, k2 = const, 

u(x,O) = ua(x), 
au(O, t) 

k(O, t) ax = ,81 u(O, t) - JLl(t), ,81 = const > 0, 

. au(L, t) 
-k(L, t) {)x= ,82u(L, t) - JL2(t), ,82 = const > 0. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

For simplicity, we assume that a space step h is constant and 

coefficient k(x, t) depends only on the variable x (kl ~ k(x) ~ k2)' 
A time-adaptive grid W7"O is defined like in Part 2. Using an inte­
gral interpolation me'thod we proceed from the differential problem 
(5.1) - (5.4) to the conservative d.s. with the grid Wh7"c 

(alYx,l - ,811;/o)(q",) ~ O.5h(Yf,a)0 - iiI - 0.5hia, 

(-aNYx,N - ,82YN }(q .. ) = O.5h(Yf,a)N - liz - a.5hiN, 

ii = v(x,l), f = tj+(a-O.5)/p. 

(5.7) 

This scheme is realized likewise as (2.1) - (2.2). Referring t'1 the 
existence and uniqueness of a solution of the initial differential 
problem (5.1) - (5.4), this proof may be found, for instance, III 

(Ladyzhenskaya et al., 1967). Let u.s denote 

~~q",) = lid(O.5h) + ia, ~<;",) "" li2/(O.5h) + IN 

and redefine (5.5) for i = 0, N respectively: 

(Yf,a)O = (aWx,l - ,8lYO/ q
",) /(O.5h) + ~~q",), 

(Yf,a)N = (-aNYx,N - ,82YN)(q"')/(O.5h) + ~<;",). 

Now write (5.5), (5.7) in a more convenient form (Samarskii and 

Gulin, 1973) 

(5.8) 
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From (5.8), (5.6) we have the problem for the method error Z 

with 

Zf,01 = A(a)z + tP(a-l), 

i=o,N, a=l,P, j=0,j-1, 

z(x,O):.:: 0, X E Wh; 

"p(0I-1) = 1}(a-1)", + "pl(a-I), i = 1, ... , N -- 1, 

77(01-1) = rOO'a(auxh,a = 0('10), 

tPl(a-l) = O(h2 + '10); 

tP(a-l) = O(h,2 + 'To)/(O.5h), i = O,N. 

(5.10) 

We introduce the following scalar products and notation (Sa­
marskii and Qulin, 1973, page 40): 

'11(01-1) = O.5htP(a_l),O, 7]2(01-1) == O.5htP(ot-1),N, 

7]i(a-l) = O(h2 + TO), i =1,2, 
1'1-1 

[y, v} = L YiVjh + O.5h(yovO + YNVN), 

N-l N 

(y, v) = L YiVjh, (y,v] = l:Yjv;h. 
i=1 ;=1 

We perform a scalar multiplicaiionof (5.9) by 2ToZf,a : 

Applying the form of ..4(01) and Greans' formula, we arrive at to 
,1 . , . I, • 

2'10 [ACa)z ,Zt,a} 

= -2'15 (O'a - O.5)a,zfz,aJ + (a; zea..:i')x) :- (a, Zea);;] 

- 2'15(0'0:":' O~5)0j31(Zt,a)~ - 2T5(O'a~O.5)NP2(Zf,Ct)7v 
(5.11) 

- (31(Z{a),o -'- Z{a-l),o) -(32(Zea;,N - Z[a-l),N)" 
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Using the summing by parts formula, the c-inequaJity, and Cauchy­
Bunyakovskii's inequality we have 

2TO[Zf,a, ~(a-l)l = 2rO(Zf,a, ~(a-l») 

+ 2r01]1(a-l)(Zf,a)O + 2rO!]2(a-1)(Zf,a)N, 

2rO(Zf,oll ~(a-l» = - 2rO(Ziz,a, 7](a-d + 2rO(Zf,a, ~1(a-l») 

~ 2T~€:(a, zfxa] + 2rollzf,all2 + rOIl~2(a_l)1I2, 
where the next designation i"s used 

In its turn, 

2rO!]1(a-l)(Zf,a)0 =27]1(a)Z(a),0 - 27]I(a-l)Z(a-l),0 

- 2rJ(Zt,a)07]lt,a - 2r07]lf,aZ(a-l),O, 

2T~(Zf,a)07]lt,a ~ 2r~c/h (Zf,a)~ + ro( rO/(2c.81) )7]~f,a' 

2T07]lf,aZ(a-l),0 ~ To(3,1h!4)z[a_l),O + ro(1/(3.8d)7]~f,a· 
The following expression is discussed similarly 

Taking into account 

and using 

(5.12) 

(5.13) 

Q(a) =(a, Z(a)zJ + (3(3t!4)z(a),0 + (0.5.8:/2Z(a),0 - 2(3~1/27]I(a»)2 
('(.1/)'2 «(31/2 ' '-1/2 )2 + 31-'2 4 z(a),N + 0.5 2 Z(a),N - 2(32 7]2(a) , 

1I1j.'3(a-n!/2 =1I~2(a_l)1I2 + (4/.8J)'f'/lf,a(r/l(a) + 7]1(0-1» 

+ (4/.82}7]2f,0(7]2(a) + 7]2(a-1) +(1/(3(31) 

. + 'u/(2c(3d)rdf,a + (1/(3(32).+ TO /(2c(32»7]~,a 
=O(h2 + r~/~J2, r; =.Co.nst, ,TO < rO' 
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we derive from (5.11) - (5.13) the recurrent inequality, 

Q(a) ~ (1 + rO)Q(a-l) + rolltP3(a_l)1I 2, i = 0, ... ,io - 1, 0' = 1, ... ,Pi 

hence 

(a, z~a)x] + O.5(,8lz~a),O + ,82Z[a),N) = O(h2 -I- r~/2)2. 

According to (Samarskii, 1977) 

we draw a conclusion that for 11' ) 0.5 + g, ° < g ~ 1, max IIzllc ~ 
tEwro 

C(h2 + r~/2), c = canst> 0, i.e., d.s. (5.5) - (5.7) converges in the 
C-metric with the rate O(h2 + r~/2). 

6. Construction of d.s. of a more gener~l type. During 
the discussion on d.s. (2.1) - (2.2) we approximate of the second 
order derivative with respect to a spatial variable on the upper frac­
tional time layer in the region W{, i.e., for t = tea) = tHa/p, whereas 
the time derivative is approximated with the help of values lIi and 
Yea) (in the region w{,). It would be natur~ to approximat~ the 
space operator from (1.1) as a linear combination of flow derivative 
approximations for t = tj and t = tea) = tj+a./p time layers. 

Let the first boundary-value problem be formulated 

au 8 ( . aU) 
at = ax k(x, t) ax + I(x,t), . (r.,t) E .Qto' 

0< kl ~ k(x,t) ~ k2, kl,k2 = canst, 

u(x,O) = uo(x), u(O,t) = /ll(t), u(L,t) = /l2(t); 

where 

Qto = {(x,t): 0 < t ~ to, x En}, n = {x: 0< x < L}. 

(6.1) 

(6.2) 

(6.3) 

We assume that u(x, t), k(x, t),/(x, t) have. a sufficient number .of 
bounded derivative with respect to x and t for all (x, t) E Qto' The 
existence and uniqueness of the solution of pr:oblem (6.1} - (6.3) 
are proved, for e}(ample, in (Ladyzhenskaya et .al., J967). 
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A time-space grid is defined analogously ,as in Part 2 (see 
Fig.l). 

Applying an integral interpolation method it is possible to ap­
proximate (6.1) - (6.3) by the difference scheme 

Yf,cx = W~ + !.p, (6.4) 

'-1 i 1 j N ,- , ... , m 1 + , m 2, ... , . , 
. j 2 j 1 a = m1 + ,"', m2 - , 

. 1 j 1 j N z = ,.,., m 1 .+ ,rn2"'" , 
• j 2 j 1 z = ml + , ... , m2 - . 

(6.5) 

It is not difficult to see, ifCTl = 1, that (6.4) is an analog of (2.1) 
with a regular space grid; But) choosing CTl = 0.5, we can create a 
scheme with the second order approximation with respect to both 
:c and t variables in the regions w{ Yi = 0, ... , io - 1. As a result of 
attempts of numerical simulation, there is a wide class of problems 
such that calculations for CTl = 0.5 provide a more exact numerical 
solution a for CTl = 1. 

Unfortunatly, now we can prove the convergence of d.s. (6A)­
(6.5) in the (-metric for CTl ~ 0;5+ t,' 0 < t ~ 1, t = const only. 

, REMARK 2. The achieved results may be generalized to non­
line~r equations, too. Let us consider, for instance" the first boun­
dary-value problem for a quasilinear parabolic equation 

au a ( aU) at = ax k(x, t, u)ax + f(:c, t, u), 

u{:c,O) =uo(:c),u(O,'t) = J.tl(t}, u(L,t) ='J.t2(t). 

A con,servative, d;s. with time-adaptive grid (see Fig.l} has the' 
following form ., 
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where 

al = a(y), i =F m{ + 2, ... , m~ -1 and a =F p, ' 

al = II(Y(er» - for all the remaining of indexices i, a; 

template functionals a(y), cp(y) may be defined according to Samars­
kii (1977) 

aCyl = O.5(k(Xi_lI t j'Y{_l) + k(Xi' tjd;'», 

cp(y} = I(x, t, y), (x, t) E WIlTo, 

and the weight (Fer is given by (2.3). 
This d.s. is non-linear, therefore it is necessary to use an iter­

ation process (Matus,1991) for its realization. 
If some conditions on the smoothness of functions u(x, t), 

k(x, t), I(x, t) are true then it is possible to prove an unconditional 
convergence of the last d.s. solution in the uniform metric (C­
metrix) at the rate O(h3/2+T~/2). This proof will be described more 
in detail in a separate paper. 
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