INFORMATICA, 2019, Vol. 30, No. 4, 749-780 749
© 2019 Vilnius University
DO http://dx.doi.org/10.15388/Informatica.2019.228

Conceptual Modelling of Brain State Dynamics as
Free Energy and Entropy-Based Processes

Darius PLIKYNAS' *, Leonidas SAKALAUSKAS!, Aistis RAUDYS?
Unstitute of Data Science and Digital Technologies, Vilnius University

2Faculty of Mathematics and Informatics, Vilnius University

e-mail: darius.plikynas @mii.vu.lt

Received: March 2019; accepted: November 2019

Abstract. Despite the mass of empirical data in neuroscience and plenty of interdisciplinary ap-
proaches in cognitive science, there are relatively few applicable theories of how the brain as a
coherent system functions in terms of energy and entropy processes. Recently, a free energy princi-
ple has been portrayed as a possible way towards a unified brain theory. However, its capacity, using
free energy and entropy, to unify different perspectives on brain function dynamics is yet to be es-
tablished. This multidisciplinary study attempts to make sense of the free energy and entropy not
only from the perspective of Helmholtz thermodynamic basic principles but also from the informa-
tion theory framework. Based on the proposed conceptual framework, we constructed (i) four basic
brain states (deep sleep, resting, active wakeful and thinking) as dynamic entropy and free energy
processes and (ii) stylized a self-organizing mechanism of transitions between the basic brain states
during a day period. Adaptive transitions between brain states represent homeostatic rhythms, which
produce complex daily brain states dynamics. As a result, the proposed simulation model produces
different self-organized circadian dynamics of brain states for different types of chronotypes, which
corresponds with the empirical observations.

Key words: free energy, entropy, brain states, circadian rhythms, homeostasis, chronotypes.

1. Introduction

Though the presented here interpretation of free energy and entropy stems mainly from
the thermodynamic principles, at the same time we imply that it has a strong relation with
the information theory as well, which is crucial to understand the meaning of the thermo-
dynamic free energy and entropy employment for modelling the brain state dynamics.

Despite the wealth of empirical data in neuroscience, there are relatively few global
theories about how the brain works. A recently proposed free energy principle for adaptive
systems tries to provide a unified account of action, perception and learning. Although
this principle has been portrayed as a unified brain theory, its capacity to unify different
perspectives on the brain function has yet to be established (Friston, 2010; Huang, 2008;
Dayan, 1998).
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Historically, Hinton realized first that some tough problems can be solved in machine
learning by treating a prediction error of neural networks as free energy, and then mini-
mizing it (Hinton and Terrence, 1999). His insight was that the constant updating of the
brain’s states could also be expressed in terms of minimizing free energy. Around 2005
he proposed a “free energy principle” designed for one aspect of brain function — sen-
sory perception (Huang, 2008). Later this principle has been generalized to other kinds
of brain processes as well. According to the proposed “free energy principle” the brain
is designed to minimize free energy or prediction error. Following this logic, everything
that can change in the brain will change to suppress prediction errors, from the firing of
neurons to the wiring between them, and from the movements of our eyes to the choices
we make in daily life.

However, in more general terms, the free energy principle is essentially a mathematical
formulation of how adaptive systems resist a natural tendency of disorderliness. We can
see that although the motivation is quite straightforward, the implications are complicated
and diverse. This diversity allows the principle to account for many aspects of brain struc-
ture and function and lends it the potential to unify different perspectives on how the brain
works. Admittedly, the number of physiological and sensory states in which an organism
can be is limited, and these states define the organism’s phenotype. Mathematically, this
means that the probability of these sensory states must have low entropy. In other words,
there is a high probability that a system will be in any of a small number of states, and
a low probability that it will be in the remaining states. Biological agents must therefore
minimize the long-term average of entropy to ensure that their sensory errors remain low.
In other words, biological systems somehow manage to violate the fluctuation theorem,
which generalizes the second law of thermodynamics (Friston, 2010).

Following Friston et al. (2006), we admit that the long-term imperative of maintaining
states within physiological bounds translates into a short-term avoidance of entropy. The
negative log-probability of the entropy outcome here relates not just to the current state,
but also to movement from one state to another, which can change. This motion can be
complicated and itinerant (wandering) provided that it probabilistically revisits a small
set of states, i.e. global random attractors, which we denote as the basic brain states in
this paper. It is this motion between states that puts at work the free energy optimization
principle. The entropy and free energy constraints optimize the motion between brain
states throughout the day period. We assume that an agent is constantly operating in the
minimum free energy zone of attractor states (basic brain states). Hence, free energy level
is maintained minimal and constant over time.

Before delving deeper into the proposed model details, let us recall that the research
on the human brain state dynamics was basically concerned with impaired alertness and
cognition, which was mathematically associated with the fundamental circadian sleep-
wake cycle of restful and active brain states (Medeiros et al., 2001). Currently are domi-
nating homeostatic and circadian drives for only two state (sleep-wake) modelling (Bor-
bely, 1982; Borbély and Achermann, 1999; Buzsaki, 2011). While describing a two-state
modelling approach and its recent advances an important paper of Borbely et al. (2016)
presents the most recent review of this area. Following this review, the two-process model
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has strong functional implications, but it was formulated without specifying the function
of sleep, except that sleep must subserve long-term maintenance of cerebral integrity.
Tononi and Cirelli have proposed the synaptic homeostasis hypothesis of sleep regulation
(Tononi and Cirelli, 2006, 2014). The main tenet is that synaptic and cellular processes
that had been challenged during waking are re-established during sleep. Sleep is viewed
as a price the brain pays for plasticity. In this regard.

However, such two-state approaches reduce the brain state space to the minimum. Ad-
mittedly, there are well known sleep states such as NREM (deep sleep) and REM (dream-
ing), which we think are imperative to employ for modelling too. In a similar way, there
are quite a few “wake” states too. For instance, we have chosen active wakefulness and
thinking states for transitions modelling. The former represents physical activity without
mental concentration (dominated by alpha and beta EEG signals), whereas the latter repre-
sents a concentrated mental activity (dominated by beta and gamma EEG signals) (Kezys
and Plikynas, 2014). Hence, this paper enlarges the traditional approach by splitting (i)
the sleep state into deep sleep (NREM) and resting or dreaming (REM) states, and (ii)
the wake state into physically active wakefulness and thinking states. In this way, we have
gradually mapped brain activity states, starting from the least active NREM and ending
with the most intensive thinking state (Plikynas, 2015). Hence, the traditional two-state
model is increased into four-state model (NREM — REM — physically active wakeful-
ness — thinking) in the proposed model.

Let us elucidate a bit more about the currently dominating two-state modelling ap-
proach. The field of brain states modelling has a strong history of using mathemati-
cal models to illustrate an understanding of sleep-wake cycling and circadian rhythms
in general (Refinetti er al., 2007). These cyclic phenomena motivated the develop-
ment of the classical mathematical models for sleep-wake regulation which include the
two-process model for the timing of sleep based on the interaction of the homeostatic
sleep drive and the circadian rhythm (Borbely, 1982; Daan et al. 1984), coupled os-
cillator models for the same interactions (Strogatz, 1987; Kronauer er al., 1982) and
the reciprocal interaction model for REM sleep cycling (McCarley and Hobson, 1975;
McCarley and Massaquoi, 1986). Although generally phenomenological in nature, each of
these mathematical models had a significant impact on the field by formalizing conceptual
models to guide experimental investigations, and by providing a context for interpreting
experimental data (Booth and Diniz Behn, 2014).

Recent advances in the clarification of the neural anatomy and physiology involved
in the regulation of sleep and circadian rhythms have motivated the development of
more detailed mathematical models that extend the approach introduced by the classical
reciprocal-interaction model (Booth and Diniz Behn, 2014). Motivated by these recent
results, mathematical models with a stronger conceptual basis are being developed to pro-
vide quantitative underpinnings for the classical physiological models.

The fact that a physiological rhythm could oscillate not only in the absence of periodic
changes in the environment, but also at a period different from that of behavioural cyclicity,
established the endogenous and physiologic nature of human circadian rhythms for the first
time by Kleitman (1963). Today it is already known that there exist endogenous sleep-
regulating substances, build up in the body’s cerebrospinal fluid during our waking hours,
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which have the effect of increasing the pressure to sleep the more it accumulates. There are
also theories, associated with the role of adenosine (core of ATP), that our regular desire
for sleep comes from the periodic needs of the brain to replenish low stores of energy.
However, we are a bit sceptical about such purely empirical findings as they do not provide
fundamental reasons for understanding the cause of underlying intrinsic processes, which
govern build-up of these substances during our waking hours. We have to look for answers
to what causes such processes.

The endogenous factors are being investigated in various ways, mainly using neu-
rophysiological data of neuronal activities, for instance, one can be referred to the
sleep-wake studies (Borbely, 1982; Daan et al., 1984; McCarley and Hobson, 1975;
McCarley and Massaquoi, 1986; Booth and Diniz Behn, 2014). However, due to the as-
sociated complexity and controversial results, researches assume existence of some sort
of the homeostatic processes, which take the form of a relaxation oscillator that results
in a monotonically increasing ‘sleep pressure’ during the time awake that is dissipated
during sleep. Switching from wake to sleep and from sleep to wake occurs at the up-
per and lower threshold values of the sleep pressure respectively, when the thresholds
are modulated by an approximately sinusoidal circadian oscillator (Skeldon et al., 2014;
Booth and Diniz Behn, 2014).

Admittedly, both the ‘sleep pressure’ relaxation (homeostatic) oscillator and circadian
oscillator are of intrinsic endogenous nature. The latter oscillations have been genetically
encoded following daily natural rhythms of the sun’s activity during a day. However, de-
spite recent discovery of above mentioned sleep-regulating cerebrospinal fluid substances
or the role of adenosine, there is a lack of conceptual understanding of fundamental pro-
cesses, which produce such endogenous homeostatic ‘sleep pressure’ regulators. Although
there are some biological markers, the literature does not propose comprehensive expla-
nations pertaining to the underlying fundamental mechanism.

In this regard, we were not so much concerned about finding a feasible empirically
based physiological model for circadian or homeostatic rhythms modelling. Instead, we
were concerned about finding a conceptual way for modelling and understanding of the
fundamental principles of the so-called “homeostatic pressure” mechanism. The underly-
ing fundamental reasoning of the homeostatic drive has yet to be understood.

Thus, the authors treat the brain as an organ with an intrinsic adaptive behaviour, con-
strained by fundamental physical and biological laws. It is assumed that self-organized
oscillatory dynamics of free energy and entropy serves to keep brain homeostasis within
certain confines. In this way, the brain as a complex biological organ, presumably main-
tains oscillatory self-organization that evokes brain states dynamics during a day.

In this regard, the main conceptual idea of this paper concerns deductive assump-
tion, that the homeostatic relaxation oscillator can be nailed down to the fundamental
free energy and entropy rhythmic processes taking place in the brain during a day pe-
riod. Based on this assumption, we constructed a new way of modelling oscillations in the
brain system that exhibit homeostatic adaptive behaviour. We argue that proposed funda-
mental endogenous model can simulate homeostatic rhythmic dynamics of brain states
in a more meaningful way compared with the classical ‘sleep pressure’ modelling ap-
proach.
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Terminology. Below we provide explanations of some basic terms used in the paper.
In the proposed model, entropy (used instead of the ‘homeostatic sleep pressure’ term) and
free energy terms are admitted as intrinsic and fundamental properties of the brain system.
In the proposed approach, circadian daily rhythms occur endogenously, driven by marginal
entropy values, which impose the homeostatic probabilistic transition processes between
four basic brain states. In this fundamental research, we provide not only a theoretical
model, but also some pilot simulation results of daily rhythms modelling. The proposed
simulation model produces homeostatically driven self-organized circadian dynamics of
brain states for two types of chronotypes. In this way, we investigate model’s validity
depending on the chosen basic characteristics of the simulated agents. The term “agent”,
explicitly used in the paper, refers to a human represented in terms of the basic brain states.

The free energy term, according to Helmholtz, is a quantity defined as the amount of
useful work that is obtainable from a system while keeping its volume and temperature
constant. Like the total internal energy, the free energy is a thermodynamic state function.

The term ‘stylized’, used for the free energy and entropy modelling, indicates that we
are using only metaphoric estimates for the conceptual modelling purposes. We clearly
admit that stylized estimates of free energy and entropy do not represent real physical
values. However, stylized estimates represent similar mutual relations and constraints as
real ones. Hence, they do fit for the conceptual modelling purposes.

The term ‘chronotype’ is used as the internal circadian rhythm or body clock of an in-
dividual that influences the cycle of sleep and activity in a 24-hour period. A nice overview
of probing the mechanisms of chronotype using quantitative modelling can be found in
Phillips et al. (2010). According to Skeldon et al. (2017) model, without artificial light
humans wake up at dawn. Artificial light delays circadian rhythmicity and preferred sleep
timing and compromises synchronization to the solar day when wake-times are not en-
forced. When wake-times are enforced by social constraints, such as work or school, ar-
tificial light induces a mismatch between sleep timing and circadian rhythmicity (‘social
jet-lag’).

The term ‘open system’ is used as in thermodynamics and physics — a system where
matter and energy can enter or leave, in contrast to a closed system where energy can enter
or leave but matter cannot.

The term negentropy, according to Willard Gibbs, is the amount of entropy that may be
increased without changing the internal energy or increasing its volume. In other words, it
is the difference between the maximum possible entropy, under assumed conditions, and
its actual entropy. Usually, negentropy is denoted as negative; therefore, we use the mod-
ulus. Negentropy for the dynamically ordered sub-system can be redefined as the specific
entropy deficit relative to the surrounding chaos.

REM - Rapid Eye Movement during a dreaming state while sleeping. NREM — Non
Rapid Eye Movement during a deep sleep state.

In the next section, the conceptual model is presented in terms of entropy and free
energy. The third section describes the stochastic modelling of marginal and in-between
transitions among BBS. The fourth section presents simulation results. The fifth section
gives a brief discussion. The last section makes conclusions.
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2. Modelling Brain States Using Stylized Free Energy and Entropy Terms

In this section, a specific purely conceptual research question is posed: whether there is a
way to model the basic brain states (BBS), using free energy principles. After a discus-
sion in terms of information theory below, this section describes how stylized Helmholtz
free energy principles can be applied. Meanwhile, BBS characterization is presented in
the third section, where each state is parameterized and a set of equations for the tran-
sition probabilities between states is set out. There we describe a discrete non-Markov
stochastic process over four states, where transition probabilities depend basically on the
(i) entropy and corresponding energy level of the current brain state, (ii) time of day and
(iii) chronotype.

Hence, before delving deeper into the modelling subject, let us remind the context
of this endeavour. In fact, the physiological mechanisms underlying interindividual dif-
ferences in the chronotype are yet to be established, despite that both the circadian and
homeostatic processes, proposed in the mainstream research, are involved. Admittedly,
physiologically-based models are developed by combining the models of the sleep-wake
switch and circadian pacemaker, providing a means for examining how interactions be-
tween these systems affect the chronotype (Phillips et al., 2010).

Following the traditional approach, some circadian (e.g. period and amplitude) or
homeostatic (e.g. clearance and production rates) parameters should be adjusted in order
to obtain different behaviour of chronotypes. However, in our model, different chrono-
types are obtained not by substantial tailoring of circadian and homeostatic terms,
but by introduction of chronotype dependent probabilities of transitions between brain
states, which in turn are related to the specific dynamic patterns of entropy and energy
change.

Coming back to the main issue, while searching for the most basic generalization of
the neural metabolic processes, our attention was attracted to the universal thermodynamic
laws. Admittedly, the brain as a complex biological system has to function according to
these laws, where free energy as a primal energy source and entropy as a primal measure of
order, play a key role. Following this line of thought, we admit that agent’s brain states are
essentially dependent on the means of using available free energy, which can be exploited
for every kind of cellular and consequently neural metabolic activities. It implies that
neural metabolic activities, being specific for each BBS, can be recognized in terms of the
specific dynamic patterns of entropy and energy change.

Admittedly, there are a few free energy interpretations. We adapted the Helmholtz
free energy principle, which is commonly used for systems held at constant volume and
temperature (as it is in the brain). For a system at constant temperature and volume, the
Helmbholtz energy is minimized at equilibrium. In fact, the equilibrium is a major condi-
tion. It applies to gases, liquids, solid matter and even living cells and organs. But how is
this equilibrium achieved in the brain? Before delving into explanations, we do acknowl-
edge that, strictly speaking, blood circulation makes the brain function as an open system.
Blood stream, pressure and temperature are kept constant over time. The blood provides
nutrients (energy source) and keeps away waste products while fuelling the whole brain
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system.” In this sense, the brain can be understood as a biological engine, which keeps
equilibrium (minimum of free energy), constant volume and temperature while perform-
ing a useful work, i.e. maintaining basic brain states, which are specific concerted neural
processes involved in the consumption of comparatively large amounts of free energy
(usually, even at rest, the brain consumes energy 10 times more than the rest of the body
per gram of tissue, which indicates very intensive and dynamic neural processes).

Similarly, like inanimate matter in idealized conditions, the brain operates in highly
idealistic and stable conditions regulated by the homeostatic physiological mechanisms.
Homeostasis refers to stability, balance, or equilibrium within a cell, organ or the body.
Hence, through the homeostasis it is the ability of an organism to keep a constant internal
environment in the brain as an organ. In this sense, homeostasis is an important character-
istic of equilibrium observed in the living forms. Keeping a stable internal environment
requires constant adjustments as conditions change inside and outside the brain (e.g. os-
moregulation, thermoregulation, chemical and endocrine metabolic regulation, etc.). In
fact, all vertebrates have a blood-brain barrier that allows metabolism inside the brain to
operate differently from metabolism in other parts of the body. Glial cells play a major role
in brain metabolism by controlling the chemical composition of the fluid that surrounds
neurons, including levels of ions and nutrients.

In our generalized model (see below), we take the above mentioned considerations,
assuming that free energy is constantly minimized, i.e. is time constant. Hence, we do
not solve here the problem of free energy minimization while doing some cognitive tasks.
Instead, we are focusing on (i) the more general representation of basic brain states as
entropy and energy processes, and (ii) modelling of stochastic transitions between basic
brain states during a day period.

Now let us examine some basic principles of thermodynamic (Helmholtz) free energy

A=U-TS, (D

where the free energy term A denotes the amount of work that a thermodynamic system
(state function) can perform (like the total internal energy, the free energy is a thermody-
namic state function); U is the total internal energy of the brain system U > A; T is an
intensive measure in thermodynamics called temperature, which in a more general sense,
is sensitivity measured as the partial derivative of the internal energy U with respect to
the entropy S

oU
T— (ﬁ) @)

ZATP (nucleoside also called a nucleoside triphosphate) transports chemical energy within cells for
metabolism (synthesis of proteins, synthesis of membranes, movement of the cell, cellular division, transport of
various solutes, etc.). Hence, ATP is the molecule that carries both types of energy — potential and kinetic too.
However, our paper does not elaborate on the forms of nucleoside (ATP, ADP. AMP, etc.) energy. It is out of our
research scope. We simply call it a biological form of energy.
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Instead of entropy for the biological systems, following Brillouin (1953), Pitkdnen (2006),
we can also use the term of negentropy, N

IN| = Smax — S

3
{ Smax = const. )

Here, Smax denotes the maximum possible entropy in the brain system and N denotes
negentropy. For the sake of simplicity, we can interpret negentropy as order and entropy
as disorder. As the entropy S — Smax, the order (negentropy) in the system disappears,
whereas, in the case of S — 0, the negentropy increases |N| — Smax.

Hence, the product of (9%)S plays an important role. The term (4%) denotes the sen-
sitivity of the change in total internal energy dU with respect to the change of entropy 9.5,
see Eq. (2). Let us denote this sensitivity of the brain’s internal energy to the change in en-
tropy by 5. This sensitivity parameter is individual and can vary for each agent, depending
on the level of entropy n = f(S).

In our model, we also propose two fundamental ingredients for the total internal energy
U, i.e. stylized kinetic E} and stylized potential £, energy

U=E;+E,, 4)

where Ej denotes all experimentally measurable corpuscular types of energy at the level
of molecular movements. Whereas, E, denotes a form of the field-like “potential” energy,
e.g. electromagnetic field energy emitted in the case of the EEG measurements,’ i.e. the
spectral power of the measured fields of brainwaves - delta, theta, alpha, beta and gamma
spectral bands (Plikynas ef al., 2014a, 2014b).

Hence, according to the proposed approach free energy A is the source of useful energy
(work), which expresses itself in the expendable energy forms of Ey and E,. As it was
mentioned before, the nature of the source of free energy itself is beyond the current scope
of our research.

Following Eq. (2), the model also provides another important observation for the par-
tial derivatives

(Ex+ E JE oF

Admittedly, for all known thermodynamic systems 7S > 0, as 7 > 0 and S > 0. That
is, there are no biological systems with 7 < 0 or S < 0. Thus, the term 7" > 0 implies
0E/8S #06E,/8S, see Egs. (2), and (4). Next, we can deduce that § E;/8S > 0 and
8E,/8S < 0, as the increase in entropy, certainly increases the thermal kinetic energy
(heat) E, but decreases the negentropic potential energy E,. Let us to remind that E),

30f course, an EEG only measures a tiny part of the total emitted bioelectromagnetic energy in the entire
brain system. However, following recent neuroscience developments, we assume that analyses of this tiny EEG
registered part of the entire bioelectromagnetic field in the brain is capable of differentiating basic brain states
(Buzsaki, 2011; Thatcher, 2010).
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denotes field-based coherent EEG brain wave oscillations (delta, theta, alpha, beta, and
gamma) or in other words ordered spectral patterns that stand out opposite to white noise
spectra produced by heat oscillations (Plikynas, 2016).

In order to have T > 0 condition (see Eq. (1)):if A > 0and U > 0 then T > 0 and
S > 0), the rate of change for Ej and E, with respect to the change in S has to be different
(see Eq. (5)), i.e.

I8E;/8S| — 8E,/8S| > 0. (6)

In the proposed model, the potential energy refers to the mind-field type of energy, which
can account for a minor portion of all the internal energy U, where the thermal kinetic
energy composes a major part. In this regard, one can say the other way round: slight
reduction of the potential mind-field energy (brain wave coherence) can significantly in-
crease entropy and the related thermal kinetic energy. Hence, in this model, we assume
that the potential mind-field energy acts like a subtle brain power trigger (Plikynas, 2016).

For some people it might be better understood in terms of a field-effect transistor,
where the terminals are labelled as gate, source, and drain, and a voltage at the gate (i.e.
potential energy in our model) can control the current between the source and drain (i.e.
kinetic energy in our model). For others, who are more theory-driven our approach might
be better understood in terms of McFadden’s electromagnetic theory of consciousness,
Pribram’s holonomic brain theory, Hameroff-Penrose Orchestrated Objective Reduction
theory, etc. Such type of the research frontier has made room for field-theoretic modelling
of consciousness (Libet, 2006; McFadden, 2002; Pessa and Vitiello, 2004; Pribram, 1999;
Thaheld, 2005; Travis and Arenander, 2006; Travis and Orme-Johnson, 1989; Vitiello,
2001).

While looking for basic stylized mathematical functions suitable to represent the
above-mentioned energy relationships, we employed a nonlinear logistic function, ob-
served naturally in various biological systems. Admittedly, this function finds many ap-
plications throughout a vast range of fields, including biology, neural networks, ecology,
biomathematics, chemistry, economics, geosciences, sociology, political sciences, etc.

Here we applied the classical logistic function, widely used for the versatile growth
modelling inspired by nature. Hence, we assume that it is able to depict various nonlinear
energy dependencies on S. To our knowledge, there are no plausible models with other
functions employed in the similar simulation setting. In fact, for us it is most important
that logistic functions are often used in neural networks and other artificial intelligence
approaches to introduce nonlinearity in the models and to clamp signals within a specified
range. Naturally logistic functions are a common choice for the activation or “squashing”
functions, used to clip large magnitudes in order to keep the response bounded. Based on
the above considerations, we employed it for the relation between energy dependencies
onsS.

The generalized logistic function has plenty of parameters that allow its flexibility and
ability for adaptation in many applied cases.

L

E®) =1 ==

(7
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Fig. 1. Principal scheme of basic relationships between the entropy S and the dependant forms of energy Ey (S),
Ep(S), A(S), U(S),and —T(S)-S. Arbitrarily chosen entropy values Syjn and Smax denote individual marginal
conditions.

where Sp denotes the moment of maximum growth, L denotes the curve’s maximum value
and k denotes the steepness of the curve. The values of these parameters were chosen to
satisfy the below described £ (S) and E,(S) dependencies.

Hence, the logistic function is employed for the mathematical representation of the
Ei(S) and E,(S) dependencies. All other dependencies such as U(S), A(S), TS were
derived from these two, see Fig. 1, where we can see, the E¢(S) and E,(S) dependencies
so that to satisfy constant minimum energy level A = const = 1. In this way, we obey the
main property of the free energy definition.

In order to plot the stylized Ej and E, curves depicted in Fig. 1, we used the parameters
of Smin =0, Smax =1, dS =0.01, Ks =15, Exmin = 0.5, Exmax = 0.9, So g, = 0.45,
K =15, Epmin =04, Epmax =0.5, SOE,) =0.55, and K, = 14. The other curves U (S)
and A(S) were obtained using the term provided below, see Eqs. (1) and (4).

U(S) = Ex(S) + Ep(S),
T(S)-S=U(S)—A(S)=U(S) — 1, (8)
AS)=U(S) — (US) — 1) =1.

In Fig. 1, the assumption A = 1 comes from the description of the proposed model.
In fact, the dependencies Ex(S) and E,(S) were chosen so that to satisfy the constant
minimum energy level A = const = 1. In this way, we obey the main property of the free
energy definition. Let us explain it below.

First, we remind that just like the total internal energy, the free energy is a thermo-
dynamic state function. According to Helmholtz, the free energy is a quantity defined as
the amount of useful work obtainable from a system while keeping its volume and tem-
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perature constant. Second, the brain operates under highly idealistic and stable conditions
regulated by the homeostatic physiological mechanisms. Homeostasis refers to stability,
balance, or equilibrium within an organ (brain). It is the ability of an organism to keep
a constant internal environment in the brain as an organ. In this sense, homeostasis is an
important characteristic of equilibrium observed in the living forms, which keeps constant
the free energy level at all costs.

When free energy starts to increase, self-organizing brain processes accelerate (tran-
sition to the active brain states takes place) in order to reduce the free energy level. The
opposite happens when free energy starts to decrease. The brain processes start to slow
down (transition to the passive brain states takes place) in order to maintain the free energy
level within allotted bounds. Thus, the free energy level fluctuates within narrow bounds.
However, we made simplification assuming that free energy is fixed and for modelling
purposes equals 1. This chosen number can be different, but it does not make a big dif-
ference in terms of the scale-invariant features of the abstract model. Namely, we can use
any multiplayer if needed.

In the proposed model, free energy as a constant factor was achieved using (i) afore-
mentioned self-regulating dynamics of brain states, and (ii) interchange mechanism be-
tween potential E, (S) and kinetic Ey(S) forms of free energy constituents. Both processes
follow characteristic dynamical patterns (see Section 3).

Certainly, to know empirically and model exact values of the brain entropy and energy
is not possible at the current state of neuroscience. Therefore, we have to emphasize again
that the differential Helmholtz free energy equation should be interpreted as a means to
model prevailing brain states in terms of stylized entropy and energy. Hence, we clearly ad-
mit that stylized estimates of free energy and entropy do not represent real physical values.
However, the universal thermodynamic free energy equation revealed some important re-
lations and constraints between entropy and energy dynamics, which most probably takes
place in the brain.

In the next section, each basic brain state (BBS) as a dynamic process will be pa-
rameterized using above described stylized entropy and energy time dependent relations.
Besides, we will introduce a stylized self-organizing mechanism of transitions between
the basic brain states during a day period, where adaptive transitions between brain states
lead to homeostatic thythms and activity patterns of complex daily rhythmic brain states.

3. Analytical Modelling of Basic Brain States and Transition Dynamics

In this section, we first construct analytical representations of four basic brain states (BBS)
as processes led by the specific entropy dynamics. The presented numerical modelling
is not inductively derived from empirical data, although, inevitably it has been framed
by some well-known empirical observations. The presented deductive approach utilizes
modelling of brain states as stylized entropy processes, described in Section 2.

The second part of this section concerns analytical modelling of transitions between
states as a discrete non-Markov stochastic process, based on the (i) entropy margins and
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transition probabilities, (ii) entropy and corresponding energy level of the state, (iii) time
of day, and (iv) chronotype.

Hence, the presented model aims to simulate dynamics of BBS homeostatic-driven
rhythms during a day. That is, we strive to create a self-regulating process of brain states
dynamics using the above-described theoretical setup. In this section, we briefly present
some practical ideas related to the simulation model design. It mainly concerns description
of probabilistic marginal and in-between transitions between BBSs.

In the next section, numerical simulation results are presented, that indicate multiple
probabilistically repeating occurrences of each state during a day. That corresponds to
the experimental observations of the dynamics of real human states during a daytime and
night-time, e.g. multiple repeating cycles of altering duration for the REM (BBSRE as
dreaming), NREM (BBSDS - deep sleep) and wakeful (BBSAW) states during the night-
time (Dijk, 1999; Moller-Levet et al., 2013; Nielsen et al., 2011) or similarly, during the
daytime — multiple repeating cycles of altering duration for the BBSAW, BBSTH (think-
ing) and BBSRE states.*

Before delving deeper into the analytical model details, let us remember that histor-
ically the mathematical two-process model was introduced by the well-known seminal
work of Daan et al. (1984) and extended by Borbély and Achermann (1999). As indicated
by its title, the two-process model proposes that the sleep-wake cycle can be understood in
terms of two processes, a homeostatic process and a circadian process. The homeostatic
process takes the form of a relaxation oscillator that results in a monotonically increas-
ing ‘sleep pressure’ during the time awake that is dissipated during sleep. Switching from
wake to sleep and from sleep to wake occurs at the upper and lower threshold values of
the sleep pressure respectively, when the thresholds are modulated by an approximately
sinusoidal circadian oscillator.

Hence, traditional circadian models employ time dependent, exponential, two-process
growth and decline functions, which are bounded by the circadian harmonic function.
Hence, transitions occur when the exponents of the vaguely explained term “sleep pres-
sure” approach the harmonic (circadian) function. In essence, it means that the marginal
values for the two-process states are determined by the circadian harmonic function and
vary during the day following the harmonic function.

In our model, entropy S is admitted as an intrinsic and fundamental driver of the brain
states dynamics. Entropy defines more exactly the term “sleep pressure”, used in the clas-
sical two-process model. In the proposed approach, the homeostatic cycles occur naturally
as a consequence of a) state dependent S(¢) dynamics and b) probabilistic (marginal and
so-called in-between) transitions between states. In this regard, our model proposes a novel
approach. It provides a stylized entropy and energy-based framework for the investigation
of daily BBS rhythms.

It is important to remind that entropy S in the proposed model has been constrained
by lower Spin and upper Spax bounds, see Fig. 1. These marginal entropy values set con-
straints on the state entropy S(¢) process. When the process S(¢) reaches a lower or upper

4According to the literature, under normal circumstances, during the night-time there are 1) 3—4 deep sleep
cycles (BBSDS) of diminishing duration, 2) 4-5 cycles of the REM dreaming state (BBSRE) of increasing
duration, and 3) around 4 cycles of the wakeful state (BBSAW) of increasing duration.
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bound, the so-called marginal transition to another state occurs. The probability of tran-
sition to the particular another state depends on the current state, chronotype, and time of
day.

According to the model setup, during activity (thinking and physically active states)
entropy increases as brainwork processes increase the waste of free energy in the form
of heat (entropy). Whereas, during resting (NREM and REM sleep) entropy decreases as
brainwork processes are eliminating the excess of heat (entropy). Naturally, both processes
have some bounds, that direct to the brain’s self-organizing mechanism to stop the current
state process and switch to the opposite process (active vs. resting). Hence, entropy bounds
act like a thermostat to keep system condition within certain homeostatic confines.

However, there is no fundamental difference between imposing a threshold that is os-
cillating and then adding some stochasticity to this, as was done for some of the earlier
two-process model simulations, and introducing a probabilistic transition function that is
oscillating in the presented model approach. In both cases, the rhythmicity is essentially
imposed as part of the modelling assumptions. However, the main conceptual difference
lies in the interpretation of the underlying oscillatory mechanisms. That is, the classical
two-process model does not define a mechanism for occurrence of “sleep pressure” (a re-
laxation oscillator), although, it uses some biological markers intrinsic to this mechanism.
Whereas, our model defines a possible fundamental mechanism for occurrence of a relax-
ation oscillator, which consequently eliminates the need to employ the “sleep pressure”
term.

In our model, the underlying oscillatory mechanism is not solely based on the oscillat-
ing probabilistic transition function. It is important to note that the main novelty is in the
simulation of the basic four brain states as self-organized energy and entropy processes,
bounded by the daytime dependent entropy floor Spin(#) and ceiling Spmax (¢) values. To
our knowledge, there are no other plausible models with similar simulating settings.

In the proposed model, transitions between BBS are visualized in the form of directed
graphs, see Fig. 2. Directed graph approach stems from the transition (between states)
assumptions constructed in the simulation model, which in turn is based on some empirical
observations (Dijk, 1999; Moller-Levet et al., 2013; Nielsen et al., 2011) and also from
the seminal work of Daan et al. (1984) and extended by Borbély and Achermann (1999).
It defines not only allowable transitions in the proposed model, but also their relative
frequency.

Probabilistic transitions invoked by the marginal entropy limits are indicated using
solid lines, and that, invoked by the in-between probabilities, are indicated using dashed
lines. In this way, the basic brain state related processes (free energy and entropy) are gov-
erned by the thermodynamic processes (see Egs. (4), (5) and (8)) and transitions between
states are governed by the probabilistic rules.

As can be inferred from Fig. 2, all the BBS participate in the daily dynamics. How-
ever, according to the model setup, some states naturally dominate. For instance, marginal
transitions prevail between BBSAW and BBSRE. Whereas during the daytime, in-between
transitions between BBSAW and BBSTH naturally prevail. At night-time, in-between tran-
sitions between BBSDS and BBSRE naturally dominate.
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Fig. 2. Directed graphs for the depiction of nodes (BBS) and the transitions between them (directed lines). The
more frequent states (shaded nodes) indicate the average time spent in the corresponding BBS and the thickness
of the directed lines indicates the probability level of the transitions. Part (a) indicates marginal transitions when
the Spin Or Smax limit is reached. Parts (b) and (c) indicate probabilistic in-between transitions during daytime
and night-time respectively.

It is important to emphasize that according to the model setup at each time moment an
agent’s brain state is basically described by the entropy S(¢, n), where ¢ denotes duration
of the state (r < 100 minutes) and n denotes the number of a discrete period of the day
n = (1,72). In this way, the agent’s state dynamics is allowed to move in the network of
predestined paths in the entropy space.

Thus, each 10 min time period during a day is represented by 4 specific S(t, n) curves.
Each BBS has its own family of n = 72 specific day time period, dependent on entropy
curves. These curves cover the daytime and night-time periods. That is, depending on the
states, the daytime curves start from one end and the night-time curves from the other end
of the same set of 72 entropy curves, see Fig. 3. In this way, the model is able to distinguish
how 1) the BBS related entropy processes gradually change during a day, 2) the daytime
and night-time related entropy curves shift in the opposite directions.

In order to obtain a set of entropy curves, a new homeostatic-circadian function ¢, ()
was employed, which generated a continuous and dense enough family of 72 curves S(¢, n)
for each state depending on the period of the day (daytime and night-time separately). For
each state, a corresponding family of 72 curves covers a daytime or night-time period
separately. For instance, during a daytime period of 1440/2 = 720 min, 72 curves, each
covering a 720/72 = 10 min interval of a daytime period are generated. A similar principle
holds for the night-time period too.
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Fig. 3. Entropy space network S(z,n) characterized by the corresponding families of the BBS related curves
(72 curves for each state), which are used for the simulation of the S(7) dynamics for the daytime and night-time
periods. Diagram A denotes the families of curves for the deep sleep (DS) and resting (RE) states. Diagram B
denotes the families of curves for the wakeful (AW) and thinking (TH) states.

Hence, a new set of proposed mathematical S(z, n) formulas that generate the needed
sets of entropy curves for each state, depending on the period of daytime or night-time,
are depicted below

(/72
Spe(t) =1—1" ,
Sps(t) = ®(R(Sre(D))).
/1) )
Saw (1) =1" ;
Srr (1) = ®(R(Saw (1)),

where rotation R and shifting ® operators are used to transform the S(z) function

R— cosf —sind
| sin6  coso |’

® =1+ R(Sge(1), (10)
r=1-—1,
1 =10, 1],
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here, the parameter & = 7 (in radians) denotes an angle for the rotation operator R. The
other variables, namely ¢,  and n, contribute to the formation of the homeostatic and
circadian rhythms during the day:

a) homeostatic individual curves S(¢) for each BBS, where ¢ denotes the state related
time period (¢ < 100 min)

b) circadian movements of the homeostatic curves S(n), depending on the period n of
the day.

In fact, the variable 7 denotes the inverse of ¢, as after the use of rotation operator R,
the function is rotated by , rendering t = [1, 0], and, consequently, the points of the
corresponding curves are drawn in a reverse order, see Egs. (9), (10) and Fig. 3. In order
to restore the correct order, the time flow from 1 to 0 has to be corrected, using the inverse
variable 7.

Let us explain that the states as time varying entropy processes were defined analyt-
ically in Egs. (9) and (10). Next to them variables and parameters are described for nu-
merical estimates. We chose them in order to construct each state’s unique course in the
entropy space, depending on the time of the day.

Thus, each state is progressing in the entropy space, see Fig. 3, but in a different way.
Each state’s progression way has the corresponding mathematical function (see Eq. (9)),
which has to be parameterized (see Eq. (10)). The functions and parameters were uniquely
created and fitted in order to follow the proposed model’s assumptions. One of the main
assumptions is that the shape of each state’s progression function is changing during the
day. For instance, we propose a linear thinking state’s entropy progression function early in
the morning (assuming that the brain had a good rest after the night sleep and involvement
in the thinking process only slowly adds a fatigue, i.e. entropy), but gradually it becomes
more and more hyperbolic during the course of the day (meaning that at the late evening
time our mind gets tired and we get exhausted by the thinking process very fast), see the
left lower diagram of a family of the corresponding thinking state entropy curves in Fig. 3.

We have arbitrary chosen a discrete set of corresponding curves (the same number of
curves for a day and night n = 72, corresponding to 10 min time interval between adjacent
curves), meaning that one curve fits only for the 10 min time interval of the day. After this
period another adjacent curve should be used and so on. In fact, one can choose as many
curves as one pleases or even can use a non-discrete approach in another model. We have
chosen a discrete family of curves for each state progression in the entropy space only in
order to make a better visualization case of the model.

The proposed entropy space network of the S(z, n) curves restricts the entropy dynam-
ics in certain pathways, described in Egs. (9) and (10). The brain travels through these
pathways during the day. At each time moment, the brain is involved in one entropy re-
lated process, which draws (actualizes) an associated curve’s section in the entropy space
chart, see Fig. 3. In each simulation, the probabilistic nature of the transitions between
brain states makes a unique pattern for the S(t, n) curves.

Admittedly, the law of entropy conservation should hold during transitions between
states. Hence, there should be no gaps between the entropy levels when the transitions be-
tween states take place. That is, the continuity of entropy level holds during transitions and
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the next state proceeds from where the last state ends. The proposed entropy-based BBS
modelling approach follows the conservation law in a mathematical sense; however, due
to some programming approximations an attentive reader can notice slight shifts between
S levels in the simulation results (see the next section). Notwithstanding such a drawback,
which is stemming purely from the programming approximation, the mathematics of the
model remains firmly in accordance with the law of succession of entropy.

Letus see an example for the BBSDS: during the night-time, the occasionally repeating
deep sleep state gradually becomes shorter as the brain alternately shifts from the NREM
to REM and awaking states (this is a well-known fact, well reported and documented in the
mainstream literature (Booth and Diniz Behn, 2014; Borbély and Achermann, 1999; Daan
et al., 1984; Fulcher et al., 2008; Phillips et al., 2011)); meanwhile, during the daytime,
very occasional deep sleep periods become longer as the brain gets tired during the day
and naturally tends to stay longer in the deep sleep state.

Depending on the obtained curves position (see Fig. 3), we can recognize a) the BBS
process it represents and b) the time of the day. In this way, similarly like in the traditional
phase space charts, we can observe the dynamics of states (attractors), and the main trends
of the transitions between states. Admittedly, the phase space of a dynamic system depicts
all the possible states of a system (represented in terms of the system’s main parameters)
when the system’s evolving state over time traces a path (a phase space trajectory). Thus,
the proposed entropy space network visualization approach serves as a useful tool for fast
analyses of the simulation results. In the next section, the concrete simulation results of
the proposed model are provided.

Let us discuss more about newly introduced in-between transitions, that were addi-
tionally incorporated into the model in order to add some stochasticity. According to the
chosen model setup, they occasionally happen in all BBS processes before they reach the
marginal entropy conditions (Smin and Spax). In each BBS, they occur probabilistically.
A probability of the in-between transition is likely to increase during time an agent is in a
particular BBS. According to the chosen programming setup, the probabilistic in-between
transitions are periodically applied (by default, every 10 min) while the current brain state
has not reached its marginal entropy conditions. It also depends on the period of the day,
where daytime interval ¢ = [0; 0.5], and the night-time interval # = [0.5; 1] have distinct
functions for the in-between probabilities. According to the simulation setup, the daytime
period lasts 12 hours [9AM-9PM], and correspondingly, the night-time period is [9PM—
9AM].

In the proposed model, the general expression for the in-between probabilistic tran-
sitions, depending on whether it is daytime or night-time, is expressed using a simple
harmonic function

/ max

p'(t) = pEie* - |sinRmv’ 4+ @)| = pype - [sin(wt + @pas)

, (1)
where pype* demonstrates the arbitrarily chosen maximum in-between probability value
for each BBS (by default, it equals 0.05); 27 v" denotes angular frequency w, where the
frequency term v/ = 1/2 splits the day period (v = 1) into two parts, i.e. daytime and



766 D. Plikynas et al.

) Circadian daily rhythms: p'(t) probabilities of the b) Circadian daily rhythms: p’(?) probabilities of the
in-between transitions for the BMS, in-between transitions for the BMS,,,
P, owl: Py owr: )
4] g ) @ wi: )
] > i i P pssedt)l 2 . s © P awssos(t)y
= ) P osoandth; P ps s rult)T ossrel P osandt)t = P awstHlt)Ts P awosrelt)V P awsrelt)
T30 SR N : B maf N :
g e
a a
§
]
I D o5 adt) P os sl t)d \ 2
s
=g 05 ltimet = 0 05 ltimet
daytime nighttime daytime nighttime
c)  circadian daily rhythms: p’(t) probabilities of the d) Circadian daily rhythms: p’(t) probabilities of the
in-between transitions for the BMS,,, in-between transitions for the BMS,
8 P, owl: . g P.ow: .
= h . ; p (t) £ : . i P reosos(t)e
E | P roanl P relt) ey E | p el P resml AE=>E)
S | H P st 2 | i
o T YOI | 8P max ;
a
§ VSN s
o g
2 | Eaflybird: z
. . o . .
'_3 D rhs )4 P s relt)T 2 P re-sawdt) P resrultI
2 0.5 1 time, t 9 0. Sﬁf—l time, t
daytime nighttime daytime nighttime

Fig. 4. Daytime and night-time functions of transition probabilities p’(¢) of the in-between transitions for all

BBS. The two chronotypes of people — night owls and early birds — are distinguished by their different daytime
set of probabilistic transitions.

night-time periods; t denotes the time of day; ¢ denotes the phase shift of the sinusoidal
function.

In the proposed model, we apply the sinusoidal function (see Eq. (11)) with the cor-
responding phases and obtain continuous time varying in-between probabilistic transition
functions p’(¢) for both chronotypes, see Fig. 4. The chosen sinusoidal form of the transi-
tion function p'(¢) curves gives gradual descend and rise of transition probabilities during
the day. However, other continuous functions can be employed too. In fact, we have in-
troduced the so called in-between transitions as a mean to overcome limitations of the
marginal transitions (see Fig. 2a), as they omit a lot of transitions that take place in reality.
In this regard, the presented scheme for the probabilistic in-between transitions helps to
sort things out according to the real life observations, allowing for transitions between
similar in kind states.

We do not assume that, for instance, evening types (owls) for some reason have a longer
intrinsic period then morning types (early birds) (Phillips ef al., 2010). Instead, based on
the empirical observations, we assume that differences between chronotypes’ behaviour
can arise because of different dynamics of probabilities of transitions between basic brain
states BBS. In our model, probabilities of the in-between transitions were constructed in
such a way as to make behavioural difference for both chronotypes. For instance, during
daytime the probability of the in-between transitions from the inactive to the active state
generally increases for the owls and decreases for the early birds, see Fig. 4. Night-time
functions of the in-between transition probabilities p’ (¢) for both chronotypes do not differ
in this experimental setup, see Fig. 4. However, in the prospective modelling they can be
different for both chronotypes too. In this way, we made a difference between chronotypes
behaviour, which corresponds with well-known empirical observations.

Hence, the model simulates the behavioural manifestation of the underlying circadian
rhythms in terms of people’s chronotypes (night owl or early bird), see Fig. 4. The pre-
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sented model admits the existence of two different types of people, i.e. “night owls” and
“early birds” (Roenneberg et al., 2003; Vinne et al., 2015). Night owls tend to feel most
energetic just before they go to sleep at night. Early birds (e.g. a lark) as opposed to night
owls, feel more energetic early in the daytime and tend to feel sleepy at a time that is
considered early. Researchers also use the terms “morningness” and “eveningness” for the
two chronotypes (Horne and Ostberg, 1976). In this sense, for each chronotype, two dif-
ferent sets of circadian p ‘(¢) graphs are depicted for each state, see Fig. 4. In this way, the
proposed model is extended to simulate the circadian rhythms of two different types of
people chronotypes (Plikynas, 2016).

4. Simulation Results

In this section, we aim to (i) show simulation results and (ii) examine the influence of
some basic and optional model parameters.> First, we explore a chronotype parameter,
that defines the behavioural manifestation of a type of agent in terms of intrinsic circadian
rhythms. That is, we model the night owl and the early bird behaviours (Plikynas, 2016).
Next, we explore the max and min entropy value parameter that define the available en-
tropy space, which influences the frequency of marginal transitions, i.e. a smaller entropy
space makes marginal transitions occur more often. Other parameters define £, and Ej
energy margins, etc.

An example of the corresponding simulation results of the basic brain state (BBS)
dynamics for the two chronotypes is provided in Fig. 5. All the basic and optional param-
eters used for obtaining the simulation results were discussed in terms of their meaning
and feasible values earlier in this chapter and in the previous studies (Plikynas, 2016). In
short, the interplay of these parameters generates simulation results.

Admittedly, night owl chronotype people tend to feel most energetic just before they go
to sleep at night. Early bird chronotype people, as opposed to night owls, feel more ener-
getic early in the daytime (Roenneberg et al., 2003; Vinne et al., 2015). Similar tendencies
can be observed in the presented model. An example of the obtained BBS dynamics for
both types of chronotypes can be found in Fig. 5a) and b). As we can observe from the
BBS dynamics, at the beginning of the day, the night owl chronotype tends to stay longer
in the resting state (RE) and deep sleep (DS) states and much less in the wakeful state
(AW), whereas, at the end of the day, they stay longer in the active states (AW and TH).
Meanwhile at the beginning of the day, the early bird chronotype tends to stay longer in the
active states (AW and TH) and less in the passive states (DS and RE), whereas, at the end
of the day, they stay longer in the passive states. In fact, such a simulation performance
can be regulated using our model setup, see Fig. 2.

The simulation results show some behaviour, close to the real life, at night-time too. For
instance, we observe an increase of DSRE(), REAW() and decrease of THDS(), REDS(),
AWDS() of transitions at the end of the night period, see Fig. 5. It corresponds well with
the setup of the in-between transitions (see Fig. 2) and real life observations.

5In fact, there are various methods for the meta level analysis of parameter dependent simulation of input—
output relations (Kaminski, 2015). However, we do employ a simple straightforward approach here.
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Fig. 5. BBS dynamics of two chronotypes: early bird and night owl. The graphs were obtained using default basic
and optional parameters, except the checking time period (r = 2 min) and probability (0.15) of the in-between
transitions.

Statistical averages for the reiterated estimates of the number of BBS transitions during
the daytime and night-time periods are provided in Table 1. It shows statistical averages
for the marginal and in-between transitions. As we can see, the total number of marginal
and in-between transitions for both chronotypes substantially change depending on the
frequency of the applied probabilistic in-between transitions. That is, larger T values gen-
erate less frequent marginal and in-between transitions.

The analysis of transitions has revealed slight differences between chronotypes in
terms of the total number of transitions during the daytime and night-time. That is, for
the early birds more frequent transitions between states are during the night. An oppo-
site tendency is observed for the night owls. It can be explained, keeping in mind that
active states of brain have to be consciously controlled in order to prolong their duration.
Otherwise, brain is controlled by involuntary (subconscious) transitions, which happen
more often due to the intrinsic wandering nature of the mind. Therefore, early birds, be-
ing more consciously active in the daytime, tend to have less wandering transitions during
the daytime, while night owls, being more consciously active at night-time, tend to have
less wandering transitions during the night period.

In Table 2, we summarize simulation statistics of staying in each BBS for both chrono-
types during the daytime and night-time periods, with different time periods 7, which
indicate the periodicity (in minutes) of the applied probabilistic in-between transitions.
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Table 1
The number of transitions among BBSs. The results were averaged for 20 agents. Time period 7 indicates the
periodicity (in minutes) of the applied probabilistic in-between transitions.

Number of transitions Early bird chronotype Night owl chronotype
T=2 =4 T=06 T=2 =4 T=6

Total number of transitions 102 89 45 121 79 45
— daytime 44 41 24 65 42 23
— night-time 58 48 21 56 37 22

Total number of marginal transitions 41 46 28 50 44 25
— daytime 19 19 16 27 23 12
— night-time 22 27 12 23 21 13

Total number of in-between transitions 61 43 17 71 35 20
— daytime 25 22 8 38 19 11
— night-time 36 21 9 33 16 9

Table 2

Duration of staying in BBSs (reiterated for 20 agents). The total time spent in each BBS is denoted as Xtpg,
whereas, the average time as fggs.

Duration, Daytime/ Early bird chronotype Night owl chronotype

¢ [min] night-time =2 =4 =6 =2 =4 =6

Xips 358 295 228 225 235 352

Staw 358 531 638 246 435 471

Xty 358 138 127 429 162 155

SIRE 366 476 447 541 607 462

Ips Daytime 44 (1tr) 0 91 (11tr) 16 2 tr.) 32 (2tr) 62 (2tr)
Night-time 12 (27 tr.) 15 20 (7 tr.) 10 (19 tr.) 19 9 tr) 28 (8 tr.)

TAw Daytime 13 16 37 5 14 27
Night-time 16 18 44 14 17 31

T Daytime 15 14 14 10 14 25
Night-time 16 14 86 14 11 30

IRE Daytime 18 19 23 16 20 31
Night-time 6 13 32 15 26 45

The standard deviation of the total time spent in BBS (XZ#pps) equals 84.5, whereas
the standard deviation of the average time spent in the state (7gps) equals 2.9. This fact
indicates a high variance of agent state dynamics, which is due to the heterogeneity of the
agent population in terms of the brain state behavioural patterns.

Following the statistics in Table 2, some observations can be summarized in the follow-
ing way. First, in the daytime agents spent most of the time in the active state (AW). Such a
result corresponds well with the real life observations (Phillips and Robinson, 2007, 2008;
Phillips et al., 2011, 2010). Next observation concerns the different total time spent in DS
and AW states for both chronotypes while increasing 7, i.e. for the early birds Xzps(]),
Ytaw (1) and Xty (), whereas for the night owls X¢ps (1), Xtaw (1) and Xty (). Thus,
parameter T makes chronotypes behave in a slightly different way. Concerning dependen-
cies tpps (1), as expected, we clearly notice the increasing average time spent in each state
depending on the increment of 7.

We also have to discuss those cases where the DS state occasionally occurs in the
daytime. As we can see in Table 2, it happens a few times less frequently than during the
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Fig. 6. The number of transitions and the average time (X¢/n) spent in a BBS depending on the probabilities
of the in-between transitions (probabilities of the in-between transitions are equally set for all states).

night-time. In short, this is a consequence of the simulation of real life situations when the
brain reaches the marginal entropy limit after intensive mental activity (e.g. concentrated
thinking efforts) and completely “switches off” to recover in the DS state, see Fig. 5. The
periods of complete recovery statistically are much longer during the daytime, as agents
do not get so exhausted during the night-time recovery period.

Additionally, the concerted circadian model is also capable of simulating the em-
pirically observed sleep-wake cycles during the night-time. Depending on the model
parameters, we can obtain a different number of REM (i.e. RE state that can be as-
sociated with the dreaming state), NREM (DS state can be associated with the deep
sleep state) and awakening states (in our model it can be associated with active wake-
fulness (AW) and thinking (TH) states) cycles during the night-time. The results ob-
tained are relatively close to the numerous neurophysiological research results for sleep-
ing stages during the night-time (Booth and Diniz Behn, 2014; Brown et al., 2012;
Prerau et al., 2016).

Next, in Fig. 6, the simulation results of the number of in-between transitions and the
average time spent in BBS are presented depending on the probabilities of the in-between
transitions. The results confirm anticipated outcomes. That is, the number of in-between
transitions is in direct ratio to probabilities of the in-between transitions. Accordingly, an
average time spent in BBS is in inverse ratio with probabilities of the in-between transi-
tions. As we can see, these dependencies are similar for both chronotypes.

The authors argue that the model simulation, based on the conceptual framework, can
be interpreted using entropy S and stylized kinetic and potential energy. According to the
proposed approach, free energy A is the source of useful energy (work), which expresses
itself in the terms of expendable energy: Ej (kinetic) and E, (potential), see Egs. (4), (5),
and Fig. 1.

Hence, according to the model, the nature of underlying fundamental brain processes
for each BBS can be directly revealed by the temporal dynamics of stylized entropy as well
as stylized kinetic and potential energy patterns, see Fig. 7. Simply speaking, entropy S,
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as a measure of disorder in the brain system, shows the level of internal informational
noise (decoherence) and mental exhaustion.

According to thermodynamics and statistical mechanics, the most general interpre-
tation of entropy results in a measure of uncertainty about a system or, in other words,
disorder. In fact, such a measure has the opposite meaning to the order observed in the
inner structures and the behaviour of living systems. This provides clear incentives for
living systems to employ another measure, which is called negentropy. This term was first
used by Schrodinger. He introduced the concept of negative entropy for a living system
as entropy that it exports to keep its own entropy low. Negentropy for the dynamically
ordered sub-system can be redefined as the specific entropy deficit relative to the sur-
rounding chaos. In this way, negentropy can be understood as a measure of the distance
D of the entropy state S to the white noise state Spax

D(px) = S(rx) = S(px) = Smax — S(px) = / px(u)log px(u)du, (12)

where S(r,) — the entropy of the Gaussian white noise distribution r, with the same mean
and variance as of the investigated systems distribution p,; S(p.) — the entropy of the
investigated system. It is assumed that, if the signal is random, then the signal has a nor-
mal (Gaussian) distribution. When an investigated system state differs from the Gaussian
white noise distribution, then negentropy d(p,) > 0, and when it is equal to a random
distribution, then negentropy d(p,) = 0. In the first case, we have some degree of order,
and in the second case, there is no order at all.

This makes perfect sense as a random variable with a Gaussian white noise distribution
would need the maximum length of data to be accurately described. If px is less random,
then something about it is known beforehand, i.e. it contains less unknown information,
and accordingly it needs a smaller length of data to be described. In other words, negen-
tropy measures something which is known about a systems state.® In this way, negentropy
serves as a measure of order while entropy, as a measure of disorder. Hence, it is apparent
that unlike engineering (where negentropy takes the form of digital information and is
quantized in bits), social and biological systems are much more complex self-organizing
processes and require a more sophisticated approach (Plikynas, 2016).

Similarly, we assume that another directly related variable, i.e. kinetic energy Ey, de-
notes a corpuscular type of energy at the level of molecular movements in the brain. Ac-
cording to the model assumptions, Ej is in direct ratio to S, whereas £, denotes a form
of the field-like “potential” energy. According to the model assumptions, potential en-
ergy can be associated with the electromagnetic fields emitted in the case of the EEG
(electroencephalography) measurements. In short, the potential energy is associated with
negentropy, i.e. informational and biological self-organized order (coherence of the inner
fields) in the brain (Plikynas, 2016).

6Gaussian white noise refers to the probability distribution with respect to the average value, in this context,
the probability of the signal reaching certain amplitude, while the term white refers to the flat power spectral
density distribution. In general, Gaussian noise is not necessarily white noise, yet neither property implies the
other.
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Fig. 7. Dynamics of entropy and stylized energy (kinetic and potential) for both chronotypes. Periodicity of the
applied probabilistic in-between transitions 7 = 2 min and probabilities of the in-between transitions are equal
to 0.1.

It is important to note that the BBS dynamics (see Fig. 5) is generated via time depen-
dent processes of entropy S and stylized energy (see Eq. (4)). In essence, each brain state
is interpreted as a characteristic process entirely composed of the dynamics of these fun-
damental thermodynamic factors or, in other words, stylized entropy and energy directly
reflect the inner activity of the brain system. For instance, from Fig. 7 we can clearly
discern continuous ups and downs of the entropy S and energy E.

In fact, turning points in the diagram indicate transitions between BBS, which occur
because the simulated brain system either reaches marginal limit S (Smin Or Smax) or prob-
abilistic in-between transitions.” In the latter case, transitions (turning points) occur before
the brain system reaches the marginal limits of S, see Fig. 7. The intensity of transitions
basically depends on the S margins, probabilities of the in-between transitions (see Fig. 6)
and time period T (in minutes) of the applicable probabilistic in-between transitions (see
Table 2). Depending on the setup of chosen parameters, we can obtain various S, E and
BBS patterns, which essentially characterize the brain states dynamics. In this way, after
each simulation we get unique patterns of S and E curves and BBS dynamics respectively.

Thus, entropy S and both types of energy are cornerstone parameters. However, there
are other secondary parameters like the chronotype of an agent, which, according to the

7 After the marginal point has been reached, following the scheme of transitions, an agent is probabilistically
redirected into another BBS process (see Fig. 2).
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Fig. 8. Comparison of entropy S and stylized energy (Ey and E)) for both chronotypes (EB — early birds, NO
— night owls) in the daytime and night-time periods in each BBS.

model setup, implies a specific (chronotype dependent) behavioural pattern of the in-
between transitions (see Fig. 4). Therefore, we can discern some differences in entropy
and energy dynamics for both chronotypes in the simulations. For instance, in the day-
time night owls tend to have a higher entropy, while at night-time, lower entropy S levels,
see Fig. 7. Let us recall again that entropy S as a measure of disorder indicates the level
of informational noise (decoherence) in the brain system and therefore can be associated
with the mental exhaustion. Hence, following the presented simulation results, night owls
naturally tend to be more exhausted during the daytime and less, during the night-time.

Below we examine the average levels of fundamental factors, i.e. entropy S and stylized
energy (Ey and E)) for both chronotypes (EB — early birds, NO — night owls) during
daytime and night-time periods in each BBS, see Fig. 8. Our primary goal is to see whether
there are differences between the fundamental factors: (i) the states in the daytime and
night-time periods and (ii) chronotypes. Hence, we can notice a few things:

1. Inthe deep relaxation DS (deep sleep) state, differently from all other states, for both
chronotypes the average (i) entropy S level and that of E are smaller in the daytime
compared to the night-time, and (ii) potential energy E, is comparatively much
higher at night-time. The latter fact quite well corresponds to the model premises
concerning the underlying process at night-time in the DS state: rapid increment of
the potential energy and rapid reduction of entropy S. The former observation can be
interpreted, noting that the DP state happens quite rarely in the daytime (see Table 2)
and it is mainly caused by probabilistic in-between transitions, whereas, at a night-
time it is caused mostly by the marginal transitions, that occur as a consequence of
reaching the condition Spax. Therefore, deep sleep is “shallow” in the daytime and
much deeper at night-time.
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2. In the relaxation (RE) state, we observe a unique behaviour for both chronotypes:
entropy S and Ej respectively, are much larger in the daytime than at night-time.
However, the difference is much more expressed for the early bird chronotype. It
can be interpreted in a similar way as for the DS state. That is, the RE state hap-
pens in the daytime mostly because of the marginal transitions, when an agent needs
rest after reaching the condition Spax (therefore the average S level remains high),
whereas at night-time agents occur in the RE state (mostly dreaming) rather oc-
casionally because of the probabilistic in-between transitions, when the entropy S
level is usually low. Besides, entropy and energy levels are surprisingly higher for
the night owls in the RE state.

3. Energy and entropy distribution in the active AW and TH states is more even.

Now let us examine entropy S dynamics during the day in more detail. In the proposed
simulation approach, entropy S is the major underpinning factor, that governs all the BBS
related processes. In this connection, during the day, the brain, in the sense of the brain
state processes, probabilistically travels through an a priori set entropy map S(¢, n), see
Fig. 3. According to the proposed conceptual approach, we have introduced the entropy
space to cover all the BBS processes and transitions between them in the sense of entropy
dynamics, see Eqs. (10) and (11). In this way, at each moment of time, the brain is involved
in one or another entropy-related BBS process, which is represented by the associated
curve section in the entropy space chart, see Fig. 3.

Hence, in each simulation, the probabilistic nature of the marginal and in-between
transitions between the BBS creates a unique S pattern, see Fig. 9. Entropy patterns are
unique in each simulation. However, they have characteristic traits depending on the main
parameters, analysed in this paper. For instance, in Fig. 9, we have entropy space charts A,
C and B, D with probabilities of in-between transitions 0.05 and 0.20, respectively. Both
pairs of charts substantially differ in the sense of density and structure.

In the charts, each curve represents a corresponding BBS process in terms of the en-
tropy S(t, n) dynamics. Here, entropy S(¢, n) curves are plotted in a line style. Meanwhile,
transitions are marked in a dashed straight line (they return the state related time counter
to zero). Each BBS process (curve) ends with a marginal or in-between probabilistic tran-
sition to another BBS process. In this way, a new BBS process begins again from ¢t = 0.
Hence, in the BBS entropy space charts, time indicates the duration of a particular BBS
process. Such an approach not only helps to visualize each BBS process, but it also helps
to see the progression and overall picture of the BBS dynamics. For instance, in the dy-
namics of the BBS entropy space charts, we can observe 1) repeating BBS processes as
dense curve areas, 2) marginal transitions occurring at the Spin and Spax margins, 3) in-
between transitions occurring between the Spin and Spax margins, 4) DS and RE state
processes as descending curves, 5) AW and TH state processes as ascending curves, 6)
duration of each BBS, etc.

Hence, it is not clear whether the simulations give results that are different or better
than previous models. However, we had a great difficulty to find any similar model and
simulation results to compare. Sure, there are some related studies like (Borbely, 1982;
Booth and Diniz Behn, 2014; Borbély and Achermann, 1999; Fulcher et al., 2008;
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bird (upper charts) and night owl (lower charts) in terms of their characteristic entropy processes and probabilistic
marginal and in-between transitions between the BBS.

Kronauer et al., 1982; McCarley and Massaquoi, 1986; Moller-Levet et al., 2013;
Reilly and Bambaeichi, 2003; Skeldon et al., 2014); etc, but these models, their simula-
tion setup and results are different too. Mostly they deal with the two-process sleep-wake
rhythms and use EEG or other neurophysiologically-based modelling of brain states. In
short, these are empirical and inductive in their natures of study. We, on the other hand,
use a conceptually deductive approach, i.e. we construct

(i) the unique free energy and entropy model setup to describe the brain states as
entropy and energy dependent processes,
(ii) four-process states (not two!),
(iii) entropy, chronotype and day time dependent stochastic transitions between states
setup.

Hence, our model is different in kind. It models brain states dynamics in a different
framework. Therefore, it is not an easy task to make a comparative analysis of our results
with other approaches.
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In sum, a thorough additional research needs to be done to examine, in detail, the
issues and criteria that will help identify the validity of the proposed model by comparison
with the established phenomenological two-process models, coupled oscillator models
and the reciprocal interaction models (Booth and Diniz Behn, 2014). Hence, the proposed
approach requires a more detailed and physiologically-based mathematical clarification
and empirical validation in the prospective studies.

5. Discussion

Concerning further research directions, the presented model needs thorough parameter
estimation, sensitivity analysis, and verification. Surely, it will be a main direction of the
further research. In the prospective research, additional empirically-based investigations
are needed to calibrate and validate the presented conceptual model as well.

Next, the presented model can also be expanded for simulating transitions between
other types of mental states. Namely, it can be adapted for modelling dynamics of emo-
tional states. Let us recall that psychologists map emotional states in two major axes —
arousal (high to low) and valence (pleasure to displeasure). Such two-dimensional map
has been theorized by Russell and Barrett (1999) to capture one important component of
emotion called core affect (Russell, 2003). Core affect gives emotional states attributes of
felt energy — high, low, and intermediate levels of arousal — which we assume are directly
correlated with the active and passive brain states measured in terms of free energy and
entropy levels. Of course, such hypothesis has to be investigated from the point of view of
neuroscience, cognitive science, and psychology. However, we suppose that all emotional
(arousal) energy states can be interpreted and modelled as characteristic mental processes
described in terms of entropy and free energy dynamics. We believe that it would give a
novel way to model emotional arousal fluctuations during the day. In essence, it could be
modelled as continuous, periodic, and stochastic process.

Due to the involved complexity of interstate transitions, such modelling could start
from Paul Ekman’s six basic emotional states (happiness, hate, grief, hope, fear, desire)
model (Ekman and Cordaro, 2011) and later it can be expanded to Plutchik (2002) and
Russell’s circumplex model of eight emotional states, and even more recent 12-Point Af-
fect Circumplex (12-PAC) emotional model (Yik et al., 2011).

In future, we also foresee that this kind of research framework of brain states dynam-
ics can also take a different application sphere. That is, it may be applied in the domain
of cognitive agents and multi-agent systems research. It is an emerging multidisciplinary
research trend in the domains of artificial intelligence and multi-agent systems. Simula-
tion of agent state dynamics for a single agent leads to the simulation of collective state
dynamics for groups or societies of agents. It concerns the simulation and prediction of
individual and collective behavioural phenomena such as dynamics of emotional states,
political moods, fashion trends, social capital distributions, cultural traits, etc. However,
in order to get there, we first have to find a universal way to simulate human-like brain
states and transitions between them in the most abstract and fundamental way for a single
agent. We suppose that the intrinsic and universal nature of free energy and entropy terms
serves well for this purpose.
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6. Conclusions

In short, this paper provides a deductive conceptual framework, using universal free en-
ergy and entropy terms, that can provide a better understanding of brain states dynamics
as self-organized energy and entropy processes. Based on the proposed modelling frame-
work, we also presented a pilot simulation model to showcase dynamical transitions be-
tween the basic brain states during the day.

It is important to note that the presented conceptual model has been constructed on
the deductive theoretical assumptions and does not directly stem from the empirical data
modelling. The main purpose was to find out what inner fundamental processes in the
brain can cause the main experimentally observable brain state dynamics.

According to the literature review, for the first time, stylized thermodynamic Helmholtz
free energy and entropy terms were used to differentiate brain states and describe stochas-
tic dynamics of transitions between states. We shared ideas how universal and intrinsic
free energy and entropy principles can be employed for a better understanding and simu-
lation of brain states as self-organized energy and entropy processes. Even a conceptual
possibility to model such dynamics, using entropy terms, gives a very substantial new
knowledge about the implicit self-organizing nature of entropy and energy processes tak-
ing place in the brain.

It is important to note that in our model, entropy constraints trigger motion (transitions
between brain states). That is, marginal entropy constraints lead to the transition processes
between attractor states so that brain functioning can be optimized during the day. In this
way, the brain behaves as self-regulating and adaptive behavioural mechanism. Thus, we
proposed each basic brain state to model as specific endogenous (entropy and energy)
processes that, change over time following intrinsic patterns. Brain states are interpreted
as specific entropy and energy-related thermodynamic processes, that follow character-
istic pattern changes over time. Each process leads to the marginal entropy and energy
boundaries, where stochastic transitions take place. Due to the complexity involved, we
have approached such a process in a reductionist way, using stylized entropy and energy
evaluations.

Our model is based on the deductive assumption that the homeostatic relaxation oscil-
lator can be nailed down to the fundamental rhythmic processes of free energy and entropy,
taking place in the brain during the day. Based on this assumption, we have constructed a
new way of modelling the homeostatic relaxation oscillator. We argue that the proposed
endogenous model can simulate homeostatic rhythmic dynamics of brain states in a more
meaningful way as compared to the classical ‘sleep pressure’ approach.

The homeostasis simulation for two chronotypes was able meaningfully to differen-
tiate the behaviour of both chronotypes. We obtained statistically significant differences
of brain state dynamics for two chronotypes during the day. For instance, our simulations
have revealed experimentally observed chronotype dependent features as follows: owls
tend to feel most energetic just before sleep at night, while early birds feel more energetic
early in the day.

The simulation setup has revealed how two major simulated chronotypes (early birds
and night owls) behave with respect to the basic brain states, entropy and energy dynamics,
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depending on a few basic parameters such as the recalculation time period t of probabilis-
tic in-between transitions, the probability of in-between transitions, and the daytime/night-
time periods. In essence, the simulation results were analysed in terms of (i) marginal and
in-between transitions in the daytime and night-time periods, (ii) duration of staying in
BBSs, and (iii) dynamics of entropy and stylized energy (kinetic and potential).

In sum, the simulation results show that after additional theoretical and empirical stud-
ies, the proposed conceptual research framework has a potential to (i) describe BBS using
entropy and energy terms, (ii) generate homeostatic rhythms for different chronotypes,
(iii) provide empirical predictions of brain state dynamics, (iv) be used for the studies
of societies composed of such agents, and (v) be applied in the artificial intelligence do-
main, machine learning, and robotics while mimicking human-like robot state dynamics.
In the prospective research, the chronotype behaviour modelling can be related with the
social jetlag (misalignment of the biological and social time), cognitive abilities, depres-
sive mood, insomnia, daytime sleepiness, etc.
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