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Abstract. Machine Translation has become an important tool in overcoming the language barrier.
The quality of translations depends on the languages and used methods. The research presented
in this paper is based on well-known standard methods for Statistical Machine Translation that are
advanced by a newly proposed approach for optimizing the weights of translation system compo-
nents. Better weights of system components improve the translation quality. In most cases, machine
translation systems translate to/from English and, in our research, English is paired with a Slavic
language, Slovenian. In our experiment, we built two Statistical Machine Translation systems for
the Slovenian-English language pair of the Acquis Communautaire corpus. Both systems were op-
timized using self-adaptive Differential Evolution and compared to the other related optimization
methods. The results show improvement in the translation quality, and are comparable to the other
related methods.
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1. Introduction

A translation is a challenging and creative act. A Machine Translation (MT) (Dorr et

al., 1999; Bungum and Gambäck, 2010) can ease the work of a translator, or even
replace it as a rough translation, or as a draft which serves as an aid to the trans-
lation. Nowadays, Statistical Machine Translation (SMT) (Lopez, 1993; Specia, 2010;
Bungum and Gambäck, 2010) is by far the most studied and used MT method (Albat,
2012). SMT was based originally on single words, but has now progressed to the level of
word sequences, called phrases. Currently the most successful SMT approach is phrase-
based translation (Specia, 2010).

Translations in SMT are generated on the basis of statistical models, i.e. translation and
language models, where different models’ weights provide various translations. The trans-
lation model is used to translate words or phrases from the source language to the target
language text, and the language model ensures that the translated text is more fluent. These
models know nothing about each other, so the problem appears to be how to find a set of
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weights that would provide the best translation quality. This problem can be regarded as an
optimization problem. Optimization refers to the process of finding the optimal models’
weights, where the optimal weights are those which maximize the translation quality.

The translation quality is measured using translation error metrics, and the Bilingual
Evaluation Understudy (BLEU) (Papineni et al., 2002) metric is one of the more popular
and inexpensive automated metrics for achieving a high correlation with human judgments
of quality (Callison-Burch et al., 2006). It is worth noting that MT evaluation is a complex
problem, and that methods such as BLEU are not without criticism.

The quality of MT depends on the languages. For some language pairs, SMT brings
good results, especially if the target language is English. The morphological richness of
languages has a direct impact on the quality. Significantly lower quality is obtained for
language pairs when translating from English into a morphologically rich language. Ag-
glutinative target languages (Hungarian or Turkish) are even more problematic for statis-
tical approaches. Although the approach proposed in this paper is general, our research
was done on a difficult language pair where one language is highly analytical (English)
and the other, morphologically rich (Slovenian) (Sepesy Maučec and Brest, 2010).

Numerous algorithms exist for solving general optimization problems with real valued
numbers. One of these algorithms is the Differential Evolution algorithm (DE) (Storn and
Price, 1997; Price et al., 2005; Neri and Tirronen, 2010; Das et al., 2016), which is a
simple and effective algorithm for global optimization. It has been proved to be efficient
at solving different optimization problems involving real valued numbers which interact
non-linearly with each other (Das and Suganthan, 2011; Das et al., 2011; Zhou et al., 2011;
Bošković et al., 2011; Glotić and Zamuda, 2015; Mlakar, 2014; Bošković and Brest, 2016).
The DE algorithm is an evolutionary based algorithm where each individual from the
population is described as a vector of models’ weights.

Currently, the more popular way to find optimal models’ weights is to use Minimum
Error Rate Training (MERT) (Och, 2003; Bertoldi et al., 2009) and, in this paper, we
used the jDE (Brest et al., 2006) algorithm where each individual has its own crossover
rate and scale factor. The authors in Brest et al. (2006), Zhang and Sanderson (2009)
observed through experiments that the efficiency of the DE algorithm is improved when
control parameters respond to the evolution with a self-adapting mechanism. This enables
the jDE algorithm to solve our problem more efficiently and reduce the number of main
control parameters. Translations are then evaluated using the BLEU metric.

Recently, Evolutionary Algorithms have attracted increasing attention for enhancing
the performance of Natural Language Processing (NLP) (Bungum and Gambäck, 2010)
techniques. NLP is a field concerned with the interaction between computer and human
using natural language – spoken (Du Bois et al., 2005; Kasparaitis and Anbinderis, 2014)
and written (Koehn, 2005; Steinberger et al., 2006). In this paper, the focus is on the
written language.

The SMT system should produce translations in a reasonable time. Some MT appli-
cations are working almost in real-time. Since the training and optimization processes are
both a part of an offline training where we have a static corpus and no time constraints,
the training time is not so relevant. Once the SMT system is built it is ready to use, and
then the actual translating depends mostly on the size of the text which is to be translated.
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The main goal of this paper is to find the optimal models’ weights. The work presented
in this paper is different from previous studies in several aspects. Firstly, this is the first
study of using the jDE algorithm to optimize models’ weights within SMT. We believe
that the self-adaptive nature of the jDE algorithm in comparison to a DE algorithm im-
proves the efficiency of the optimization algorithm. Secondly, the evaluation is usually
based on only one optimizer run (Koehn et al., 2009; Bojar et al., 2015). In this paper,
each optimizer (MERT, MIRA, DE, and jDE) was run many times, and the results were
compared statistically to meet the conventional significance level.

The remainder of the paper is organized as follows. Section 2 presents some back-
ground on the related work. Our experiment is described in Section 3, and the results are
presented in Section 4, along with the statistical analysis using a MultEval (Clark et al.,
2011) tool. We conclude this paper with Section 5 where we give our opinion about the
obtained results and future work.

2. Background

The availabilities of linear models and discriminative optimization algorithms have been
a huge boon to SMT, allowing this field to move beyond the constraints of generative
noisy channels (Och and Ney, 2002). The ability to optimize these models according to an
error metric has become a standard assumption in SMT, due to the wide-spread adoption
of MERT. The problems with MERT can be addressed through the use of surrogate loss
functions. The Margin Infused Relaxed Algorithm (MIRA) (Watanabe et al., 2007; Chiang
et al., 2008; Chiang et al., 2009; Cherry and Foster, 2012; Hasler et al., 2011) employs a
structured hinge loss. In order to improve generalization, the average of all weights seen
during learning is used on unseen data. Chiang et al. (2008) took advantage of the MIRA
to modify each update to suit SMT better. Pairwise Ranking Optimization (PRO) (Hopkins
and May, 2011) aims to handle large feature sets inside the traditional MERT architecture.
This architecture is desirable, as most groups have infrastructures to n-best decode their
tuning sets in parallel. A simple approach of using Evolutionary Algorithms in SMT was
shown in our previous work (Dugonik et al., 2014).

SMT deals with mapping sentences in one natural language (source) into another nat-
ural language (target). This process can be represented as a stochastic process. There are
many SMT variants, depending on how the translation is modelled. Commonly, we are
translating the text sentence by sentence. We want to find the best possible translation e∗

out of all possible translations e for a given source sentence f . The system selects the
translation with the highest probability P(e|f ). Applying the Bayes rule, the probability
P(e|f ) is decomposed into probabilities P(f |e), P(e) and P(f ):

e∗ = argmaxe

P(f |e) · P(e)

P (f )
= argmaxeP(f |e) · P(e). (1)

The denominator P(f ) does not influence argmax and can be disregarded.
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This approach has three major aspects:

• Translation model P(f |e): specifies the set of possible translations for some target
sentence and assigns probabilities to these translations.

• Language model P(e): models the fluency of the proposed target sentence and as-
signs distributions over strings (higher probabilities are assigned to sentences which
are more representative of a natural language).

• Search process (argmax operation): this process is called decoding, and its job is to
find possible target translations.

SMT systems usually decompose entire sentences into a sequence of strings called
phrases. These phrases are not linguistic phrases but phrases found using statistical meth-
ods from a corpus. The SMT system looks for general patterns (n-grams) which appear in
everyday language. An n-gram is a contiguous sequence of n items from a given sequence
of text or speech. In the phrase-based model, the source sentence f is broken down into
I phrases f̄i , and each source phrase f̄i is translated into a target phrase ēi . From the pro-
duced translations it can be seen that the target sentence is not fluent, hence the idea to
introduce weights and scale the contribution of each model:

e∗ = argmaxe

I
∏

i=1

P(f̄i |ēi)
λ1 · P(e)λ2 . (2)

We can generalize the setup of the SMT system to many different models, and we can
scale the contribution of each of them:

e∗ = argmaxe =

r
∏

i=1

hi(e, f )λi , (3)

where h1, . . . , hr are the models of a search algorithm, e.g. translation model, lan-
guage model, reordering model, word penalty, etc., r denotes the number of models, and
λi , . . . , λr are models’ weights. The weights are scaling factors, and are optimized with
a loss function which evaluates the translation quality, for example, the BLEU evaluation
metric. These models are trained separately and then combined, assuming that they are
independent of each other. But the contributions of different models influence each other.
The problem is to find a set of weights that will provide the best translation quality:

e∗(λi , . . . , λr ) = argmaxe exp

r
∑

i=1

λi · loghi(e, f ). (4)

The area of possible weight settings is too large for the exploration of all possible
values. Usually a tuning set is used to optimize weights. The simplest method is to try
out with a large number of possible settings and pick what works best. Assuming we wish
to optimize our decoder’s BLEU score, the natural objective of learning would be to find
such λ = λi, . . . ,λr that the BLEU score is maximal.
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Algorithm 1 The Differential Evolution Algorithm

1: Initialization(P) Eq. (5)
2: for g = 1 to G do

3: for i = 1 to Np do

4: mi = Mutation(P, i) Eq. (6)
5: ci = Crossover(P, i, mi ) Eq. (7)
6: end for

7: for i = 1 to Np do

8: if (fitness(ci) > fitness(xi)) then

9: xi = ci

10: end if

11: end for

12: end for

Optimization refers to the process of finding the optimal weights for this linear model
where optimal weights are those which maximize the translation quality on the tuning
set. During decoding, the decoder scores translations using a linear model. The features
of this linear model are the probabilities of multiple models. Each feature contributes
information over one aspect of the characteristics of a good translation, e.g. the language
model ensures that the translation is more fluent. Each feature can be given a weight that
sets its importance. We see the problem as an optimization problem that will be tackled
using the jDE algorithm.

2.1. Differential Evolution

The DE algorithm is a simple and effective evolutionary algorithm for global optimiza-
tion. This algorithm is a population-based algorithm, and uses the differences between
individuals. These differences are defined with simple and fast arithmetic operations. The
DE algorithm uses a population P of Np individuals, where each individual is represented
as a D-dimensional vector. The elements of the vector are real-valued numbers from speci-
fied intervals. These intervals and the dimension (D) are determined by the problem being
solved. The following control parameters are specified by the user and affect the behaviour
of the algorithm:

• mutation parameter (F),
• crossover parameter (Cr),
• population size (Np).

These parameters are fixed during the evolutionary process. If nothing is known about
the problem, the initial population is chosen randomly:

P0 = {x1,0,x2,0, . . . ,xNp,0},

xi,0 = {x1,i,0, x2,i,0, . . . , xD,i,0},
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xj,i,0 = rand(min,max),

i = 1,2, . . . ,Np; j = 1,2, . . . ,D, (5)

where min and max are the lower and upper bounds determined by the problem. The
function rand(min,max) returns a uniformly distributed random number within the range
[min,max).

The crucial idea behind the DE algorithm is a strategy for generating new individu-
als. Based on the type of problem we can choose between various strategies of the DE
algorithm which determine the mutation and crossover methods. The classic DE algo-
rithm, shown in Algorithm 1, uses the rand/1/bin strategy. The algorithm generates new
individual mi by adding a weighted difference vector between two individuals from the
population to a third individual from the population:

mi = xr1 + F · (xr2 − xr3),

r1 6= r2 6= r3 6= i. (6)

The integers r1, r2 and r3 are chosen randomly from the interval {1,Np} and are dif-
ferent from each other and the current index i . F is a constant factor which controls the
amplification of the differential variation.

cj,i =

{

mj,i if (rand(0,1)6 Cr) or (j == jrand)

xj,i otherwise.

i = 1,2, . . . ,Np; j = 1,2, . . . ,D. (7)

Cr is a crossover probability which controls the fraction of parameters that are copied
from the mutant vector mi . The function rand(0,1) returns a uniformly distributed ran-
dom number within the range [0,1). The integer value jrand is the index of a randomly
taken individual from the mutant vector mi to ensure that the newly generated individual
ci does not duplicate xi . If the newly created individual ci yields better fitness value than
the current individual xi , then ci survives into the next generation. The process of mu-
tation, crossover, and selection is repeated until the optimum is located or a prespecified
termination criterion is satisfied. In addition, the best individual is evaluated for every
generation g in order to keep track of the progress that is made during the optimization
process.

2.2. jDE Algorithm

The classic DE algorithm has three control parameters, F , Cr and Np, that are fixed dur-
ing the evolution. They are usually problem-dependent, and with different values during
the evolutionary process, allow the algorithm to perform better. For this purpose, the jDE
algorithm (Brest et al., 2006, 2007) recalculates two control parameters using the follow-
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Fig. 1. The optimization process for finding the best models’ weights using the jDE algorithm.

ing equations:

Fi =

{

Fmin + Fmax · rand() if rand() < τ1

Fi otherwise,
(8)

Cri =

{

rand() if rand() < τ2

Cri otherwise.
(9)

Fmin = 0.1 and Fmax = 0.9 determine the lower and upper bounds for the parameter F ,
and the function rand() returns a uniform random value within the interval [0,1]. τ1 and
τ2 represent probabilities for recalculating F and Cr .

As seen in Fig. 1, the jDE algorithm has three inputs: The tuning set, models, and
the Moses decoder (Koehn et al., 2007). The output of the algorithm is the best mod-
els’ weights λ

∗. The tuning set consists of a source and target sentences. This algorithm
is a population-based algorithm, and the population P consists of individuals where an
individual λ is represented by the vector of models’ weights: λ = {λ1, λ2, . . . , λD}. In
the initial population, weights in vectors are generated randomly between lower (min)
and upper (max) bounds, and the scale factor F and crossover rate Cr are set initially
to 0.5 and 0.9, respectively. The algorithm generates a new trial vector for each vector in
the population using mutation and crossover, and the F or Cr are recalculated if certain
conditions are met. During the selection, this trial vector is then compared to the current
vector in the population. The trial vector survives to the next generation if the trial vec-
tor is better than the current vector from the population. In order to evaluate a vector, the
SMT system translates the source sentences into the target sentences using weights from
this vector. The translated sentences are then compared with the target sentences from the
tuning set using the BLEU metric, which returns a real number where a higher number
implies greater similarity. The algorithm repeats this process until it reaches the maxi-
mum number of generations. In the last generation, the best individual is taken from the
population and its weights are used for translating in real-time.
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Table 1
The aligned and selected JRC ACQUIS corpus.

Aligned Selected

Slovenian English Slovenian English

Sentences 1,170,663 700,000
Words 25,964,572 30,382,264 14,262,144 17,093,472

3. Experiment

In our experiment, we built two SMT systems for translating from Slovenian to English
and vice versa. All of the codes and data necessary to begin work on an SMT system are
available as a public source, Moses toolkit (Koehn et al., 2007), and the freely available
JRC-Acquis parallel corpora (Steinberger et al., 2006) used as a benchmark in the SMT
community (Koehn et al., 2009).

Moses toolkit is an open-source toolkit for SMT which contains the SMT decoder and
a wide variety of tools for training, tuning and applying the system to many translation
tasks. The SMT system is frequency-based, where frequencies are trained on translated
texts that are preprocessed and collected into a parallel corpus. Parallel corpora vary in
size tremendously. Most of the language pairs, for example, Finnish to Irish, will have a far
smaller parallel corpora available. Parallel corpora exist for all European languages and
for many other pairs, such as Mandarin to English. However, one of the major challenges
faced is the scarce availability of parallel corpora, so we need some methods for creating
parallel corpora automatically and efficiently because manual creation of a large parallel
corpus can be very costly in terms of effort and time. Currently, parallel corpora are an
object of interest.

The used JRC-Acquis corpus must not be seen as a legal reference corpus. Instead, the
purpose of the JRC-Acquis is to provide a large parallel corpus of documents for (com-
putational) linguistics research purposes. To align the sentences in a source and language
text automatically, we used the HunAlign aligner (Varga et al., 2005). After successful
aligning, we selected 700,000 sentences which were used in our experiment. The exact
size of the corpora is shown in Table 1. The used corpus was tokenized, lowercased, and
sentences longer than 80 words were removed. It is important to obtain a representative
sample as much as is possible. The translation quality of neighbouring sentences corre-
lates positively, therefore, we chose sentences from different parts of the corpus to create
the training and test sets.

The training set was divided further into training and tuning sets. Sentences shorter
than 8 and longer than 60 words were removed from the tuning and test sets. The final
sizes of all sets are seen in Table 2. The language model is estimated from a monolingual
corpora, typically using relative frequency estimates which are then smoothed. For lan-
guages such as English, typically, billions and more words are used. Deploying such large
models can pose significant engineering challenges. This is because the language model
can easily be so large that it will not fit into the memory of conventional machines. Also,
the language model can be queried millions of times when translating sentences, which
precludes storing it on disk.
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Table 2
Divided JRC ACQUIS corpus.

Slovenian ↔ English

Train Tuning Test

Sentences 560,133 644 1,987
Words 11,614,065 13,213,582 15,065 16,944 70,245 74,922

For each language (Slovenian and English) we built language and translation models.

The language model was a 5-gram language model with improved Kneser-Ney smooth-

ing using the IRST Language Modeling (IRSTLM) (Federico et al., 2008) toolkit. The

translation models were built using grow-diag-final-and alignment from GIZA++ (Och

and Ney, 2000). We also extended both SMT systems with four advanced models: The

distortion model, the lexicalized reordering model (msd-bidirectional-fe reordering), the

word and phrase penalty models. Each SMT system had six models and 14 weights:

• 1 weight for the word penalty model (λ1),

• 1 weight for the phrase penalty model (λ2),

• 4 weights for the translation model (λ3, λ4, λ5, λ6),

• 6 weights for the lexical reordering model (λ7, λ8, λ9, λ10, λ11, λ12),

• 1 weight for the distortion model (λ13), and

• 1 weight for the language model (λ14).

The translation quality is considered to be the correspondence between a machine and

professional human (reference) translation. There are many metrics, i.e. BLEU, Transla-

tion Error Rate (TER) (Snover et al., 2006), Word Error Rate (WER) (Saon et al., 2006),

etc. The more popular metric in SMT is the BLEU metric, because it is quick, inexpen-

sive, language-independent, and one of the first metrics to achieve a high correlation with

human judgments. The central idea behind BLEU is that the closer a machine translation

is to a reference translation, the better it is. The primary task in the BLEU metric is to

compare the n-grams of the machine translation with the n-grams of the reference trans-

lation and count the number of matches which are position-independent. The foundation

of the BLEU metric is the modified n-gram precision measure. This captures two aspects

of the translation: Adequacy and fluency. The unigram scores are found to account for

how much the information is retained (adequacy), and the longer n-gram scores account

for the fluency of the translation, i.e. if the target language is English, to what extent it

reads like “good” English. The BLEU metric’s output is always a real-valued number be-

tween 0 and 1. This value indicates how similar the machine and reference translations

are. Values closer to 1 represent the more similar texts, however, few machine translations

will attain a score of 1 because, in that case, the machine translation must be identical to

the reference translations.
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Fig. 2. Evaluating the translation quality using the test set.

Table 3
Comparison between baseline system and the system optimized with the jDE

algorithm on the test set.

BLEU ↑

Slovenian → English English → Slovenian

Baseline (non-optimized) 58.00 50.47
Optimized with jDE 60.57 51.95

4. Results and Discussion

4.1. Results

We performed the experiment in order to compare the jDE algorithm with the state-of-
the-art methods MERT and MIRA, and with the DE algorithm. For each optimizer we
performed 30 independent runs on the tuning set described earlier. To evaluate optimizers,
we used the test set, which consists of a source and target language texts. The source
language text was translated using the decoder and models with the non-optimized and
optimized weights. The translated text was then compared with the target language text
and evaluated using the BLEU metric, as seen in Fig. 2.

The comparison of the results of SMT systems with the jDE optimization against the
SMT systems without optimization is shown in Table 3. The jDE algorithm achieved
BLEU scores of 60.57 for the Slovenian to English SMT system and 51.95 for the En-
glish to Slovenian SMT system, followed by MERT, the DE algorithm, and MIRA. Note
that an improvement of 2-3 BLEU points is usually hard to obtain, and we will outline
this further in Section 4.2.

We compared the newly proposed jDE optimizer with the other state-of-the-art opti-
mizers. Table 4 shows a comparison between MERT, MIRA, the DE algorithm, and the
jDE algorithm. The best and mean BLEU scores were obtained from 30 optimizer runs.
The jDE algorithm achieved the best BLEU scores in the case of the Slovenian to English
SMT, while DE and jDE were the best performing algorithms for English to Slovenian
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Table 4
Best and mean BLEU score of 30 runs for the Slovenian ↔ English SMT systems.

MERT MIRA DE jDE

Best Mean Best Mean Best Mean Best Mean

Slovenian → English 60.56 60.04 60.32 60.06 60.52 59.70 60.57 60.12

English → Slovenian 51.85 51.28 51.40 51.02 51.86 51.52 51.95 51.51

MERT MIRA DE jDE

Slovenian−>English

λ

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Word Penalty
Phrase Penalty
Translation Model 1
Translation Model 2
Translation Model 3
Translation Model 4
Lexical Reordering Model 1

Lexical Reordering Model 2
Lexical Reordering Model 3
Lexical Reordering Model 4
Lexical Reordering Model 5
Lexical Reordering Model 6
Distortion Model
Language Model

Fig. 3. The best values of weights after the optimization for Slovenian-English SMT system using MERT, MIRA,
DE and jDE.

translation. MERT and MIRA obtained worse results for SMT systems in both translation
directions.

The obtained values of weights for the Slovenian-English SMT system for MERT,
MIRA, DE and jDE are shown in Fig. 3. Despite the difference in BLEU score, some of
the parameters are very different. The phrase penalty parameter for MIRA and jDE was
negative, while for MERT and DE it was positive. Also, for jDE, we can notice that phrase
penalty, translation and language models contributed most to the translation.

The obtained values of weights for the English-Slovenian SMT system for MERT,
MIRA, DE and jDE are shown in Fig. 4. The 4-th parameter for the lexical reordering
model was much higher in DE than in the other systems, and the parameter for the phrase
penalty model was much lower in DE than in the other systems. Also, it can be seen, that
for all systems, except DE, the word penalty model contributed the most to the translation.

Since the optimization process was a part of an offline training with a static corpus,
described in Section 3, and no time constraints, the optimization time was not so relevant.
Once the SMT system was built, the actual time for translating was the same for all op-
timizations. For a text of 15,000 words it took approximately 5 minutes on a single CPU
(i5). As we can see in Table 5, both DE and jDE used the same settings, and, with these,
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MERT MIRA DE jDE

English−>Slovenian
λ

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Word Penalty
Phrase Penalty
Translation Model 1
Translation Model 2
Translation Model 3
Translation Model 4
Lexical Reordering Model 1

Lexical Reordering Model 2
Lexical Reordering Model 3
Lexical Reordering Model 4
Lexical Reordering Model 5
Lexical Reordering Model 6
Distortion Model
Language Model

Fig. 4. The best values of weights after the optimization for the English-Slovenian SMT system using MERT,
MIRA, DE and jDE.

Table 5
Tuning process statistics for the SMT systems using DE and jDE.

DE jDE

Number of generations 50 50
Population size 15 15
Tuning set size [words] 15,000 15,000
Number of evaluations 750 750
Tuning time [min] 1,875.2 1,875.3

they both made 750 evaluations, and time for one evaluation was around 2.5 minutes on
two CPU’s (i5), resulting in a total optimization time of 1,875 minutes for each.

The goal of the experimental testing was to assess the true translation quality of an
SMT system on a text from a certain domain. However, this is an abstract concept, be-
cause it has to be computed on all possible sentences in that domain. In practice, we will
always be able just to measure the performance of an SMT system on a specific sample.
In our experiment, we compared an SMT system without the optimization (baseline) with
an SMT system which was optimized with MERT, MIRA, the DE algorithm, and the jDE
algorithm. We translated the same test set, and measured the translation quality using the
BLEU metric. One important element of a solid experimental framework is a statistical
significance test that allows us to judge if a change in the score that comes from a change in
the system truly reflects a change in overall translation quality (Koehn, 2004). To measure
the reliability of the conclusion that one system is better than the other, or that the dif-
ference in test scores is statistically significant, we used the MultEval (Clark et al., 2011)
tool, which is a recognized tool for MT significance testing within the field of SMT. Mul-
tEval takes translations from several optimizers and provides two popular metric scores



Improving Statistical Machine Translation Quality Using Differential Evolution 641

Table 6
Statistical test using MultEval for the Slovenian-English SMT system.

Metric Optimizer Avg Std p-value

BLEU ↑ jDE 60.12 0.24 –
MERT 60.03 0.25 0.001
MIRA 60.06 0.19 0.004
DE 59.71 0.49 0.001

TER ↓ jDE 28.36 0.20 –
MERT 28.53 0.20 0.001
MIRA 28.51 0.12 0.001
DE 28.65 0.32 0.001

Table 7
Statistical test using MultEval for the English-Slovenian SMT system.

Metric Optimizer Avg Std p-value

BLEU ↑ jDE 51.51 0.44 –
MERT 51.28 0.48 0.001
MIRA 51.03 0.29 0.001
DE 51.52 0.32 0.001

TER ↓ jDE 36.26 0.45 –
MERT 36.57 0.56 0.001
MIRA 36.61 0.29 0.001
DE 36.33 0.36 0.001

(BLEU, TER), as well as Standard Deviations via bootstrap resampling, and p-values via
approximate randomization. With this, we can mitigate some of the risk of using unstable
optimizers, and it is intended to help in evaluating the impact of in-house experimental
variations on the translation quality.

The statistical comparison using the MultEval tool is shown in Tables 6 and 7, where
the jDE algorithm was used as a baseline. This means that we are looking to see if MERT,
MIRA and the DE algorithm differ statistically significantly according to the jDE algo-
rithm. Again, we can see that the jDE algorithm achieved the higher BLEU scores and the
lowest TER scores for both SMT systems.

4.2. Discussion

According to the author in Koehn (2004), it is difficult to evaluate the translation quality
decently, since it is not entirely clear what the focus of the evaluation should be. Of course,
a good translation has to capture the meaning of the target language text. However, differ-
ences in emphasis are introduced based on the interpretation of the translator. At the same
time, the output should be fluent so that it can be read easily. These two goals (adequacy
and fluency) are the main criteria in an MT evaluation. A human translator may be asked
to evaluate the adequacy and fluency of the translation output, but this is a laborious and
expensive task. Therefore, it is hard to interpret what the BLEU score, for example, 60.57,
means. It is not intuitive, and depends on the number of reference translations used. In our
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Table 8
Example of one translation from Slovenian to English given by different systems.

System Translation

Original za nekatere referenčne laboratorije skupnosti pri odkrivanju bioloških tveganj na
veterinarskem področju javnega zdravstvenega varstva

Reference to certain community reference laboratories in the veterinary public health field of biological
risks

Baseline to certain community reference laboratories for the detection of biological risk in the
veterinary field of public health protection

MERT to certain community reference laboratories for the detection of biological risk in the
veterinary field of public health protection

MIRA to certain community reference laboratories for detection of biological risk in the veterinary
public health field

DE to certain community reference laboratories for the detection of biological risk public health
in the veterinary field

jDE to certain community reference laboratories for the detection of biological risk in the
veterinary public health field

experiment, the example of the differences in BLEU scores between reference translations
and SMT systems with and without optimization, can be seen in Table 8. It is interesting
to note that, in all translations, there is a partial translation “for the detection” (or “for
detection”), which corresponds to “pri odkrivanju” in the original text, while this part was
not translated in the reference translation. We can also see that all the translations except
the one with MIRA have the determiner “the”. Differences in the word order could be
noticed as well.

The authors in Koehn et al. (2009) used the same JRC-Acquis corpus, and built SMT
systems for 462 language pairs including the Slovenian-English language pair. As we can
see from their results, the BLEU score for the Slovenian-English translation system was
61 and for English-Slovenian was 50.7. The exact division of the corpus into train, tuning
and test sets is not published, so we could not make a direct comparison.

4.3. Optimization Settings

The following settings were used for the optimization: D = 14, min = −1, max = 1, Np =

15, G = 50, F = 0.5, Cr = 0.9, τ1 = 0.1, and τ2 = 0.1. Values for F and Cr were set
only within the initial population, and were self-adapting during the evolution process.
The maximum number of generations G was the stopping criterion for the algorithm.

5. Conclusion

Weights in SMT systems can affect the quality of the translations significantly. In this pa-
per, the two phrase-based SMT systems were built successfully, and their weights were
optimized using the jDE algorithm. They were tested on the unseen set, and the results
were comparable. However, based on extensive experiments, the jDE algorithm obtained
better BLEU scores compared to the state-of-the-art algorithms MERT, MIRA and the DE
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algorithm. The jDE algorithm achieved the best BLEU scores of 60.57 for the Slovenian
to English SMT system and 51.95 for the English to Slovenian SMT system, followed
by MERT and the DE algorithm, and MIRA. We are confident of the promising char-
acteristics of algorithms based on Differential Evolution and good attributes of the jDE
self-adaptive mechanism.

Recently, the neural machine translation has emerged as a new paradigm in MT. It also
has many parameters that could be optimized to yield better performance.
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