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Abstract. A major challenge in face recognition is handling large pose variations. Here, we proposed

to tackle this challenge by a three step sparse representation based method: estimating the pose of

an unseen non-frontal face image, generating its virtual frontal view using learned view-dependent

dictionaries, and classifying the generated frontal view. It is assumed that for a specific identity, the

representation coefficients based on the view dictionary are invariant to pose and view-dependent

frontal view generation transformations are learned based on pair-wise supervised dictionary learn-

ing. Experiments conducted on FERET and CMU-PIE face databases depict the efficacy of the

proposed method.
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1. Introduction

Face recognition is one of the most important biometric techniques that has clear ad-

vantages over other biometric techniques, e.g. it is non-intrusive, natural and passive,

where other biometric techniques such as fingerprint recognition and iris recognition re-

quire cooperative subjects. To enjoy the non-intrusive nature of face recognition, a sys-

tem should be able to recognize a face in an uncontrolled environment and an arbitrary

situation without the notice of the subject (Zhang and Gao, 2009). This brings serious

challenges to face recognition techniques due to this generality in the environment and sit-

uation. Conducted evaluations on state-of-the-art face recognition techniques during the

past several years, such as the FERET evaluation and the FAT 2004 (Phillips et al., 2000;

Messer et al., 2004), have confirmed that there are several major challenges in current

face recognition systems which are age, pose, illumination, expression, size, etc. varia-

tions. Also, face occlusion with hair, sunglasses, make-up, etc. can bring inconvenience

for face recognition techniques. Although most of current face recognition techniques

work well under constrained conditions, they fail under uncontrolled cases (e.g. outdoor

with uncooperative subjects), since they are sensitive to the mentioned variations on face

image.

*Corresponding author.
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One of the interesting facts about face images is that face changes occurred by pose

variation in images of one identity may be larger than face changes occurred by identity

variation in a fixed pose. Face images of different identities in the same pose resemble

each other and the differences between them are subtle (Nastar and Mitschke, 1998). This

proves the difficulty of multi-pose face recognition, which is a bottleneck for most current

face recognition technologies. Therefore, among all variations on the face, in this paper,

we concentrate on pose variation challenge. However, as the experimental results will

show, the proposed method can tolerate, to some extent, the illumination variation in face

images, too.

We organized the rest of the paper as follows. Section 2 reviews some related works

in literature for face recognition application. Section 3 reviews related concepts on sparse

representation based classification. The proposed method for multi-pose face recognition

is presented in Section 4. Extensive experiments are carried out in Section 5 and the ex-

perimental results are compared with the results from remarkable algorithms developed

before in the literature. Finally, we conclude this paper in Section 6.

2. Related Works

As mentioned in Introduction, one major problem in multi-view face recognition is that

the variation in pose may cause changes in face image that are larger than that caused by

variation in identity. There are many methods that perform well when training and testing

face images are within similar condition and poses, but due to the mentioned difficul-

ties, fewer methods have been proposed in handling the problem of recognizing faces in

arbitrary poses.

Multi-Pose face recognition approaches that already have been proposed in the litera-

ture can be summarized in two main categories as follows (Zhang et al., 2013):

1. Multi-view approaches that expend the training and/or testing set to encompass

more face poses to form a relatively more robust feature set.

2. Invariant approaches which perform some particular transformation to eliminate the

variation caused by pose change or to reduce its adverse effect on the final recogni-

tion.

Among the methods of the first category, the view-based methods are widely used

(Murase and Nayar, 1993; Pentl et al., 1994; Mckenna et al., 1996; Zhou et al., 2001). For

instance, view-based Eigenface was proposed to extend the Eigenface to handle the pose

problem. One disadvantage of view-based methods is that for each subject, these methods

usually require multiple face images with different poses, which is infeasible in real-world

applications.

Gross et al. proposed the Eigen Light Field (ELF) (Gross et al., 2004) method to tackle

the pose problem. ELF first estimates the ELF’s of the identity’s head from the input im-

ages. Then, the test and gallery images are matched by comparing the ELF coefficients.

Compared to view-based methods, ELF needs an extra independent training set (different
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from the gallery) that contains multiple images of varying poses for each subject. How-

ever, in the recognition stage, one face is recognized even if he/she has only one image in

the gallery. Providing additional images in different poses brought more depth informa-

tion of the human face structure, and consequently results in better-reconstructed models

compared to the models that use only a single gallery image. However, this method puts a

restriction on data collections requirements, because many existing face databases might

only contain a few (even single) gallery images (Zhou et al., 2001).

Pentl et al. (1994) proposed tied factor analysis model (TFA) to describe pose varia-

tion on face images and achieved state-of-the-art face recognition performanceunder large

pose variations. They made an assumption that each identity can be described by an iden-

tity vector and images of a single identity in different poses can be generated using this

identity vector. This is done by performing identity-independent (but pose-dependent)

linear transformation. The identity vectors and the parameters of the linear transforma-

tion are estimated using a set of training images in different known poses and the EM

algorithm. In fact, TFA searches the transformations to achieve feature extractions that

are pose-independent. However, as just linear transformations are considered due to com-

putational feasibility, it could not properly describe pose variations for 2D mapped face

images which are non-linear transformations (Zhang and Gao, 2009).

From the second category of multi-view face recognition approaches, one can men-

tion the methods that generate virtual views. In these methods, all face images are nor-

malized to a pre-defined pose (e.g. frontal pose) or the gallery is expanded to cover large

pose variations by generating virtual views. As changing pose causes variations that are

closely related to the 3D structure of the face, it is a natural idea to build a 3D model from

the 2D input face image (Chai et al., 2007). For instance, multi-level quadratic variation

minimization (MQVM) (Zhang et al., 2008) uses two gallery images of the frontal view

and side view to reconstruct 3D human face for recognition. One of the most successful

methods for 3D face model recovery is 3D Morphable Model (3DMM) (Blanz and Vetter,

2003). In this method, PCA is used to model the prior knowledge of face shape and tex-

ture. Then any unseen face can be modelled by the linear combination of the prototypes,

in which the corresponding shape and texture are expressed by the exemplar faces. The

specified 3D face can be recovered from one or more images by optimizing the shape, tex-

ture and mapping parameters through an analysis-by-synthesis strategy. However, 3DMM

is time-consuming for most real-world applications. To reduce the complexity, Jiang et al.

(2005) proposed a simplified version of 3DMM to reconstruct the specified 3D face from

a single frontal view. They used facial features to reconstruct more efficient personalized

3D face models and their method is based on the automatic detection of facial features on

the frontal view.

Unlike 3D model-based approaches, learning-based approaches generally try to learn

how to estimate a virtual view directly in 2D space. In Lee and Kim (2006), a method

is proposed to generate frontal view face images using a linear transformation in feature

space. Features are extracted from non-frontal face images using kernel PCA and then,

a transformation from non-frontal view face image to its corresponding frontal view is

applied. The transformation is obtained by a least-squared error learning process. As an-

other example of learning-based methods, the Active Appearance Model (AAM) (Cootes
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Fig. 1. Flowchart of the proposed method.

et al., 2001) fits an input face image to the pre-learned face model, which consists of sep-

arated shape and appearance models. Beymer (1994) proposed a parallel deformation to

generate virtual views covering a set of possible poses from a single example view using

feature-based 2D wrapping. In this method, a 2D transformation from a standard pose to

a target pose is learned. To synthesize a virtual view of gallery faces in the same target

pose, the real view in the standard pose is parallel deformed based on the learned 2D

transformation on the prototype face.

Another class of methods lying in the second category of multi-view face recognition

approaches are subspace-based methods such as Belhumeur et al. (1997). These methods

seek for the most representative subspace for dimension reduction and feature extraction.

Fisherface approach is applied to expressly provide the discrimination among classes

when multiple training data per class are available. Through the training process, the ratio

of the between-class difference to the within-class difference is to be maximized to find a

base of vectors that best discriminate the classes. In Modular PCA (MPCA) (Gottumukkal

and Asari, 2004) face images are divided into smaller regions and the PCA approach is

applied to each of these regions. Since some of the local facial features of a subject do not

vary in pose variation, it is expected that the MPCA be able to cope with pose variation.

The nearest subspace (NS) is a method of the second category that generalizes NN

(Nearest Neighbour) method in the sense it classifies the test sample based on the best

linear representation of all training samples in each class. The sparse representation based

classification (SRC) method (Wright et al., 2009) is a further generalization of NS by

representing the test sample using the training samples selected from all samples, both

within and across different classes.

In this paper, we propose a novel multi-pose face recognition method by formulating

virtual frontal view generation via sparse representation as a prediction problem. The pro-

posed method lies in the second category of multi-pose face recognition. Figure 1 shows

a flowchart of the proposed method. As shown in Fig. 1, the proposed method includes

3 steps:

1. Pose estimation step: in many experiments, it has been proved that knowing the

pose of the unseen face image can be helpful in recognizing its identity. Contrary
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to most face recognition methods that assume prior knowledge about the pose, the

proposed method estimates the pose of face image using the sparse representation

idea. The proposed pose estimation method is based on the assumption that sparse

representation coefficients of different identities in the same pose are closer than

representation coefficients of images of the same identity in different poses. There-

fore, using the sparse representation of unseen face image over training images of

the same pose and repeating this for all poses, one can estimate the pose based on

minimizing the reconstruction error on different poses.

2. Virtual frontal view generation step: according to the estimated pose in the previous

step, a non-linear mapping is applied to the non-frontal face image in order to gener-

ate its virtual frontal view image. This virtual frontal view is then used for the aim

of classification. The mapping used in this step is based on sparse representation

and the supervised dictionary learning concept. In fact, this step aims to learn view-

dependent dictionaries which will be used in the generation of the virtual frontal

image from a specific view.

3. Classification (recognition) step: in this step, recognition of the unseen face image

is done based on its virtual generated frontal view and an SRC-based classifier.

Therefore, all three steps of the proposed method are based on sparse representation

which could be considered as an advantage of the proposed method. Extensive experi-

ments have been conducted on the CMU-PIE (Sim et al., 2002) and FERET (Phillips et

al., 2000) face databases to evaluate the efficacy of the proposed method. Section 3 will

explain the basic concepts of sparse representation which is the main component in all

steps of the proposed method.

3. Sparse Representation

Sparse Coding or Sparse Representation (SR) is a powerful tool in high-dimensional sig-

nal processing which has shown strong performance in applications of computer vision,

especially face recognition (Wright et al., 2010). It uses a dictionary of base functions

(atoms), so each input signal can be approximated by a linear combination of just a sparse

subset of atoms. It should be noted that based on the sparse representation theory, similar

signals in the same class are expected to be approximated by a similar subset of atoms.

Suppose that there are N training samples from C different classes that are arranged

in matrix A = [a1, a2, . . . , aN ] ∈ R(d×N) where each sample has d features and the label

vector L = [l1, l2, . . . , lN ], li ∈ [1, . . . ,C] stores the label of samples. The sparse repre-

sentation of test sample y ∈ Rd over training samples A can be obtained by solving Eq. (1)

(Elad, 2010).

x̂ = arg min
x

‖y − Ax‖2
2 + λ‖x‖1, (1)

where ‖x‖1 is the l1-norm of x and it is a measure of sparsity and ‖x‖2 is the l2-norm

of x . λ is the Lagrangian coefficient and regularizes the pressure of sparsity of x and
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corresponding reconstruction error in the first term. Eq. (1) is a relaxed version of a non-

convex and an NP-Hard problem that uses l0-norm instead of l1-norm.

If sparse representation is used for classification aim (SRC), the class label of test

sample y can be obtained based on the minimum reconstruction error criteria as follows:

ĉ = arg min
c

∥

∥y − AZc(x)
∥

∥

2
, (2)

where Zc(x) : ℜN → ℜN is a selection operator that selects coefficients associated with

class c from vector x and sets other coefficients to zero.

As already mentioned, a dictionary is a set of basis data (atoms) based on which the

sparse representation is obtained. Dictionary atoms can be chosen from raw training data

or pre-constructed dictionaries, such as undecimated wavelets, contourlets, curvelets, and

more. Although pre-constructed dictionaries result in fast transforms, they are usually

limited in sparsifying the signals that they are designed to represent. Alternatively, one

can use learning methods to obtain a tunable dictionary in which each atom is generated

by controlling some parameters. This is called Supervised Dictionary Learning (SDL)

and learned dictionaries are expected to be able to adapt to different input samples (Elad,

2010). The proposed method uses both pre-constructed dictionaries and supervised dic-

tionary learning to have a proper dictionary in each step and the best performance in

general.

The next section will explain the proposed method and how the sparse representation

concept can be extended to have good performance on multi-pose face recognition.

4. Proposed Method

In this section, a sparse representation based multi-pose face recognition method is pro-

posed which consists of three main steps:

1. Estimating the pose of a given face image based on SRC.

2. Generating a virtual frontal view of the given face image according to the estimated

pose and the learned SR-based non-frontal to frontal view mapping.

3. Recognizing the face image using the generated frontal view and SRC.

The most important step in the proposed method is generating a virtual frontal view of

a non-frontal face image. Since the proposed method learns view-dependent transforma-

tions to map the non-frontal face image to the frontal one, choosing the proper transfor-

mation needs the pose of the face image. Therefore, the first step of the proposed method

is devoted to pose estimation. According to the estimated pose, a non-frontal to frontal

view mapping is applied which generates a virtual frontal face image. Having the virtual

frontal view in hand, SRC is used for the aim of face recognition. The following subsec-

tions explain these three steps of the proposed method in more details.
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4.1. Pose Estimation Based on SRC

As mentioned earlier, prior knowledge of the pose of a face is an essential information in

many face recognition techniques. It is often beneficial if the pose angle of the input face

image can be estimated before recognition such as in modular PCA (MPCA) (Pentl et al.,

1994) and eigen light-field (Gross et al., 2004). There are many efforts for automatic pose

estimation in the literature. As the focus of this paper is on face recognition and not pose

estimation, an interested reader is referred to Murphy-Chutorian and Trivedi (2009) and

Ding and Tai (2016) as good surveys on face pose estimation.

It is obvious that two face images from different identities in the same pose are visually

more similar than two face images of an identity in different poses. This can be used as

a clue for face pose estimation aim, a face image in a specific pose can be estimated by a

linear combination of face images of other subjects in the same pose. The proposed pose

estimation method is based on the assumption that sparse representation coefficients of

different identities in the same pose are closer than representation coefficients of images of

the same identity in different poses. Therefore, using the sparse representation of unseen

face image over training images of the same pose and repeating this for all poses, one

can estimate the pose based on minimizing the reconstruction error on different poses.

A similar idea has been used in Yu and Liu (2014) where it is assumed that a face image

in a specific pose cannot be approximated by a combination of face images in other poses.

Suppose there are P classes of different poses Ap , p = 1, . . . ,P . The p-th class Ap =

[a1
p, a2

p, . . . , a
np
p ] ∈ ℜ(dnp) is called the view dictionary of pose p that has np training face

images from different identities in this pose and d is the dimension of each face image.

Based on SR theory, every unseen face image y ∈ ℜd is expected to be expressed as a

sparse representation of images in matrix Ap in a particular pose. The sparse coefficients

of image y over the view dictionary Ap is the x̂p vector that can be obtained as follows:

x̂p = arg min
xp

‖y − Apxp‖2
2 + λ‖xp‖1, (3)

where λ is the regularization parameter as before. Therefore, face image y is reconstructed

based on different view dictionaries. The view dictionary that reconstructs the face image

with minimum error determines the pose of the face image y . In other words, the pose of

face image y is estimated based on minimizing the reconstruction error among all view

dictionaries:

p̂ = min
p

‖y − Apxp‖2, p = 1, . . . ,P, (4)

where p̂ is the estimated pose. Actually, this shows that Ap̂ is the best view dictionary that

can reconstruct the input face image from a linear combination of its set of face images.

The proposed pose estimation algorithm is summarized in Algorithm 1. Figure 2 repre-

sents an example of the proposed pose estimation method where there are seven different

poses (seven view dictionaries).

Figure 2(a) shows the input face image on the top and the 7-th reconstructed face

images with respect to seven view dictionaries below that. As it is obvious, reconstructed
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Algorithm 1: Sparse representation based pose estimation.

Input: Training View Dictionaries {Ap} p = 1, . . . ,P , non-frontal input face

image y .

Output: Estimated pose p̂

Steps:

1. Calculate the sparse representations of y over Ap for p = 1,2, . . . ,P Eq. (3) to

obtain sparse representation vectors x̂1, x̂2, . . . , x̂p.

2. Estimate the pose of input face image via Eq. (4).

Fig. 2. An example of pose estimation based on sparse representation. (a) reconstructed input face image over

7 different view dictionaries Ap , p = 1, . . . ,7 and (b) reconstruction error for each pose. Reconstruction error

for 7-th pose is minimum and the input face image is supposed to be in this pose.

image from the last dictionary (A7) seems to be the most similar one to the input face

image, where the reconstruction error plot in Fig. 2(b) confirms this consequence. Thus,

the input face image is supposed to be in the last pose.

The proposed pose estimation method has some advantages over many other pose es-

timation methods. First, there is no assumption on the number of training face images in

each pose and view dictionaries can have a different number of atoms. Also, no feature

selection or 3D model of the face is required for pose estimation, so no image registration

and heavy computation is used. However, the main shortcoming of the proposed pose es-

timation method is its accuracy drop in small pose intervals which will be discussed more

in Section 5.2.
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4.2. Virtual Frontal View Generation

In many face recognition methods, one of the key steps for achieving multi-pose face

recognition is pose normalization or virtual frontal view generation. Obviously, a frontal

face image contains the most details of the face which are beneficial for face recognition,

compared to a non-frontal face image. In order to compensate for the loss of details in

non-frontal views, one can try to generate a virtual frontal view from a non-frontal view.

In this paper, this task is formulated as a general prediction framework which predicts a

mapping from each non-frontal view to the frontal view, where the mapping is identity-

independent. The purpose of this mapping is to estimate a frontal face image b̂1 ∈ ℜd

given its non-frontal face image bp ∈ ℜd in pose p. Modelling the virtual frontal view

generation with linear mapping is as follows:

b1 = Vp(bp) = Wpbp, (5)

where Vp(.) is the linear mapping function and Wp is the linear mapping matrix for pose

p. Linear mapping function Vp(.) can be achieved via a learning process. GLR and LLR

(Chai et al., 2007) are general least square problems that use regression-based methods to

find a good mapping. Another idea to find the mapping function is introduced in LSRR

(Zhang et al., 2013) which assumes that the face images of one identity observed from

different views share the same sparse representation coefficients over different view dic-

tionaries. In other words, suppose f1 and f2 are two face images of one identity in poses

p1 and p2 , respectively. The sparse representation coefficients of these two face images

over view-dependent dictionaries related to p1 and p2 poses are supposed to be similar.

Therefore, if sparse representation coefficients of a non-frontal face image of an identity

are available over its view dictionary, these coefficients can be used to generate the virtual

frontal view of that identity, using the frontal view dictionary. Consequently, considering

face images of the i-th identity, we have the following set of equations:



































bi
1 = A1x

i + e1

...

bi
p = Apxi + ep

...

bi
P = AP xi + eP ,

(6)

where Ap is the view dictionary of pose p, bi
p is the face image of identity i in pose p

and ep is the reconstruction error in pose p. The sparse representation coefficients xi are

shared among all the P views of the i-th identity. These equations say that the face image

from pose p can be generated from sparse representation coefficients xi with the corre-

sponding view dictionary Ap. Therefore, the key of virtual view generation lies in the

recovery of the sparse representation coefficients xi . The idea of sharing the sparse repre-

sentation coefficients among different poses somehow reminds the idea used in Prince et

al. (2008) where the authors assumed a face manifold and an identity space (latent space)



656 A. Farahani, H. Mohseni

and declared that the representation of each identity does not vary with pose. As another

example, one can mention the research done in Sharma et al. (2012) which aims to find

the sets of projection directions for different poses such that the projected images of the

same identity in different poses are maximally correlated in the latent space.

Based on the discussion above, given training samples arranged in different view dic-

tionaries Ap (p = 1, . . . ,P ), the non-frontal to frontal mapping function for input face

images in pose p (bps) can be obtained by first finding the sparse representation coeffi-

cients of bp on view dictionary of pose p, then utilizing these coefficients with the frontal

view dictionary A1 as follows:

x̂p = arg min
xp

‖bp − Apxp‖2
2 + λ‖xp‖1, (7)

b̂1 = Vp(bp) = A1x̂p, (8)

where x̂p is the best vector of sparse representation coefficients of bp over view dictionary

Ap , λ is the regularization parameter as mentioned before and b̂1 is the virtual frontal view

corresponding to the non-frontal view bp .

It is worth noticing that the mapping in Eq. (8) is based on two parameters, view dic-

tionaries and sparse representation coefficients. As the sparse representation coefficients

are obtained via an optimization problem based on a view dictionary, one of the factors

that play an important role in high accuracy mapping is the selection of view dictionar-

ies. These dictionaries can be simply made form training images of each pose or can be

learned more effectively in a dictionary learning process. As training images are accompa-

nied by identity label, using them as view dictionary atoms might not successfully generate

a face image from a new identity. In other words, identity-independent view dictionaries

are expected to be more efficient in generating face images from new identities. Therefore,

one of the key steps for increasing the accuracy of the proposed method in obtaining the

sparse representation coefficients and generating the virtual frontal view is to learn de-

sirable identity-independent view dictionaries. The next subsection explains a supervised

dictionary learning process to learn Aps as efficient as possible.

4.3. Supervised View Dictionary Learning

Suppose that bp and b1 are two face images of one identity in non-frontal pose p and

frontal pose 1, respectively, x̂p is the sparse representation of bp over view dictionary Ap ,

and x̂1 is the sparse representation of b1 over view dictionary A1. As mentioned in the

previous section, view dictionaries Ap and A1 are called desirable if the sparse represen-

tations x̂p and x̂1 are the same or at least close enough. So, the aim of this subsection is to

learn view dictionaries that share similar sparse coefficients for face images of one iden-

tity in different poses. This is achieved via a supervised view dictionary learning process.



Multi-Pose Face Recognition Using Pairwise Supervised Dictionary Learning 657

Fig. 3. Example of sparse dictionary learning. B ∈ ℜ(dP×I) is the learning face images in P different poses for

I identities, A ∈ ℜ(dP×K) is the dictionary includes P different view dictionaries which each view dictionary

can be extracted by separating d rows related to each pose, and X ∈ ℜ(K×I) is the sparse representation matrix.

By concatenating the P equations in Eq. (6), while omitting the identity parameter i for

simplicity, we have:

















b1

...

bp

...

bP

















=

















A1

...

Ap

...

AP

















x +

















e1

...

ep

...

eP

















→ B = Ax + e

subject to ‖x‖1 6C,

(9)

which states that the P views, when concatenated together, should have the same sparse

representation with respect to the concatenated view dictionary. Given the training dataset

{bi
p}

i=1,...,I
p=1,...,P , where i is the index for identities and p is the index for poses, the training set

is rearranged by concatenating the P views of each identity in {bi}i=1,...,I vector, where

bi = [bi
1b

i
2b

i
P ]T ∈ ℜ(dp×1) and B ∈ ℜ(dP×I ) is the matrix made from concatenating face

images of I different identities. Now, the view dictionaries can be learned via the following

minimization problem:

〈Â, X̂〉 = arg min
A,X

I
∑

i=1

∥

∥bi − Axi
∥

∥

2

2
+ λ

∥

∥xi
∥

∥

1
, (10)

where Â = [ÂT
1 , ÂT

2 , . . . , ÂT
P ]T ∈ ℜ(dP×K) is the learned dictionary and X̂ = [x̂1, x̂2,

. . . , x̂I ] ∈ ℜ(K×I ) is the sparse coefficients matrix whose column i is the sparse represen-

tation vectors of the training samples in bi and K is the dictionary size. Eq. (10) aims to

jointly find the proper sparse representation coefficients and the dictionary. It describes

face images from the ith identity (bi) as the sparsest representation xi over dictionary A.

After Â is learned, the view dictionaries {Âp}p=1,...,P are obtained by splitting Â into P

parts, e.g. view dictionary of pose p (Âp) can be achieved by separating d rows of Â that

are corresponding to the p-th pose (rows pd − d + 1 to dp). Figure 3 demonstrates these

matrices and the dictionary learning process visually.
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In order to properly choose the dictionary size K , it is worthy to remind some points

on dictionary characteristics. Dictionary A ∈ ℜ(dP×K) is considered undercomplete if

K < dP or overcomplete if K > dP . When (K = dP ), dictionary is considered as a

complete dictionary. From a representational point of view, a complete dictionary does

not help in any improvement and is neglected. Undercomplete dictionaries are strongly

related to dimensionality reduction. Principal component analysis is a famous example of

this case where dictionary atoms have to be orthogonal. However, putting orthogonality

constraint on dictionary atoms limits the choice of atoms which is the main disadvantage

of undercomplete dictionaries. On the other side, overcomplete dictionaries do not have

the orthogonality constraint, therefore, they allow for more flexible dictionaries and richer

data representation (Elad, 2010).

Although all view dictionaries can be learned simultaneously using Eq. (10), the learn-

ing process will be impractical for large dictionary sizes or high dimensional data. Con-

sider a situation where each identity has images in 10 poses and each image has about

1000 pixels (a small 30×35 face image), so each column of dictionary has about 10000

entries. If the dictionary size is adjusted to 1000 atoms, the size of dictionary will be

10000×1000. Doing computation on a dictionary of this huge size is impractical because

of memory and computational limitations. To dominate this problem, in this paper, pair-

wise dictionary learning is proposed, where each view dictionary is learned separately.

In other words, in order to learn the view dictionary for pose p, the training matrix will

be Bp ∈ ℜ(2d×I ) where each column of Bp is [bi
pbi

1]
T ∈ ℜ(2d×1) (face images of frontal

pose and images of non-frontal pose p). In this case, the optimization in Eq. (10) results in

Â ∈ ℜ(2d×K) where the first d rows of Â can be considered as learned view dictionary for

pose p. It should be noted that view dictionaries are not learned simultaneously in pairwise

dictionary learning. However, as training images in frontal pose are the same for learning

all view dictionaries, it is expected that describing face images of one identity in different

poses by these view dictionaries has similar sparse representation coefficients. Figure 4

shows the effect of dictionary learning on sparse representation of three face images of

an identity in different poses. The first column shows the sparse coefficients when dictio-

nary atoms are simply the training data in different poses while the second column shows

sparse coefficients obtained based on learned dictionary. As expected, the representation

coefficients of the three images shown in the second column are more similar compared

to the ones in the first column. This observation confirms the effect of dictionary learning

on unifying the sparse representation coefficients of face images of one identity in differ-

ent poses. Also, the figure depicts the increase in sparsity of coefficients after dictionary

learning, which is another aim of dictionary learning. Getting back to dictionary learning

process in Eq. (10), several dictionary learning methods have been proposed since now

that can be divided into two groups: 1) unsupervised dictionary learning methods such as

MOD (Engan et al., 1999) and K-SVD (Aharon et al., 2006) and 2) supervised dictionary

learning methods such as SDL (Mairal et al., 2009) and LCKSVD (Jiang et al., 2013). The

K-SVD method is introduced to efficiently learn an overcomplete dictionary and has been

successfully applied to image restoration and image compression. K-SVD focuses on the

representational power of the learned dictionary, but does not consider the discrimination
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Fig. 4. Effect of dictionary learning on sparse representations of 3 different pose images of one identity. The

first and second columns show the sparse representation of face images using training samples and the learned

dictionary, respectively. As expected, representation coefficients in second column are more similar in different

poses, while coefficients are sparser in each pose.

capability of it. LCKSVD (Jiang et al., 2013) is a supervised extension of K-SVD that uses

supervised information (labels) of training samples to learn a compact and discriminative

dictionary. As LCKSVD has proved itself as a successful supervised dictionary learn-

ing method, it has been used here for learning view dictionaries. The objective function

defined by LCKSVD is as follows:

〈Â, X̂, T̂ 〉 = arg min
A,X,T

‖B − AX‖2
F + α‖Q − T X‖2

F s.t. ∀i, ‖xi‖0 6C, (11)

where ‖.‖F is the Frobenius norm and B , A and X are training data, dictionary and sparse

coefficients matrices, respectively. Q = [q1, q2, . . . , qI ] ∈ ℜ(K×I ) is the discriminative

sparse code of training samples in B and is initialized based on the labels of training

samples and desired labels of dictionary atoms. For example, if i-th atom of dictionary

has the same label as j -th training sample, then Q(i, j) = 1, else Q(i, j) = 0. T is a

linear transformation matrix and the term ‖Q − T X‖2
F enforces the sparse coefficients X

to approximate the discriminative sparse codes Q. This term enforces the samples from

the same class to have very similar sparse representations. The first and second terms of

Eq. (11) are the reconstruction error and the discrimination power, respectively, where α

controls the contribution between these two terms. The implementation of LCKSVD is

available by the LCKSVD authors and is used in this paper for solving Eq. (11). For more

details on LCKSVD, we refer the interested reader to Jiang et al. (2013).

After obtaining view dictionaries, virtual frontal view generation can be done by first

estimating the pose p̂ of the input face image y by Algorithm 1, then finding x̂p̂ as the

sparse representation of y over the learned view dictionary of the estimated pose. Finally,
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Algorithm 2: Virtual View Generation

Input: Training samples {bi
p}

i=1,...,I
p=1,...,P for view dictionary learning, non-frontal

input face image y .

Output: Virtual frontal view ŷ1

Steps:

1. Perform view dictionary learning using LCKSVD via Eq. (11) to obtain Âp ,

p = 1, . . . ,P .

2. Estimate the pose of y using using Algorithm 1 and obtain p̂.

3. Solve sparse representation of y over Âp̂ and obtain x̂p̂ via Eq. (3).

4. Generate Virtual frontal view ŷ1 = Â1x̂p̂.

Fig. 5. Virtual frontal view generation. (a) non-frontal input face image yp , (b) learned view dictionary for pose

p (Âp ), (c) sparse representation of yp over Âp , (d) generated virtual frontal view ŷ1, (e) actual frontal view of

input face image y1 .

the virtual frontal view of y is generated by multiplying the sparse representation x̂p̂ to

the learned view dictionary of frontal pose Â1. The algorithm of virtual view generation is

summarized in Algorithm 2 and an example of virtual view generation is shown in Fig. 5.

4.4. Multi-Pose Face Recognition

The previous subsection explained the proposed virtual frontal view generation algorithm

which was based on supervised dictionary learning. This subsection completes the previ-

ous steps by recognizing the generated frontal view. As mentioned earlier, SRC method

has shown superior performance on frontal view face recognition, therefore, in this paper,

SRC is used as the classifier in the recognition step. The overall view of the 3 steps of the

proposed method is shown in Algorithm 3.

5. Experimental Results

The proposed method is evaluated on CMU-PIE (Sim et al., 2002) and FERET (Phillips

et al., 2000) face databases and three experiments are carried out to show the effective-
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Algorithm 3: Multi-Pose Face Recognition with Supervised Dictionary Learning

(MPSDL)

Input: Frontal and non-frontal Training face images {bi
p}

i=1,...,I
p=1,...,P , non-frontal

input test image y .

Output: class label of y

Steps:

1. Generate virtual frontal view of y using Algorithm 2 and obtain ŷ1.

2. Solve sparse representation of ŷ1 over frontal training face images via Eq. (1).

3. Class label of y is obtained by minimum reconstruction error criterion via

Eq. (2).

Fig. 6. Different poses of a subject in CMU-PIE face database (Sim et al., 2002).

ness of the proposed method. Section 5.1 explains the databases and how to prepare the

face images for experiments. In Section 5.2, performance of the proposed pose estimation

method is measured in both small and large pose variations. Section 5.3 considers the

virtual view generation step and compares the generated frontal faces with similar view

generation methods such as GLR and SRR. Finally, in Section 5.4, the accuracy of the

proposed multi-pose face recognition is evaluated based on virtual frontal views.

5.1. Databases for Evaluations

CMU-PIE and FERET databases contain a large number of face images in different illumi-

nation, viewpoints and expressions. CMU-PIE database has 68 identities who were imaged

under 13 different poses, 43 different illumination conditions and 4 different expressions.

Figure 6 shows the variation of poses in the CMU-PIE database, images are within −90◦

to +90◦ with ±22.5◦ interval in yaw and about ±20◦ in pitch. FERET database con-

tains more than 1000 identities in different conditions. From them, 200 subjects have all

9 different pose variations within ±60◦ in yaw (0◦ in pitch). Specifically, the poses are

±60◦, ±40◦, ±25◦, ±15◦ and frontal pose 0◦. Figure 7 shows the variation of poses in

the FERET database. In our experiments, 5 poses of CMU-PIE database are used in 90◦,

67.5◦, 45◦, 22.5◦, 0◦ with 16 different illumination conditions and neutral expression.

From FERET database, face images of poses 60◦, 40◦, 15◦ and 0◦ are selected in neutral
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Fig. 7. Different images from FERET database (Phillips et al., 2000).

Table 1

Average accuracy of pose estimation for 5 poses (22.5◦ pose interval) on CMU-PIE.

Pose 0◦ 22.5◦ 45◦ 67.5◦ 90◦ Average

Accuracy (%) 96.5 90.6 89.3 91.1 92.7 92.0

Table 2

Average accuracy of pose estimation for 3 poses with larger pose

interval (45◦ pose interval) on CMU-PIE.

Pose 0◦ 45◦ 90◦ Average

Accuracy (%) 99.12 98.25 98.77 98.6

expression and illumination condition. For pre-processing, all images are cropped man-

ually (such that eyes and mouth level are fixed), resized to 28 × 28 pixels and histogram

equalization is performed on them.

5.2. Pose Estimation

As mentioned in Section 4, it is necessary to know the pose of a non-frontal face image in

order to generate its virtual frontal view, because it is necessary to select the proper view

dictionary. Table 1 and Table 2 show the accuracy of pose estimation algorithm for 5 poses

(22.5◦ pose interval) and 3 poses (45◦ pose interval) of CMUPIE database. In each pose,

10 face images from 68 identities are randomly selected to construct the view dictionary.

The remaining 58 images per pose are used for evaluation. The accuracies reported in

these two tables are obtained by averaging several runs.

Both Tables 1 and 2 represent high accuracy (above 90%) in pose estimation, which is

acceptable for many applications. The comparison of the results from these two tables im-

plies that the accuracy of pose estimation increases when the difference between adjacent

poses (pose interval) increases. This is because the dictionary atoms of different poses are

more distinct and adjacent poses are more discriminable in large pose intervals. Although

there might be methods in pose estimation with higher accuracies in small pose intervals,

the proposed pose estimation method is simple, fast and accurate enough for the aim of

virtual view generation and face recognition. Also, it is based on sparse representation

which is the base for the other two steps of the proposed method, too.

5.3. Virtual Frontal View Generation

The following experiment assesses the frontal view generation step of the proposed algo-

rithm. Figure 8 shows the virtual frontal views generated from different methods for 22.5◦,
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Fig. 8. Virtual view generation of different methods for different poses.

45◦, 90◦ poses. As the figure shows, compared to the generated frontal faces by LSRR or

GLR methods, generated faces by the proposed method (MPSDL) are visually more simi-

lar to the ground-truth images. In fact, generated faces by GLR do not contain much details

and generated faces for different identities are similar with artifacts for pose 90◦. SRR gen-

erated faces have less artifacts and are visually acceptable, but are over-smoothed and de-

tails are lost. The LSRR method is similar to SRR, but it performs locally on small patches

of an image, so its generated faces have less artifact but are locally smoothed. It requires

many overlapped patches to generate detailed images. In contrast, the proposed MPSDL

method can generate visually acceptable frontal faces which are similar to ground-truth

images and have enough details to be used in recognizing identities.

For evaluating different view generation methods, a 10-fold cross validation strategy is

used on CMU-PIE database. In each fold, 61 identities in 16 illuminations are selected for

dictionary learning and the remaining 7 identities in 16 different illuminations are used

for evaluation. Table 3 shows the Mean Square Error (MSE) between generated frontal

views and ground-truths in three poses. The reported results in this table are based on 16

different illuminations of each pose. Chosen values for different parameters are mentioned

in caption of the table where σ(B) is the standard deviation of matrix B . As can be seen

from Table 3, for large pose variations (45◦ and 90◦), the MSE between generated virtual

frontal views and the ground-truths is smaller in the proposed method compared to GLR

and SRR methods. The reason is that, compared to GLR, the proposed method has no

assumption on linear transformation between different poses which is not correct for large

pose angles. Also, compared to SRR, the proposed method is based on supervised dictio-

nary learning which uses the discrimination in data and is expected to generate faces with
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Table 3

MSE of virtual frontal view generation of different methods (K = 200, α = 1, λ = σ(B)).

Pose 22.5◦ 45◦ 90◦ Average

GLR (Chai et al., 2007) 0.3228 0.4725 0.4943 0.4298

SRR (Zhang et al., 2013) 0.3125 0.3890 0.4427 0.3814

MPSDL (proposed) 0.3243 0.3858 0.4004 0.3701

more details. Since the proposed method is a holistic approach, LSRR and LLR methods

are not included in this comparison, because of their locality manner. Obtained results in

Table 3 clearly show that the proposed method can generate accurate virtual views even

in large pose variations which can be considered as a desired property of the proposed

method. As expected, MSE of different methods is more similar in small pose angles

where transformation between poses is nearly linear.

It should be noted that the proposed method aims to generate discriminative virtual

frontal views and it does not concentrate on visually good generated faces. However, the

results in Table 3 depict that based on MSE, the proposed method can generate more

accurate virtual frontal views in large pose angles, compared to other methods.

5.4. Multi-Pose Face Recognition

In this section, we evaluate the performance of the proposed multi-pose face recognition

method. Virtual view generation can be considered as a preprocessing that is independent

of the classification step. Therefore, face recognition based on generated frontal views

can be done with various kind of classifiers. Since the SRC method has been successful in

frontal face recognition task (Wright et al., 2009), in this paper, SRC is used as a classifier

for the generated virtual views. The performance of the proposed method is compared

to GLR, SRR and LSRR which are all based on virtual view generation. 10-fold cross

validation is used to evaluate the performance of each method on CMU-PIE and FERET

databases. For CMU-PIE database, each fold contains 7 identities in 5 poses and 16 dif-

ferent illumination conditions. For FERET database, each fold contains 20 identities in 4

poses and neutral illumination and expression conditions. Using this setting, recognition

accuracy of different methods on CMU-PIE and FERET databases are shown in Table 4

and Table 5, respectively. In these tables, it is assumed that the pose angle of test images

is known and the proposed pose estimation in Algorithm 1 is not used. In both tables,

dictionary size parameter is adjusted to 200 for SRR, LSRR and MPSDL methods. Also,

for LSRR, images have been partitioned into 16 patches.

Discussing the results reported in Tables 4 and 5, the recognition accuracy using raw

images without virtual view generation will decrease rapidly when the pose angle in-

creases. The GLR method performs better compared to raw images and improves the ac-

curacy, however, its performance is not satisfying for large pose angles because of using

linear assumption in virtual view generation. The SRR generally performs better than

GLR for large pose angles. Using local patches, LSRR improves the accuracy of SRR, but

it seems that both methods suffer from unsupervised dictionary learning. The proposed

MPSDL method outperforms other methods and is more robust in large pose variations.
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Table 4

Recognition accuracy (%) of different methods (with known pose angle) on CMU-PIE

database for 4 poses (K = 200, α = 1, λ = σ(B)).

Pose 22.5◦ 45◦ 67.5◦ 90◦ Average

Raw images 70.3 38.7 21.0 15.5 36.3

GLR (Chai et al., 2007) 87.9 42.9 35.7 32.8 49.8

SRR (Zhang et al., 2013) 90.1 65.6 43.4 40.7 59.9

LSRR (Zhang et al., 2013) 91.2 74.9 49.5 48.9 66.1

MPSDL (Proposed) 90.9 76.2 55.8 52.1 68.7

Table 5

Recognition accuracy (%) of different methods (with known pose

angle) on FERET database for 3 poses (K = 200, α = 1, λ = σ(B)).

Pose 15◦ 45◦ 60◦ Average

Raw Images 89.5 27.1 35.2 50.6

GLR (Chai et al., 2007) 86.7 33.7 31.5 50.7

SRR (Zhang et al., 2013) 91.9 52.6 43.0 62.5

LSRR (Zhang et al., 2013) 94.6 57.5 45.1 65.7

MPSDL (proposed) 93.7 62.2 50.7 68.9

Table 6

Recognition accuracy (%) of different methods with pose estimation

phase on FERET database for 3 poses (K = 200, α = 1, λ = σ(B)).

Pose 15◦ 45◦ 60◦ Average

Raw Images 88.9 24.8 35.1 49.6

GLR (Chai et al., 2007) 89.0 31.6 30.9 50.5

SRR (Zhang et al., 2013) 91.6 52.5 43.6 62.5

LSRR (Zhang et al., 2013) 94.1 57.2 42.4 64.5

MPSDL (proposed) 93.4 60.4 49.2 67.7

In order to investigate the impact of automatic pose estimation in step 1 on recognition

accuracy, Table 6 shows the results of the proposed multi-pose face recognition on FERET

database while using Algorithm 1 for pose estimation. As expected, the results in this table

are very close to those of Table 5 which confirms the perfect performance of Algorithm 1

for pose estimation. Therefore, the effect of pose estimation error on recognition accuracy

can be ignored.

The effect of dictionary size in recognition accuracy has been investigated through

experiments done with different dictionary sizes. It should be noted that for raw images

and the GLR method that are not based on dictionary learning, dictionary size points to

the number of samples in a training set. Table 7 and Fig. 9 show the recognition accu-

racy of different methods under different dictionary sizes for 22.5◦ pose of CMU-PIE

database. For small dictionary sizes, LSRR method outperforms others because of using

small patches.

Increasing the dictionary size, face recognition accuracy increases in all methods of

Table 7 (except for GLR), but as can be seen, performance of MPSDL increases more
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Table 7

Recognition accuracy (%) for different dictionary sizes (α = 1,

λ = σ(B)) for 22.5◦ pose in CMU-PIE.

Dictoinary size 50 100 200 300 500

Raw images 70.2 72.3 70.0 72.5 72.2

GLR (Chai et al., 2007) 59.1 68.9 86.9 53.7 44.1

SRR (Zhang et al., 2013) 76.2 77.4 90.1 79.6 88.7

LSRR (Zhang et al., 2013) 80.0 80.9 91.2 82.6 93.1

MPSDL (proposed) 75.8 78.7 90.9 92.1 94.5

Fig. 9. Comparison of the face recognition accuracy with different dictionary sizes. MPSDL overtakes other

methods in larger dictionary sizes.

rapidly. For large dictionary sizes, accuracy of MPSDL overtakes other methods which is

because of the use of supervised dictionary learning. Compared to other methods, GLR

method shows weak performance for large dictionary sizes, which is because of overfitting

of regression based methods in large number of training samples. However, it should be

noted that the use of huge databases and big dictionaries might have some computational

problems due to the use of huge memory size and very long processing time. One might

cope with these problems using high-performancehardware devices and a quantization or

clustering method prior to dictionary learning.

Although the proposed method has better performancecompared to similar methods, it

cannot overtake the state-of-the-art methods which are not based on sparse representation

and 2D virtual view generation. For instance, Table 8 shows the comparison between the

proposed method and some well-known and state-of-the-art methods in multi-pose face

recognition on CMU-PIE database. As can be inferred from this table, 3D reconstruction

based methods such as 3DMM (Blanz and Vetter, 2003) and Probabilistic Geometry As-

sisted FR (Liu and Chen, 2005) can recognize face images with higher accuracy, because

they utilize the 3D model of face by aligning 2D images with either a general or an iden-

tity specific 3D model which is computationally expensive. TFA (Prince et al., 2008) is

a 2D method which benefits from the latent variable view point for face recognition, but
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Table 8

Comparison of proposed method and some popular methods on CMU-PIE.

Method Training images Accuracy (%)

3DMM (Blanz and Vetter, 2003) 0◦, 16◦, 60◦. 22 illuminations 92.1

PGA FR (Liu and Chen, 2005) 0◦, 15◦, 30◦, 45◦, 60◦ 86.0

TFA (Prince et al., 2008) 0◦, 16◦, 60◦ 91.0

LBP (Ahonen et al., 2006) 0◦, 30◦, 60◦ 74.2

MPSDL (Proposed) 0◦, 22◦, 45◦, 60◦. 16 illuminations. 81.7

it requires two face images (one frontal and one non-frontal) in its gallery for recogni-

tion while the proposed method only requires one frontal face image. Therefore, it can

be concluded that the recognition accuracy of the proposed method for multi-pose face

recognition is persuasive from a computational point of view and when there is only one

frontal image of each person in hand. However, based on the idea and obtained results

in Zhang et al. (2015), Zhao et al. (2016), one can extend the proposed method by using

mixed norm l(p,q) instead of l1 norm and hopefully decrease the frontal face generation

error while increasing the face recogntion accuracy.

6. Conclusions

In this paper, we proposed a multi pose face recognition method based on sparse represen-

tation and supervised dictionary learning. The proposed method generates virtual frontal

views from non-frontal views based on the assumption that the images of an identity ob-

served from different views share the same sparse representation coefficients over all view

dictionaries. Also, to increase virtual view generation performance and reconstruction ac-

curacy, a supervised dictionary learning is used to generate adapted dictionary atoms. As

dictionary learning is usually expensive from computational point of view, the proposed

method benefits from pair-wise dictionary learning which learns each view dictionary sep-

arately. As a preprocessing step, the proposed method uses a sparse representation based

pose estimation, while sparse representation based classification is used for face recog-

nition in the last step. Therefore, all steps of the proposed method are based on sparse

representation. Experiments carried out on FERET and CMU-PIE databases show the su-

perior performance of the proposed method compared to other similar methods especially

in confronting large pose angles. Compared to the state-of-the art methods, the proposed

method has acceptable recognition accuracy from computational point of view while it re-

quires only one frontal image of each subject for recognition. For further work, we would

suggest to extend the proposed method to work locally on small patches of a face im-

age, and to investigate how using mixed norms in the objective function can increase the

recognition accuracy.
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