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Abstract. Construction site selection is a complex problem involving many alternatives and conflict-

ing criteria with vague and imprecise evaluations. Fuzzy multi-criteria decision-making methods are

the most effective tools to obtain optimum solutions under possibilistic uncertainty. In this paper, a

novel interval hesitant fuzzy CODAS method is proposed and applied to a residential construction

site selection problem. A comparative analysis with ordinary fuzzy CODAS method is applied for

validating the proposed method. Also, a sensitivity analysis is conducted for the stability of the rank-

ing results of the interval hesitant fuzzy CODAS method. The results of the analyses demonstrate

the effectiveness of our proposed method.

Key words: construction site, multi-criteria, CODAS, hesitant fuzzy sets, selection problem.

1. Introduction

Selection of the most suitable site for a residential area is one of the conditions determin-

ing the quality of living in urban cities. Residential construction site selection problem

requires operational, environmental, social, and economic criteria to be considered in the

assessment process. These criteria may be intangible, tangible and conflicting with each

other. The assessment process is generally realized under vague and imprecise environ-

ment, which justifies the usage of the fuzzy set theory.

Residential construction site selection problem can be solved by a multi-criterion

decision-making (MCDM) method. MCDM methods help decision-makers to subjec-

tively evaluate the performance of alternatives with respect to the predetermined cri-

teria (Zavadskas et al., 2004, 2014). In the literature, there are many MCDM methods
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such as Analytic Hierarchy Process (AHP) (Saaty, 1980), Technique for Order of Prefer-

ence by Similarity to Ideal Solution (TOPSIS) (Yoon and Hwang, 1981), ELimination Et

Choix Traduisant la REalité (ELECTRE) (Roy, 1991), Analytic Network Process (ANP)

(Saaty, 1996), Evaluation Based on Distance from Average Solution (EDAS) (Keshavarz

Ghorabaee et al., 2015), and Combinative Distance-Based Assessment (CODAS) (Ke-

shavarz Ghorabaee et al., 2016). These methods are constructed not only to handle the

environmental, human, and social aspects of the problem but also to correctly capture the

uncertainties in these aspects. Since residential construction site selection problems in-

volve many uncertainties in terms of vagueness and impreciseness, the best way is to use

fuzzy extensions of these MCDM methods.

Fuzzy sets theory was introduced by Zadeh to capture the uncertainties in human

thoughts through the degree of memberships of the elements in a set (Zadeh, 1965). In or-

der to increase the capability of handling vagueness and impreciseness in the problems,

ordinary fuzzy sets have been extended to many types. Type-n fuzzy sets were developed

by Zadeh to reduce the uncertainty of the membership functions in the ordinary fuzzy

sets (Zadeh, 1975). Interval-valued fuzzy sets were introduced independently by Zadeh

(1975), Grattan-Guiness (1975), Sambuc (1975), Jahn (1975). Intuitionistic fuzzy sets

were introduced by Atanassov to show how the hesitancy degree of a decision maker can

be handled (Atanassov, 1986). Smarandache developed neutrosophic sets for demonstrat-

ing the differences between relativity and absoluteness in the decision makers’ preferences

(Smarandache, 2005). Hesitant fuzzy sets (HFSs) initially described by Torra (2010) are

the extensions of ordinary fuzzy sets where a set of values are possible for the member-

ship of a single element (Torra, 2010). Classical MCDM methods have been extended to

their fuzzy versions using these types of fuzzy sets: intuitionistic fuzzy EDAS (Kahra-

man et al., 2017), ordinary fuzzy CODAS (Keshavarz Ghorabaee et al., 2017), type-2

fuzzy AHP (Kahraman et al., 2014), hesitant TOPSIS (Xu and Zhang, 2013), neutro-

sophic ELECTRE III. In the literature, setting linguistic scale is essentially realized in

two ways: the studies using a constant linguistic scale as in Kwong and Bai (2003), Kulak

and Kahraman (2005) and the studies using tools such as mathematical programming or

statistical modelling to determine the intervals corresponding to the linguistic terms as re-

viewing in Liao et al. (2018) and applied in Cabrerizo et al. (2017). Since our paper falls in

the studies using a constant linguistic scale, we developed linguistic scales corresponding

to fuzzy numbers for our paper.

CODAS is a distance based MCDM method proposed by Keshavarz Ghorabaee et

al. (2016). In this method, the overall performance of an alternative is measured by the

Euclidean and Taxicab distances from the negative-ideal point. The CODAS uses the Eu-

clidean distance as the primary measure of assessment. If the Euclidean distances of two

alternatives are very close to each other, the Hamming distance is used to compare them.

The degree of closeness of Euclidean distances is set by a threshold parameter (Keshavarz

Ghorabaee et al., 2016). It is quite a new method in the literature but thanks to its advan-

tages it is expected to be used more in the future.

In this paper, a novel hesitant fuzzy CODAS method is developed and applied to the

selection of a residential construction site project. The originality of this paper can be



Residential Construction Site Selection Through Interval-Valued Hesitant Fuzzy CODAS 691

explained by three items. Firstly, we develop a novel fuzzy CODAS method and apply

it to a residential construction site selection problem. Secondly, in the proposed method,

the weights of the criteria are obtained by hesitant fuzzy AHP method which makes our

approach an integrated methodology.Finally, for validating the proposedmethod, we com-

pare our results with the results of ordinary fuzzy CODAS method. An explanatory sen-

sitivity analysis is also performed to demonstrate the stability of the ranking results of the

hesitant fuzzy CODAS method.

The rest of the paper is organized as follows: In Section 2, a literature review on con-

struction site selection problems is given. In Section 3, the steps of ordinary fuzzy CODAS

method are presented. In Section 4, the proposed methodology is clarified with its details.

In Section 5, the proposed method is applied to a residential construction site selection

problem. The paper ends with conclusions and suggestions for further research.

2. Literature Review: Construction Site Selection Problems

Numerous MCDM models have been developed for evaluating construction site location

alternatives with respect to the predetermined criteria. We have analysed the studies that

can be beneficial for our application and have presented a general evaluation of them. In

these studies, MCDM methods are mainly applied for obtaining the solutions of the site

selection problems in many different areas.

Cheng et al. (2003) studied MCDM methods to support selection of an optimal land-

fill site and a waste-flow-allocation pattern. Zavadskas et al. (2004) applied ELECTRE III

method for the selection of the best commercial construction project. It is emphasized that

MCDM methods are quite suitable for the evaluation and decision-making assessments

for construction projects. Dey and Ramcharan (2008) applied AHP method for the site

selection process of expansion on limestone quarry operations to support cement produc-

tion in Barbados. The results show that AHP is an effective method of decision-making

and can consider both objective and subjective factors. Turskis et al. (2012) studied the

determination of the best construction site alternative for non-hazardous waste incinera-

tion plant by using ARAS-F and AHP methods. It can be deducted based on the results

that performing more precise assessments is possible with fuzzy sets theory. Balali et al.

(2012) applied a new algorithm combining ELECTRE III and Preference Ranking Orga-

nization Method for Enrich Evaluation II (PROMETHEE II) for decision-making in the

construction management processes. Eskandari et al. (2012) presented a study of land-

fill site selection problem by integrating geographic information systems (GIS) and AHP

method. Hasanzadeh et al. (2013) performed an application of AHP for prioritizing the

environmental criteria of coastal oil jetties. The results of the study indicate that ANP

findings have a high efficiency for weighting the importance degrees of criteria for envi-

ronmental construction. Bagocius et al. (2014) presented a study about the selection of

the most appropriate location for a liquefied natural gas terminal based on the results of

different MCDM methods. Results of the study indicate that outcomes of SAW, TOPSIS,

and COPRAS methods are consistent and give similar consequences. Zavadskas et al.
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(2015) applied Weighted Aggregated Sum Product Assessment (WASPAS) method with

single-valued neutrosophic sets. The results of the study indicate that applied neutrosophic

MCDM method is quite efficient and meets the requirements for the evaluation of intan-

gible factors of the problem. Mousavi et al. (2015) investigated the suitability of the Kish

Island coastal areas for the establishment of artificial corals reefs using spatial MCDM

tool. Results of the study demonstrated that weighted linear combination method should

be used for the identification of alternatives and AHP should be used for the prioritization

of alternatives. Chaudhary et al. (2016) studied fire station suitability zonation mapping of

Kathmandu City and determined the best alternative using GIS and AHP methods. Since

the results reveal that 13.46% of the considered area is highly suitable for fire station lo-

cation, zonation map is trustworthy and can be used for the construction of fire stations.

Bahrani et al. (2016) presented a study on landfill site selection by using fuzzy GIS and

ordinary AHP. The authors demonstrated that fuzzy functions for landfill site selection

were way better than crisp ones for GIS. Bansal et al. (2017) presented a fuzzy decision

approach which is a combination of fuzzy synthetic evaluation method and analytic hier-

archy process for the selection of most suitable construction method of green buildings.

The results show that the proposed model can be an analytical tool to evaluate the applica-

bility of prefabricated or on-site construction methods. Chen et al. (2018) studied another

construction site location selection problem by applying EDAS and WASPAS methods.

They conducted Monte Carlo simulation to check the sensitivity in changes of the criterion

weights.

In this paper, we propose a novel hesitant fuzzy CODAS method which provides flex-

ibility to the definition of membership function and to the measurement of distances from

negative-ideal solution. In hesitant fuzzy sets, the difficulty in establishing the member-

ship degrees does not arise from a margin of error or a specified possibility distribution

of the possible values but arises from our hesitation among a few different values (Zhang,

2013). Thus, the proposed model can make a comprehensive evaluation in terms of both

fuzziness and distance measurement, allowing a more accurate representation of knowl-

edge.

3. Ordinary Fuzzy CODAS Method

In this section, preliminaries of ordinary fuzzy sets and steps of ordinary fuzzy CODAS

method will be presented.

3.1. Preliminaries: Ordinary Fuzzy Sets

Definition 1. If X is a collection of elements denoted by A, then a fuzzy set Ã in X is a

set of ordered pairs (Zadeh, 1975):

Ã =
{(

a,µÃ(a)
∣∣a ∈ X

)}
, (1)

where Ã in X satisfies the following conditions:
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• Ã is normal,

• Ã is a closed interval for every a ∈ [0,1],

• The support of Ã must be bounded,

• µÃ(a) is entitled as the membership function of element a which maps to X.

Arithmetic operations of triangular fuzzy numbers are given as follows:

Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) be positive TFNs. Then,

• Ã
⊕

B̃ = (a1 + b1, a2 + b2, a2 + b2),

• Ã ⊖ B̃ = (a1 − b3, a2 − b2, a3 − b1),

• Ã
⊗

B̃ = (a1b1, a2b2, a3b3),

• Ã ⊘ B̃ = (a1 ÷ b3, a2 ÷ b2, a3 ÷ b1).

Definition 2. Let x̃ = (a, b, c, d) be a trapezoidal ordinary fuzzy number. Defuzzifica-

tion function of this fuzzy number is given as follows (Wang et al., 2006):

H(x̃) =
1

3

(
(a + b + c + d) −

cd − ab

(c + d) − (a + b)

)
. (2)

Definition 3. Let x̃ = (a1, b1, c1, d1) and ỹ = (a2, b2, c2, d2)) be the trapezoidal fuzzy

numbers. The weighted Euclidean (dE) and weighted Hamming (dH ) distances between

these two fuzzy numbers are defined as follows, respectively:

dE(x̃, ỹ) =

√
(a1 − a2)2 + 2(b1 − b2)2 + 2(c1 − c2)2 + (d1 − d2)2

6
, (3)

dH (x̃, ỹ) =
|a1 − a2| + |b1 − b2| + |c1 − c2| + |d1 − d2|

6
. (4)

3.2. Steps of the Ordinary Fuzzy CODAS Method

The steps of the ordinary fuzzy CODAS method are given as below:

Step 1. Construct the fuzzy decision-making matrix (X̃l)) of each decision maker and

compute the average fuzzy decision matrix (X̃)):

X̃l

[
x̃ij l

]
n×m

=




x̃11l · · · x̃1ml

...
. . .

...

x̃n1l · · · x̃nml


 , (5)

X̃
[
x̃ij

]
n×m

=




x̃11 · · · x̃1m

...
. . .

...

x̃n1 · · · x̃nm


 , (6)

x̃ij =

⊕q

l=1
x̃ij l

q
, (7)
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where x̃ij l denotes the fuzzy evaluation score of ith (i ∈ {1,2, . . . , n}) alternative with

respect to j th criterion (j ∈ {1,2, . . . ,m}) and lth (l ∈ {1,2, . . . , q}) decision maker, and

x̃ij shows the average fuzzy score of ith alternative with respect to j th criterion.

Step 2. Obtain the fuzzy weight of each criterion w̃j ) from each decision maker:

W̃l = [w̃j l]1×m, (8)

W̃ = [w̃j ]1×m, (9)

w̃j =
⊕

q

l=1
x̃j l

q
, (10)

where w̃j l denotes the fuzzy weight of j th criterion (j ∈ {1,2, . . . ,m}) with respect to lth

decision maker (l ∈ {1,2, . . . , q}), and w̃j shows the average fuzzy weight of j th criterion.

Step 3. Determine fuzzy normalized decision matrix Ñ :

Ñ = [ñij ]n×m, (11)

ñij =





x̃ij

maxi H(x̃ij )
if j ∈ B,

1 −
x̃ij

maxi H(x̃ij )
if j ∈ C,

(12)

where B and C represent the sets of benefit and cost criteria, respectively, and ñij denotes

the normalized fuzzy scores and H(x̃ij ) is calculated by Eq. (2).

Step 4. Calculate the fuzzy weighted normalized decision matrix (R̃):

R̃ = [r̃ij ]n×m, (13)

r̃ij = w̃j ⊗ ñij , (14)

where w̃j denotes the fuzzy weight of j th criterion, and 0 <H(w̃j ) < 1.

Step 5. Determine the fuzzy negative ideal solution (ÑS):

ÑS = [ñsj ]1×m, (15)

ñsj = min
i

r̃ij , (16)

where mini r̃ij = {r̃ij |H(r̃ij ) = mini(H(r̃ij )), k ∈ {1,2, . . . , n}}.

Step 6. Calculate the weighted Euclidean Distance (EDi) and weighted Hamming Dis-

tance HDi of alternatives from the fuzzy negative ideal solution as given by Eqs. (3)
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and (4):

EDi =

m∑

j=1

dE(r̃ij , ñsj ), (17)

HDi =

m∑

j=1

dD(r̃ij , ñsj ). (18)

Step 7. Determine the relative assessment matrix (RA):

RA = [pik]n×n, (19)

pik = (EDi − EDk) +
(
t (EDi − EDk)(HDi − HDk)

)
, (20)

where k ∈ {1,2, . . . , n} and t is a threshold function that is defined as follows:

t (x) =

{
1 if |x|> θ,

0 if |x| < θ.
(21)

The threshold parameter (θ) of this function can be set by decision maker. In this study,

we used θ = 0.02 in our calculations by considering the proposed method and the one

proposed bydel Moral et al. (2018) which presents how the use of different aggregation

operators affects the level of consensus.

Step 8. Calculate the assessment score (ASi) of each alternative:

ASi =

n∑

k=1

pik . (22)

Step 9. Rank the alternatives according to the decreasing values of assessment scores and

select the alternative with the maximum assessment score.

4. A Novel Hesitant Fuzzy CODAS Method

In this section, we firstly give basic definitions and operations on hesitant fuzzy sets and

then present the steps of our proposed hesitant fuzzy CODAS method.

4.1. Preliminaries: Hesitant Fuzzy Sets

Hesitant fuzzy sets (HFS), initially developed by Torra (2010) are the extensions of regular

fuzzy sets which handle the situations where a set of values are possible for the member-

ship of a single element (Rodriguez et al., 2012). Torra (2010) defined hesitant fuzzy sets

as follows: let X be a fixed set. A hesitant fuzzy set (HFS) on X is as follows:

E =
{〈

x,hE(x)
〉 ∣∣x ∈ X

}
,
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where hE(x) is a set of some values in [0,1], denoting the possible membership degrees

of the element x ∈ X to the set E. Xu and Xia (2011a) called h = hE(x) as a hesitant

fuzzy element (HFE).

Some basic definitions about hesitant sets are given in the following (Torra, 2010);

λh = Uγ∈h

{
1 − (1 − γ )λ

}
, (23)

h1 ⊕ h2 = Uγ1∈h1,γ2∈h2
{γ1 + γ2 − γ1γ2}, (24)

h1 ⊗ h2 = Uγ1∈h1,γ2∈h2
{γ1γ2}. (25)

In the scope of this study, one of the most important operations is finding the distance

between two HFEs. The literature provides different approaches for this purpose. Xu and

Xia (2011b) defined the hesitant Euclidean distance as in Eq. (26):

d1(h1, h2) =

√√√√1

l

l∑

i=1

|h1σ(i)
− h2σ(i)

|2. (26)

Xu and Xia (2011b) proposed Hamming distance measure as in Eq. (27):

d1(h1, h2) =
1

l

l∑

i=1

|h1σ(i)
− h2σ(i)

|, (27)

where h1, h2 are HFEs and l is the number of elements in a HFE, which is called length.

4.2. Steps of HF-CODAS

The steps of the hesitant fuzzy CODAS method are given as below:

Step 1. Construct the initial fuzzy decision matrix Ĩ by using Table 1 and the fuzzy deci-

sion matrix D̃):

Ĩ [x̃ij l]n×m =




˜x111, . . . , ˜x113 . . . ˜x1m(k−1), . . . , ˜x1mk

...
. . .

...

˜xn11, . . . , ˜xn1l . . . ˜xnm(k−1), . . . , ˜xnmk


 , (28)

where ˜xij l represents the lth (l = 1, . . . , k) score value of the ith (i = 1, . . . , n) alternative

with respect to j th, (j = 1, . . . ,m) criterion.

Before constructing the fuzzy decision matrix, the maximum number of the member-

ship functions for an alternative is determined as a threshold value in the initial decision

matrix (see in Eq. (28)). If any score of an alternative is lower than the threshold value,

the smallest membership degree of this alternative is assigned to the same alternative as a

new membership degree until the value of membership degree equals the threshold value.
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Table 1

Scale for scoring values.

Linguistic terms Membership function

Unimportant – UI [τ , 1.8]

Very Poor – VP [0.9, 2.7]

Poor – P [1.8, 3.6]

Medium Poor – MP [2.7, 4.5]

Fair – F [3.6, 5.4]

Medium Good – MG [4.5, 6.3]

Good – G [5.4, 7.2]

Very Good – VG [6.3, 8.1]

Superior – SP [7.2, 9]

τ is a very small number close to 0.

This procedure is performed for each criterion of each alternative and thus the decision

matrix is established as given in Eq. (29).

D̃[x̃ij ]n×m =




x̃d
11

, . . . , x̃d
11

. . . x̃d
1m, . . . , x̃d

1m
...

. . .
...

x̃d
n1

, . . . , x̃d
n1

. . . x̃d
nm, . . . , x̃d

nm


 . (29)

Step 2. Determine fuzzy normalized decision matrix (Ñ):

Ñ = [x̃
d,n
ij l ]n×m, (30)

xlower
d,n
ij l =





xlower
d,n
ijl

maxj x̃
d,n
ijl

if j ∈ B,

minj x̃
d,n
ijl

xupper
d,n
ijl

if j ∈ C,

(31)

xupper
d,n
ij l =





xupper
d,n
ijl

maxj x̃
d,n
ijl

if j ∈ B,

minj x̃
d,n
ijl

xlower
d,n
ijl

if j ∈ C,

(32)

where x̃
d,n
ij l = [xlower

d,n
ij l , xupper

d,n
ij l ] is a normalized interval valued hesitant fuzzy number

in the decision matrix.

Step 3. Calculate the fuzzy weighted normalized decision matrix R̃:

R̃ = [r̃ij l ]n×m, (33)

r̃ij l = w̃j ⊗ x̃
d,n
ij l , (34)

where wj denotes the weight of j th criterion.
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Step 4. Determine the fuzzy negative ideal solution ÑS:

ÑS = [ñsj l]1×m, (35)

ñsj = min
i

r̃ij l , (36)

where mini r̃ij l = {r̃ij |H(r̃ij l) = mini(H(r̃ij l)), k ∈ {1,2, . . . , n}}.

Step 5. Calculate the fuzzy weighted Euclidean Distance (EDi) and fuzzy weighted Ham-

ming Distance (HDi) of alternatives from the fuzzy negative ideal solution:

EDi =

m∑

j=1

dE(r̃ij l , ñsj ), (37)

HDi =

m∑

j=1

dD(r̃ij l , ñsj ). (38)

Step 6. Determine the relative assessment matrix (RA) using Eqs. (19), (20), and (21).

Step 7. Calculate the assessment score (ASi) of each alternative using Eq. (22).

Step 8. Rank the alternatives according to the decreasing values of assessment scores and

select the alternative with maximum assessment score.

The flowchart of the proposed methodology is given in Fig. 1.

5. Application

A council consisting of Metropolitan Municipality Directors, Housing Development Ad-

ministration and Contractors’ representatives would like to determine the location of a

residential which has 10,000 residences to be built in the city of Istanbul. The council

determined 8 alternative construction sites whose locations are indicated in Fig. 2. The

evaluation factors consist of 4 main criteria and 14 sub criteria. The aim is to find the

best alternative for the residential construction site based on the pre-determined criteria

with respect to the council’s opinions. The weights of the criteria are obtained by hesitant

fuzzy AHP (Tuysuz and Simsek, 2017). These weights are used in the proposed hesitant

fuzzy CODAS to obtain the weighted normalized decision matrix. The results of the in-

tegrated methodology are verified with the sensitivity analysis. A comparative analysis is

also conducted to show the validation of the proposed method.

5.1. Problem Definition

The contractors agreed to use a scientific method to determine the most appropriate site

from the alternate locations in order to obtain the approval of the residential. They formed

an academicians’ committee composed of 4 people that would carry out the application.
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Fig. 1. Flowchart of the application.

Table 2

Determined criteria for the application.

Social Attractiveness of land Economic Price

Criteria Population characteristics Criteria Infrastructure cost

Distance from historical sites Construction cost

Distance from other residential areas Slope of the land

Environmental Forestland Technical Distance from waste production centers

Criteria Agricultural land Criteria Distance from high-standard roads

Human and animal habitats Distance from industrial areas

Since the problem has too many criteria and alternatives, the committee has decided to

use some MCDM methods including our integrated methodology for the solution of this

problem. In our integrated methodology, the weights of the criteria are determined by

hesitant fuzzy AHP and then, the proposed hesitant fuzzy CODAS method is applied to

obtain the best residential construction site. The determined criteria for implementation

are given in Table 2.
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Fig. 2. Location of alternative residential construction sites.

Fig. 3. Hierarchy of the application.

The hierarchy involving the specified criteria and alternatives is given in Fig. 3.

5.2. Solution of Application

As the first step of our proposed hesitant fuzzy CODAS method, the initial decision matrix

involving linguistic assessments is constructed in Table 3. In this table, the committee can

assign different linguistic evaluations for each criterion. The number of these evaluations

may change from one to four since the hesitant fuzzy approach requires it. The hyphens
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in the table indicate that a member of the committee did not prefer making an evaluation

for the related alternative with respect to the considered criterion.

Secondly, the initial decision matrix is converted to the decision matrix with corre-

sponding numerical membership degrees. The decision matrix is constructed in Table 4.

After this point of the method, we partially present the normalized decision matrix (Ta-

ble 5) and weighted normalized decision matrix (Table 6) because of the space constraints.

As the next step, we calculate the negative-ideal solution by using Eq. (35). The nega-

tive solution is found as (〈[0.016,0.032], [0.005,0.019], [0.005,0.019], [0.007,0.026]〉,

〈[0.034,0.06], [0.009,0.031], [0.012,0.046], [0.012,0.046]〉, 〈[0.062,0.111], [0.031,

0.062], [0.026,0.064], [0.012,0.043]〉, 〈[0.009,0.018], [0.003,0.011], [0.003,0.013],

[0.003,0.013]〉, 〈[0.023,0.023], [0.028,0.039], [0.023,0.034], [0.013,0.02]〉, 〈[0.065,

0.092], [0.032,0.045], [0.021,0.032], [0.002,0.003]〉, 〈[0.052,0.071], [0.017,0.024],

[0.024,0.037], [0.029,0.052]〉, 〈[0.032,0.044], [0.02,0.027], [0.011,0.015], [0.015,

0.023]〉, 〈[0.101,0.152], [0.06,0.062], [0.033,0.052], [0.018,0.021]〉, 〈[0.085,0.12],

[0.02,0.027], [0.023,0.033], [0.027,0.043]〉, 〈[0.013,0.019], [0.006,0.008], [0.012,

0.025], [0.005,0.009]〉, 〈[0.027,0.041], [0.004,0.005], [0.004,0.006], [0.005,0.007]〉,

〈[0.022,0.032], [0.01,0.013], [0.006,0.009], [0.006,0.009]〉, 〈[0.074,0.105], [0.06,

0.087], [0.017,0.024], [0.002,0.002]〉).

Then, Euclidean and Hamming distances to negative-ideal solution are calculated as

in Table 7.

At the final step, the relative assessment matrix is constructed, and scores are calcu-

lated (see Table 8).

The results indicate that AL4 is the best alternative for construction site. The ranking

of alternative sites is as follows: AL4 > AL1 > AL3 > AL8 > AL5 > AL6 > AL7 >

AL2.

5.3. Comparison with Ordinary Fuzzy CODAS and Hesitant TOPSIS Methods

In this sub-section, we compare our novel hesitant CODAS method with the ordinary fuzzy

CODAS method. The membership values in the decision matrix of hesitant fuzzy CODAS

are aggregated and thus, unified interval-valued fuzzy numbers are obtained to apply ordi-

nary fuzzy CODAS method. Since trapezoidal fuzzy numbers are used in ordinary fuzzy

CODAS method proposed by Keshavarz Ghorabaee et al. (2017), interval-valued fuzzy

numbers are converted to trapezoidal fuzzy numbers. For instance, (3.15, 4.95) is con-

verted to (3.15, 3.15, 4.95, 4.95). The aggregated decision matrix is given in Table 9.

The results of the ordinary fuzzy CODAS method are given in Table 10.

We apply different decision matrices since the different rankings are obtained from

the ordinary fuzzy CODAS method. In most of the cases, both methods produced the

same results. However, when the fuzziness is increased, our proposed method overcomes

the disadvantages of the ordinary fuzzy sets and gives better solutions than the ordinary

fuzzy CODAS method.

Secondly, we also compare our proposed method with hesitant fuzzy TOPSIS (Xu and

Zhang, 2013). We used the same weighted normalized decision matrix since both methods
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Table 3

Decision matrix with linguistic terms.

SO1 SO2 SO3 SO4 EN1 EN2 EN3

AL1 MG VP – VG MG – F MG MG G MG MG VG – MG F F G F F F P – VP P MP VP VP

AL2 – MP VP VP VG MP – MG G MP F VG F G G MP – F – MP UI F VG G F MG G MP

AL3 P VG MP F F MG G – VG MP – P – MP VP – P MG – G – VP MP MG G MP MP F

AL4 P VG – VP MG – F VG VG F MG VG – G VG MG VP P G G MG – VG F P VG MP G

AL5 VG MG SP VG G F MP SP G VP F P MG – VG VP MP VP G MG MP VG MG MP – P G F

AL6 VG VP G P MG F G MP MG F MP P – G G MP VG F VG MG MG VG MP MP – – VP MG

AL7 MG P F VG F VG MP G – G G P VG VP MG MG F G F MP P MP MG F VP VP G P

AL8 F VP F – F VP – VP P P G VG MG VG F VP MG – P MP VG – F G P P G G

EC1 EC2 EC3 EC4 TE1 TE2 TE3

AL1 P VP – F MG – G F P G MP P P VG MG P G VG VP VG VG – – MG G VP MG UI

AL2 MP MG P MG G G MG VG MP MP F VG MG MP G MP VP VP MG P P VG P – – VG G –

AL3 G G MP VG F G MP F VP G G MG VG P VG P MG P VP MG MG VP F VP MP G – VP

AL4 MP P – G VP P VG MG F – F MG MP – P G VP VP MG MP MP VP MP F F P P MP

AL5 P MP – P MP MG – G F F F MG F MP P F G MG VG G F MG G F MP MP VP G

AL6 VP VG F MP MP G F – VP – F – VG P P – MG G MG F VG MG VP MP VP F MP G

AL7 VG MG F VG P MG – MP P VG F P MP – F P VG P – P MP VG VG P G MP G MP

AL8 P G – – VG VP F G MG MP F VP MG VP VG P VP G – VP VG F MP G UI VP VG G
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Table 4

Decision matrix with membership degrees.

BENEFIT BENEFIT BENEFIT BENEFIT COST COST COST

0.0464 0.0680 0.0783 0.0227 0.0702 0.1140 0.1316

SO1 SO2 SO3 SO4 EN1 EN2 EN3

MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4

AL1 [6.3, 8.1] [4.5, 6.3] [0.9, 2.7] [0.9, 2.7] [4.5, 6.3] [4.5, 6.3] [3.6, 5.4] [3.6, 5.4] [5.4, 7.2] [4.5, 6.3] [4.5, 6.3] [4.5, 6.3] [6.3, 8.1] [4.5, 6.3] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [1.8, 3.6] [0.9, 2.7] [0.9, 2.7] [2.7, 4.5] [1.8, 3.6] [0.9, 2.7] [0.9, 2.7]
AL2 [2.7, 4.5] [0.9, 2.7] [0.9, 2.7] [0.9, 2.7] [6.3, 8.1] [4.5, 6.3] [2.7, 4.5] [2.7, 4.5] [6.3, 8.1] [5.4, 7.2] [3.6, 5.4] [2.7, 4.5] [5.4, 7.2] [5.4, 7.2] [3.6, 5.4] [2.7, 4.5] [2.7, 4.5] [2.7, 4.5] [2.7, 4.5] [2.7, 4.5] [6.3, 8.1] [5.4, 7.2] [3.6, 5.4] [0.1, 1.8] [5.4, 7.2] [4.5, 6.3] [3.6, 5.4] [2.7, 4.5]
AL3 [6.3, 8.1] [3.6, 5.4] [2.7, 4.5] [1.8, 3.6] [5.4, 7.2] [4.5, 6.3] [3.6, 5.4] [3.6, 5.4] [6.3, 8.1] [2.7, 4.5] [1.8, 3.6] [1.8, 3.6] [2.7, 4.5] [0.9, 2.7] [0.9, 2.7] [0.9, 2.7] [1.8, 6.3] [4.5, 6.3] [1.8, 3.6] [1.8, 3.6] [4.5, 6.3] [2.7, 4.5] [0.9, 2.7] [0.9, 2.7] [5.4, 7.2] [3.6, 5.4] [2.7, 4.5] [2.7, 4.5]
AL4 [6.3, 8.1] [1.8, 3.6] [0.9, 2.7] [0.9, 2.7] [6.3, 8.1] [4.5, 6.3] [3.6, 5.4] [3.6, 5.4] [6.3, 8.1] [6.3, 8.1] [4.5, 6.3] [3.6, 5.4] [6.3, 8.1] [5.4, 7.2] [4.5, 6.3] [4.5, 6.3] [4.5, 7.2] [5.4, 7.2] [1.8, 3.6] [0.9, 2.7] [6.3, 8.1] [4.5, 6.3] [3.6, 5.4] [3.6, 5.4] [6.3, 8.1] [5.4, 7.2] [2.7, 4.5] [1.8, 3.6]
AL5 [7.2, 9] [6.3, 8.1] [6.3, 8.1] [4.5, 6.3] [7.2, 9] [5.4, 7.2] [3.6, 5.4] [2.7, 4.5] [5.4, 7.2] [3.6, 5.4] [1.8, 3.6] [0.9, 2.7] [6.3, 8.1] [4.5, 6.3] [0.9, 2.7] [0.9, 2.7] [2.7, 6.3] [4.5, 6.3] [2.7, 4.5] [0.9, 2.7] [6.3, 8.1] [4.5, 6.3] [2.7, 4.5] [2.7, 4.5] [5.4, 7.2] [3.6, 5.4] [1.8, 3.6] [1.8, 3.6]
AL6 [6.3, 8.1] [5.4, 6.3] [1.8, 3.6] [0.9, 2.7] [5.4, 7.2] [4.5, 6.3] [3.6, 4.5] [2.7, 4.5] [4.5, 6.3] [3.6, 5.4] [2.7, 4.5] [1.8, 3.6] [5.4, 7.2] [5.4, 7.2] [2.7, 4.5] [2.7, 4.5] [6.3, 8.1] [6.3, 8.1] [4.6, 6.3] [3.6, 5.4] [6.3, 8.1] [4.5, 6.3] [2.7, 4.5] [2.7, 4.5] [4.5, 6.3] [0.9, 2.7] [0.9, 2.7] [0.9, 2.7]
AL7 [6.3, 8.1] [5.4, 6.3] [4.5, 6.3] [1.8, 3.6] [6.3, 8.1] [5.4, 7.2] [4.5, 5.4] [3.6, 5.4] [5.4, 7.2] [5.4, 7.2] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [4.5, 6.3] [4.5, 6.3] [0.9, 2.7] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [2.7, 4.5] [4.5, 6.3] [3.6, 5.4] [2.7, 4.5] [1.8, 3.6] [5.4, 7.2] [1.8, 3.6] [0.9, 2.7] [0.9, 2.7]
AL8 [3.6, 5.4] [3.6, 5.4] [0.9, 2.7] [0.9, 2.7] [3.6, 5.4] [0.9, 2.7] [0.9, 2.7] [0.9, 2.7] [6.3, 8.1] [5.4, 7.2] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [4.5, 6.3] [3.6, 5.4] [0.9, 2.7] [2.7, 3.6] [2.7, 4.5] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [5.4, 7.2] [3.6, 5.4] [3.6, 5.4] [5.4, 7.2] [5.4, 7.2] [1.8, 3.6] [1.8, 3.6]

COST COST COST COST BENEFIT COST COST

0.0808 0.1313 0.1515 0.0227 0.0332 0.0383 0.1313

EC1 EC2 EC3 EC4 TE1 TE2 TE3

MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4

AL1 [3.6, 5.4] [1.8, 3.6] [0.9, 2.7] [0.9, 2.7] [5.4, 7.2] [5.4, 5.4] [3.6, 4.5] [3.6, 4.5] [5.4, 7.2] [2.7, 4.5] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [4.5, 6.3] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [6.3, 8.1] [5.4, 7.2] [0.9, 2.7] [6.3, 8.1] [4.5, 6.3] [4.5, 6.3] [4.5, 6.3] [5.4, 7.2] [4.5, 6.3] [0.9, 2.7] [0.1, 1.8]
AL2 [4.5, 6.3] [4.5, 6.3] [2.7, 4.5] [1.8, 3.6] [6.3, 8.1] [7, 7.2] [5.4, 8] [6, 7] [6.3, 8.1] [3.6, 5.4] [2.7, 4.5] [2.7, 4.5] [5.4, 7.2] [4.5, 6.3] [2.7, 4.5] [2.7, 4.5] [4.5, 6.3] [2.7, 4.5] [1.8, 3.6] [0.9, 2.7] [6.3, 8.1] [1.8, 3.6] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [5.4, 7.2] [5.4, 7.2] [5.4, 7.2]
AL3 [6.3, 8.1] [5.4, 7.2] [5.4, 7.2] [2.7, 4.5] [5.4, 7.2] [3.6, 5.4] [3.6, 5.4] [2.7, 4.5] [5.4, 7.2] [5.4, 7.2] [4.5, 6.3] [0.9, 2.7] [6.3, 8.1] [6.3, 8.1] [1.8, 3.6] [1.8, 3.6] [4.5, 6.3] [4.5, 6.3] [1.8, 3.6] [0.9, 2.7] [4.5, 6.3] [3.6, 5.4] [0.9, 2.7] [0.9, 2.7] [5.4, 7.2] [2.7, 4.5] [0.9, 2.7] [0.9, 2.7]
AL4 [5.4, 7.2] [3.6, 4.5] [1.8, 2.7] [1.8, 2.7] [6.3, 8.1] [4.5, 6.3] [1.8, 3.6] [0.9, 2.7] [4.5, 6.3] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [5.4, 7.2] [2.7, 4.5] [1.8, 3.6] [1.8, 3.6] [4.5, 6.3] [2.7, 4.5] [2.7, 4.5] [0.9, 2.7] [3.6, 5.4] [2.7, 4.5] [2.7, 4.5] [0.9, 2.7] [3.6, 5.4] [2.7, 4.5] [1.8, 3.6] [1.8, 3.6]
AL5 [2.7, 4.5] [1.8, 3.6] [1.8, 3.6] [1.8, 3.6] [5.4, 7.2] [4.5, 6.3] [2.7, 4.5] [2.7, 4.5] [4.5, 6.3] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [3.6, 5.4] [2.7, 4.5] [1.8, 3.6] [6.3, 8.1] [5.4, 7.2] [5.4, 7.2] [4.5, 6.3] [5.4, 7.2] [4.5, 6.3] [3.6, 5.4] [3.6, 5.4] [5.4, 7.2] [2.7, 4.5] [2.7, 4.5] [1.8, 3.6]
AL6 [6.3, 8.1] [3.6, 5.4] [2.7, 4.5] [0.9, 2.7] [5.4, 7.2] [3.6, 5.4] [2.7, 4.5] [2.7, 4.5] [3.6, 5.4] [0.9, 2.7] [0.9, 2.7] [0.9, 2.7] [6.3, 8.1] [1.8, 3.6] [1.8, 3.6] [1.8, 3] [5.4, 7.2] [4.5, 6.3] [4.5, 6.3] [3.6, 5.4] [6.3, 8.1] [4.5, 6.3] [2.7, 4.5] [0.9, 2.7] [5.4, 7.2] [3.6, 5.4] [2.7, 4.5] [0.9, 2.7]
AL7 [6.3, 8.1] [6.3, 8.1] [4.5, 6.3] [3.6, 5.4] [4.5, 6.3] [2.7, 4.5] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [3.6, 5.4] [1.8, 3.6] [1.8, 3.6] [3.6, 5.4] [2.7, 4.5] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [1.8, 3.6] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [6.3, 8.1] [2.7, 4.5] [1.8, 3.6] [5.4, 7.2] [5.4, 7.2] [2.7, 4.5] [2.7, 4.5]
AL8 [5.4, 7.2] [1.8, 3.6] [1.8, 3.6] [1.8, 3.6] [6.3, 8.1] [5.4, 7.2] [3.6, 5.4] [0.9, 2.7] [4.5, 6.3] [3.6, 5.4] [2.7, 3.6] [0.9, 2.7] [6.3, 8.1] [4.5, 6.3] [1.8, 3.6] [0.9, 2.7] [5.4, 7.2] [0.9, 2.7] [0.9, 2.7] [0.9, 2.7] [6.3, 8.1] [5.4, 7.2] [3.6, 5.4] [2.7, 4.5] [6.3, 8.1] [5.4, 7.2] [0.9, 2.7] [0.1, 1.8]
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Table 5

Normalized decision matrix.

Type BENEFIT COST

Weight 0.0464 0.1313

Criteria SO1 TE3

Membership MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4

AL1 [0.7, 0.9] [0.56, 0.78] [0.11, 0.33] [0.14, 0.43] [0.5, 0.67] [0.43, 0.6] [0.33, 1] [0.06, 1]

AL2 [0.3, 0.5] [0.11, 0.33] [0.11, 0.33] [0.14, 0.43] [0.44, 0.57] [0.38, 0.5] [0.13, 0.17] [0.01, 0.02]

AL3 [0.7, 0.9] [0.44, 0.67] [0.33, 0.56] [0.29, 0.57] [0.5, 0.67] [0.6, 1] [0.33, 1] [0.04, 0.11]

AL4 [0.7, 0.9] [0.22, 0.44] [0.11, 0.33] [0.14, 0.43] [0.67, 1] [0.6, 1] [0.25, 0.5] [0.03, 0.06]

AL5 [0.8, 1] [0.78, 1] [0.78, 1] [0.71, 1] [0.5, 0.67] [0.6, 1] [0.2, 0.33] [0.03, 0.06]

AL6 [0.7, 0.9] [0.67, 0.78] [0.22, 0.44] [0.14, 0.43] [0.5, 0.67] [0.5, 0.75] [0.2, 0.33] [0.04, 0.11]

AL7 [0.7, 0.9] [0.67, 0.78] [0.56, 0.78] [0.29, 0.57] [0.5, 0.67] [0.38, 0.5] [0.2, 0.33] [0.02, 0.04]

AL8 [0.4, 0.6] [0.44, 0.67] [0.11, 0.33] [0.14, 0.43] [0.44, 0.57] [0.38, 0.5] [0.33, 1] [0.06, 1]

Table 6

Weighted normalized decision matrix.

Type BENEFIT COST

Weight 0.0464 0.1313

Criteria SO1 TE3

Membership MS1 MS2 MS3 MS4 MS1 MS2 MS3 MS4

AL1 [0.054, 0.101] [0.037, 0.067] [0.005, 0.019] [0.007, 0.026] [0.052, 1] [0.052, 1] [0.054, 0.106] [0.054, 1]

AL2 [0.016, 0.032] [0.005, 0.019] [0.005, 0.019] [0.007, 0.026] [0.024, 0.037] [0.029, 0.052] [0.044, 0.071] [0.027, 0.04]

AL3 [0.054, 0.101] [0.027, 0.05] [0.019, 0.037] [0.015, 0.039] [0.029, 0.052] [0.029, 0.052] [0.032, 0.044] [0.023, 0.032]

AL4 [0.054, 0.101] [0.012, 0.027] [0.005, 0.019] [0.007, 0.026] [0.029, 0.052] [0.037, 0.087] [0.037, 0.054] [0.04, 0.054]

AL5 [0.072, 1] [0.067, 1] [0.067, 1] [0.056, 1] [0.037, 0.087] [0.037, 0.087] [0.071, 1] [0.054, 1]

AL6 [0.054, 0.101] [0.05, 0.067] [0.012, 0.027] [0.007, 0.026] [0.052, 1] [0.052, 1] [0.032, 0.044] [0.032, 0.054]

AL7 [0.054, 0.101] [0.05, 0.067] [0.037, 0.067] [0.015, 0.039] [0.052, 1] [0.052, 1] [0.032, 0.044] [0.02, 0.027]

AL8 [0.023, 0.042] [0.027, 0.05] [0.005, 0.019] [0.007, 0.026] [0.037, 0.087] [0.037, 0.087] [0.037, 0.054] [0.054, 1]

Table 7

Euclidean and Hamming distances to negative-ideal solution.

SO1 SO2 SO3 SO4 EN1 EN2 EN3 EC1 EC2 EC3 EC4 TE1 TE2 TE3

Euclidean AL1 0.0347 0.4797 0.4755 0.3479 0.0242 0.5786 0.5808 0.5999 0.0311 0.0367 0.3449 0.3510 0.0026 0.4939

distance AL2 0.0000 0.0652 0.3193 0.3504 0.3414 0.3524 0.0067 0.0178 0.0000 0.0133 0.0026 0.4881 0.3492 0.0000

AL3 0.0325 0.4800 0.3149 0.0000 0.5961 0.3445 0.0100 0.0041 0.0475 0.3389 0.3449 0.4881 0.4959 0.4733

AL4 0.0283 0.4808 0.5671 0.6978 0.4866 0.0045 0.0139 0.0241 0.4827 0.0368 0.3449 0.4881 0.4901 0.4535

AL5 0.6916 0.5865 0.0202 0.3475 0.3479 0.0066 0.0238 0.4830 0.0439 0.0368 0.3469 0.0004 0.0046 0.3237

AL6 0.0366 0.0611 0.0174 0.3503 0.0000 0.0066 0.5899 0.3457 0.0551 0.6689 0.4920 0.0065 0.3506 0.0338

AL7 0.0421 0.5903 0.0436 0.4927 0.0244 0.0312 0.4785 0.0013 0.5603 0.0327 0.4892 0.0106 0.0070 0.0156

AL8 0.0140 0.0000 0.3173 0.3477 0.4828 0.0000 0.0232 0.3448 0.3467 0.3408 0.4916 0.6086 0.0030 0.4937

Hamming AL1 0.1532 0.5260 0.5232 0.3796 0.1322 0.6087 0.6160 0.6218 0.1673 0.1773 0.3524 0.3537 0.0350 0.5115

distance AL2 0.0000 0.2474 0.4005 0.3764 0.3808 0.3538 0.0633 0.1245 0.0000 0.1013 0.0415 0.5010 0.3622 0.0000

AL3 0.1631 0.5306 0.3489 0.0000 0.6136 0.3880 0.0894 0.0510 0.1953 0.3600 0.3513 0.4999 0.5073 0.5044

AL4 0.1234 0.5376 0.6236 0.7113 0.5028 0.0458 0.0891 0.1474 0.5096 0.1446 0.3567 0.4995 0.5044 0.5014

AL5 0.7189 0.6299 0.1132 0.3641 0.3846 0.0668 0.1373 0.5117 0.1925 0.1446 0.3556 0.0135 0.0613 0.3631

AL6 0.1639 0.2388 0.1204 0.3729 0.0000 0.0668 0.6159 0.3639 0.2138 0.7029 0.4989 0.0623 0.3571 0.1597

AL7 0.1943 0.6372 0.1771 0.5090 0.1373 0.1451 0.5086 0.0247 0.6101 0.1505 0.5003 0.0901 0.0635 0.1031

AL8 0.0932 0.0000 0.3744 0.3719 0.5150 0.0000 0.1280 0.3733 0.3694 0.3856 0.4975 0.6155 0.0461 0.5017

have the same steps to obtain it. The positive ideal solutions of hesitant TOPSIS method

are given in Table 11.

The negative ideal solutions of the hesitant TOPSIS method are given in Table 12.

After the calculations, results of the hesitant TOPSIS method are calculated as in Ta-

ble 13.

The results of the compared methods are the same. Thus, our proposed model is valid

where hesitant fuzzy sets can be used as input data.
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Table 8

Relative assessment matrix and assessment scores based on HF-CODAS.

AL1 AL2 AL3 AL4 AL5 AL6 AL7 AL8 Scores Rank

AL1 0 4.28 0.97 −0.36 2.22 2.59 2.87 1.45 14 2

AL2 −4.28 0 −3.31 −4.64 −2.06 −1.69 −1.41 −2.83 −20.2 8

AL3 −0.97 3.31 0 −1.32 1.25 1.62 1.9 0.49 6.29 3

AL4 0.36 4.64 1.32 0 2.58 2.94 3.23 1.81 16.9 1

AL5 −2.22 2.06 −1.25 −2.58 0 0.37 0.65 −0.77 −3.73 5

AL6 −2.59 1.69 −1.62 −2.94 −0.37 0 0.28 −1.13 −6.68 6

AL7 −2.87 1.41 −1.9 −3.23 −0.65 −0.28 0 −1.42 −8.93 7

AL8 −1.45 2.83 −0.49 −1.81 0.77 1.13 1.42 0 2.39 4

Table 9

Decision matrix of ordinary fuzzy CODAS.

SO1 SO2 SO3 SO4 EN1 EN2 EN3

AL1 (3.15, 4.95) (4.05, 5.85) (4.73, 6.53) (4.5, 6.3) (3.6, 5.4) (1.8, 3.6) (1.58, 3.38)

AL2 (1.35, 3.15) (4.05, 5.85) (4.5, 6.3) (4.28, 6.08) (2.7, 4.5) (3.85, 5.63) (4.05, 5.85)

AL3 (3.6, 5.4) (4.28, 6.08) (3.15, 4.95) (1.35, 3.15) (2.48, 4.95) (2.25, 4.05) (3.6, 5.4)

AL4 (2.48, 4.28) (4.5, 6.3) (5.18, 6.98) (5.18, 6.98) (3.15, 5.18) (4.5, 6.3) (4.05, 5.85)

AL5 (6.08, 7.88) (4.73, 6.53) (2.93, 4.73) (3.15, 4.95) (2.7, 4.95) (4.05, 5.85) (3.15, 4.95)

AL6 (3.6, 5.18) (4.05, 5.63) (3.15, 4.95) (4.05, 5.85) (5.2, 6.98) (4.05, 5.85) (1.8, 3.6)

AL7 (4.5, 6.08) (4.95, 6.53) (3.6, 5.4) (4.05, 5.85) (3.38, 5.18) (3.15, 4.95) (2.25, 4.05)

AL8 (2.25, 4.05) (1.58, 3.38) (3.83, 5.63) (3.83, 5.63) (2.25, 3.83) (4.73, 6.53) (3.6, 5.4)

EC1 EC2 EC3 EC4 TE1 TE2 TE3

AL1 (1.8, 3.6) (4.5, 5.4) (2.93, 4.73) (3.6, 5.4) (4.73, 6.53) (4.95, 6.75) (2.73, 4.5)

AL2 (3.38, 5.18) (6.18, 7.58) (3.83, 5.63) (3.83, 5.63) (2.48, 4.28) (2.93, 4.73) (5.63, 7.43)

AL3 (4.95, 6.75) (3.83, 5.63) (4.05, 5.85) (4.05, 5.85) (2.93, 4.73) (2.48, 4.28) (2.48, 4.28)

AL4 (3.15, 4.28) (3.38, 5.18) (3.83, 5.63) (2.93, 4.73) (2.7, 4.5) (2.48, 4.28) (2.48, 4.28)

AL5 (2.03, 3.83) (3.83, 5.63) (3.83, 5.63) (2.93, 4.73) (5.4, 7.2) (4.28, 6.08) (3.15, 4.95)

AL6 (3.38, 5.18) (3.6, 5.4) (1.58, 3.38) (2.93, 4.58) (4.5, 6.3) (3.6, 5.4) (3.15, 4.95)

AL7 (5.18, 6.98) (2.7, 4.5) (3.38, 5.18) (2.48, 4.28) (2.93, 4.73) (4.28, 6.08) (4.05, 5.85)

AL8 (2.7, 4.5) (4.05, 5.85) (2.93, 4.5) (3.38, 5.18) (2.03, 3.83) (4.5, 6.3) (3.18, 4.95)

Table 10

Relative assessment matrix and assessment scores for ordinary fuzzy CODAS method.

AL1 AL2 AL3 AL4 AL5 AL6 AL7 AL8 Scores Rank

AL1 0.00 0.36 0.19 0.18 0.18 0.11 0.18 0.29 1.49 1

AL2 −0.36 0.00 −0.17 −0.18 −0.18 −0.25 −0.18 −0.08 −1.41 8

AL3 −0.19 0.17 0.00 0.00 −0.01 −0.08 0.00 0.10 −0.01 6

AL4 −0.18 0.18 0.00 0.00 0.00 −0.07 0.00 0.10 0.02 5

AL5 −0.18 0.18 0.01 0.00 0.00 −0.07 0.00 0.11 0.06 3

AL6 −0.11 0.25 0.08 0.07 0.07 0.00 0.07 0.17 0.59 2

AL7 −0.18 0.18 0.00 0.00 0.00 −0.07 0.00 0.11 0.05 4

AL8 −0.29 0.08 −0.10 −0.10 −0.11 −0.17 −0.11 0.00 −0.80 7

5.4. Sensitivity Analysis

One-at-a-time sensitivity analysis based on each criterion is performed to demonstrate the

effects of changes on the results. To visualize this analysis, we develop a pattern which is
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Table 11

Positive ideal solutions of hesitant TOPSIS method.

SO1 SO2 SO3 SO4 EN1 EN2 EN3 EC1 EC2 EC3 EC4 TE1 TE2 TE3 Sum

AL1 0.671 0.448 0.433 0.585 0.674 0.349 0.323 0.316 0.63 0.635 0.603 0.602 0.695 0.494 7.46

AL2 0.692 0.618 0.533 0.588 0.577 0.579 0.672 0.672 0.658 0.658 0.695 0.491 0.595 0.704 8.73

AL3 0.668 0.442 0.575 0.698 0.473 0.553 0.667 0.686 0.618 0.57 0.604 0.492 0.479 0.497 8.02

AL4 0.678 0.431 0.304 0 0.479 0.675 0.667 0.669 0.434 0.649 0.599 0.493 0.486 0.498 7.06

AL5 0 0.313 0.648 0.598 0.569 0.673 0.655 0.473 0.619 0.649 0.601 0.697 0.693 0.609 7.8

AL6 0.669 0.625 0.646 0.591 0.687 0.673 0.314 0.586 0.609 0 0.491 0.693 0.599 0.701 7.88

AL7 0.659 0.302 0.63 0.485 0.669 0.656 0.457 0.688 0.323 0.644 0.49 0.688 0.692 0.703 8.09

AL8 0.684 0.677 0.556 0.592 0.47 0.677 0.657 0.579 0.547 0.55 0.492 0.333 0.694 0.496 8

Table 12

Positive ideal solution of hesitant TOPSIS method.

SO1 SO2 SO3 SO4 EN1 EN2 EN3 EC1 EC2 EC3 EC4 TE1 TE2 TE3 Sum

AL1 0.035 0.48 0.476 0.348 0.021 0.579 0.581 0.6 0.032 0.037 0.345 0.351 0.003 0.499 4.39

AL2 0 0.065 0.319 0.35 0.341 0.352 0.007 0.018 0 0.013 0.003 0.488 0.349 0 2.31

AL3 0.032 0.48 0.315 0 0.486 0.345 0.01 0.004 0.048 0.339 0.345 0.488 0.496 0.498 3.88

AL4 0.028 0.481 0.567 0.698 0.487 0.004 0.014 0.024 0.483 0.037 0.345 0.488 0.49 0.496 4.64

AL5 0.692 0.586 0.02 0.348 0.347 0.007 0.024 0.483 0.044 0.037 0.347 0.0004 0.005 0.351 3.29

AL6 0.037 0.061 0.017 0.35 0 0.007 0.59 0.346 0.055 0.669 0.492 0.006 0.351 0.003 2.98

AL7 0.042 0.59 0.044 0.493 0.023 0.031 0.479 0.001 0.56 0.033 0.489 0.011 0.007 0.001 2.8

AL8 0.014 0 0.317 0.348 0.483 0 0.023 0.345 0.347 0.341 0.492 0.609 0.003 0.499 3.82

Table 13

Positive ideal solution of hesitant TOPSIS method.

AL1 AL2 AL3 AL4 AL5 AL6 AL7 AL8

Score 0.37 0.21 0.33 0.4 0.3 0.27 0.26 0.32

Rank 2 8 3 1 5 6 7 4

Table 14

Pattern for the sensitivity analysis.

Pattern Sets with respect to criteria

Test variables SO1 SO2 TE3

0.1 AL4, AL1 AL4, AL1 AL4, AL1

0.2 AL4, AL1 AL4, AL1 AL4, AL1

0.3 AL4, AL1 AL4, AL1 AL4, AL1

0.4 AL4, AL1 AL4, AL1 AL4, AL1

0.5 AL4, AL1 AL4, AL1 AL4, AL1

0.6 AL4, AL1 AL4, AL1 AL4, AL1

0.7 AL4, AL1 AL4, AL1 AL4, AL1

0.8 AL4, AL1 AL4, AL1 AL4, AL1

0.9 AL4, AL1 AL4, AL1 AL4, AL1

1.0 AL4, AL1 AL4, AL1 AL4, AL1

given in Table 14. After the changes on weights of the sub-criteria through this pattern,

hesitant fuzzy CODAS method operations are re-processed. In Table 14, only the first and

second alternatives are presented.

When the results of the sensitivity analyses are examined, it is revealed that criterion

SO2 with an interval of [0.7,1] and criterion EC3 with an interval of [0.7,1] affect the

results. But they don’t affect the rank of the best alternative. This verifies the robustness

of the proposed model on the given decision.
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6. Conclusions

In today’s world, urban cities are getting larger and many residential areas are constructed

to supply the demand of housing needs. Residential construction site selection problem is

an MCDM problem since it includes many alternatives and criteria which might be tan-

gible and intangible. This study has developed a new hesitant fuzzy MCDM extension of

CODAS method aiming at selecting the most suitable construction site location. CODAS

method is a useful and efficient distance-based method since it combines the advantages

of Euclidean and Hamming distances. It has been applied to the selection problem of the

best location site of a residential site in Istanbul. Sensitivity and comparative analyses

have been also realized in order to observe the robustness and sensitiveness of the given

decisions.

For further research, considered criteria can be extended by adding the citizen opinions

and different user sentiments such as social media networks can be included for the as-

sessment process as such studies (Morente-Molinera et al., 2019). Also, we suggest other

fuzzy extensions of CODAS method to be developed for comparative purposes. Neutro-

sophic CODAS method or Pythagorean fuzzy CODAS method are the possible extensions

to develop. Types of fuzzy numbers can be also changed in order to obtain the variants

of the developed new extensions. Hesitant fuzzy CODAS can be worked with triangular

fuzzy numbers, for instance.
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