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Abstract. A standard problem in certain applications requires one to find a reconstruction of an

analogue signal f from a sequence of its samples f (tk)k . The great success of such a reconstruction

consists, under additional assumptions, in the fact that an analogue signal f of a real variable t ∈R

can be represented equivalently by a sequence of complex numbers f (tk)k , i.e. by a digital signal.

In the sequel, this digital signal can be processed and filtered very efficiently, for example, on digital

computers. The sampling theory is one of the theoretical foundations of the conversion from analog

to digital signals. There is a long list of impressive research results in this area starting with the

classical work of Shannon. Note that the well known Shannon sampling theory is mainly for one

variable signals. In this paper, we concern with bandlimited signals of several variables, whose

restriction to Euclidean space R
n has finite p-energy. We present sampling series, where signals

are sampled at Nyquist rate. These series involve digital samples of signals and also samples of

their partial derivatives. It is important that our reconstruction is stable in the sense that sampling

series converge absolutely and uniformly on the whole Rn. Therefore, having a stable reconstruction

process, it is possible to bound the approximation error, which is made by using only of the partial

sum with finitely many samples.

Key words: Shanon’s sampling formula, multidimensional sampling series, sampling with partial

derivatives, bandlimited signal, truncation error, Benstein’s spaces.

1. Introduction

In simplistic terms, a signal might be discrete, such as letters or digits sequences, or it

might be analogue, i.e. continuous functions, reading such as a temperature or a pressure.

It is a remarkable fact that under additional assumptions, analogue signals and discrete

signals are equivalent: an analogue signal f can be recovered exactly from its samples

{f (xj )}
ω
j=−ω , i.e. from a digital signal. This is the essence of the sampling theorems.

These theorems are fundamental, in particular, in information theory and communication,

particularly since the advent of modern digital computers.

An analogue signal is, in the classical sense, a function such that it is continuous with

respect to a real variable (for example, time) and has finite energy, i.e. it is a square-

integrable on R. The following classical Shannon sampling theorem (see, e.g. Higgins,
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1996; p. 51) states that if f ∈ L2(R) is bandlimited to [−σ,σ ], σ > 0, i.e. if the Fourier

transform of f is supported on [−σ,σ ], then

f (x) =

∞∑

k=−∞

f

(
πk

σ

)
sin(σx − πk)

σx − πk
(1.1)

and this series converge in L2(R)-norm and uniformly onR. This theorem was the starting

point for many further developments in sampling theory. Series (1.1) is called a cardinal

series of f . The sequence {πk/σ }∞k=−∞ is called a sampling sequence and the correspond-

ing values f (πk/σ) are called sample values with Nyquist sampling rate of σ/π samples

per unit time. The first problem is to find conditions under which f can be reconstructed

completely by (1.1). In most applications, the assumption that f is bandlimited, or equiv-

alently that the spectrum of f is supported to certain bounded area in R, is completely

justified. More precisely, if a signal f is bandlimited to [−σ,σ ], 0 < σ < ∞, or in other

words, the quantity σ is the maximal frequency in the spectrum of f , then (1.1) perfectly

recovers f by samples, taken every π/σ seconds.

There are several ways by which (1.1) may be generalized (see, e.g. Zayed and

Schmeisser, 2014). For example, in 1955, Fogel (Jagerman and Fogel, 1956) was mo-

tivated by a problem in aircraft instrument communications (a pilot in the case of pointer-

on-scale displays may estimate the pointer position and also the rate information concern-

ing the acceleration of the pointer, corresponding to first- and second-time derivatives)

and studied a sampling expansion which involved sample values of a function and its

derivatives.

Next, one possible application of sampling theory is in sensor networks. In this case,

a large number of sensors is used to monitor some quantity, e.g. temperature. This quantity

varies continuously in space and hence, can be viewed as a signal in multidimensional

space.

In this paper, we concern with the sampling representation for bandlimited signals f

of several variables such that f has finite p-energy for certain 1 6 p < ∞ (see Nashed

and Sun, 2010 and Nguyen and Unser, 2017).

Note that the reconstruction (1.1) is called stable, if it converges uniformly on R. Such

a stability is important not only from the theoretical point of view but, in particular, for

applications. If (1.1) is stable, then it is possible to bound the approximation error, which

is made by using in (1.1) only finitely many samples. Finally, we note that our sampling

series have such a stable reconstruction properties. Namely, they converge absolutely and

uniformly on the whole Rn.

2. Definitions, Notation and the Main Result

Let Zn, Rn and Cn be the usual n-dimensional integer lattice, real Euclidean space and

complex Euclidean space, respectively. Next, Lp(Rn), 1 6 p 6 ∞, denotes the Lebesgue

space of complex-values measurable functions on Rn with finite p-energy, i.e. such that
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|f |p is integrable on Rn. For f ∈ L1(Rn), we define the Fourier transform of f as usual

by

f̂ (x) =

∫

Rn

e−i〈x,t〉f (t) dt,

x ∈ Rn, where 〈x, t〉 =
∑n

k=1 xktk is the scalar product on Rn. If f ∈ Lp(Rn) and 1 <

p 6 ∞, then we understand f̂ in a distributional sense of tempered distributions S′(Rn).

We recall that the Schwartz space of test functions S(Rn) consists of the complex-valued

infinitely differentiable functions ϕ on Rn satisfying

sup
x∈Rn; |α|6m

((
1 + ‖x‖

)k∣∣Dαϕ(x)
∣∣
)

< ∞

for all nonnegative integers m and k, also for any nonnegative multi-index α, where Dα

is the partial derivative of order α and ‖x‖ denotes the standard Euclidean norm on Rn.

The dual space S′(Rn) of S(Rn) is called the space of tempered distributions.

Given a closed subset � of Rn, a function ω :Rn →C is called bandlimited to � if ω̂

vanishes outside �. For σ = (σ1, . . . , σn) ∈Rn with σm > 0, m = 1, . . . , n, we define the

spaces of bandlimited signals by

B
p
Qn

σ
=

{
f ∈ Lp(Rn): supp f̂ ⊂ Qn

σ

}
,

where

Qn
σ =

{
x ∈ R

n: |xk|6 σk, k = 1, . . . , n
}
.

Hence, any f ∈ B
p
Qn

σ
is bandlimited to hyperrectangle or n-orthotope Qn

σ , i.e. f̂ vanishes

outside Qn
σ . If we equip B

p
Qn

σ
with the norm

‖f ‖p =

(∫

Rn

∣∣f (x)
∣∣p dx

)1/p

for 1 6 p < ∞,

or ‖f ‖∞ = ess supp
x∈Rn

∣∣f (x)
∣∣ for p = ∞,

then B
p

Qn
σ

is a Banach space and it is called the Bernstein space. By the Paley-Wiener-

Schwartz theorem (see Hörmander, 1990; p. 181), any f ∈ B
p
Qn

σ
, 1 6 p 6 ∞, is infinitely

differentiable on Rn and has an (unique) extension onto the complex space Cn to an entire

function.

Remark 1. Recall that the identity theorem for analytic functions shows that the extension

of f ∈ B
p

Qn
σ

from R
n to C

n is unique. Therefore, we can identify further each f ∈ B
p

Qn
σ

with bandlimited function defined on R
n and in other cases consider the same f as entire

function defined on the whole Cn. Note that terms “bandlimited signal on Rn”and “ban-

dlimited function on Rn” are equivalent.
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Below we shall use the technique of complex variable functions on Cn. In particular,

we shall need certain facts in entire functions. Therefore, we use below only function

theory terms, i.e. “bandlimited function” term.

Next, to simplify the notation, we shall write B
p
σ in the case of functions of one variable

B
p
σ instead of B

p

Q1
σ
.

If we define the sinc -function to be

sinc (z) =

{
sin(πz)

πz
, z 6= 0,

1, z = 0,

z ∈ C, then (1.1) can be rewritten as

f (x) =
∑

k∈Z

f

(
πk

σ

)
sinc

(
σ

π
x − k

)
. (2.1)

This expression holds for each f ∈ B
p
σ , 1 6 p < ∞. Next, (2.1) converges absolutely and

uniformly on compact subsets of C. The Nyquist sampling rate of σ/π samples per unit

time in (2.1) is exact, i.e. f ∈ B
p
σ cannot be recovered from its samples taken at a lower

rate. This means that, for any ε > 1, there exist two fj ∈ B
p
σ , j = 1,2 such that f1 6≡ f2,

but f1 coincides with f2 on every point of the sampling sequence {(επk/σ }k∈Z.

On the other hand, if we know sample values of f ∈ B
p
σ only the sampling sequence

{2πk/σ }k with the sampling rate σ/(2π), then reconstruction of f is also possible if

we know, in addition, its derivative values {f ′(2πk/σ)}k . More precisely, if f ∈ B
p
σ ,

1 6 p < ∞, then

f (z) =
∑

k∈Z

(
f

(
2πk

σ

)
+ f ′

(
2πk

σ

)(
z −

2πk

σ

))
sinc 2

(
σ

2π
z − k

)
(2.2)

(see Jagerman and Fogel, 1956; p. 145 or Butzer et al., 2011; p. 442).

The following n-dimensional sampling theorem is a standard extension of (2.1) in B
p
Qn

σ

f (z) =
∑

u∈Zn

(
f

(
π

σ
u

) n∏

m=1

sinc

(
σm

π
zm − um

))
,

z ∈ Cn (Gosselin, 1977; p. 172) (see also Jerri, 2017 for references). Here and below we

are taking

(
τ

a

b

)
=

(
τ

a1

b1
, . . . , τ

an

bn

)

for any τ ∈ C and all a, b ∈Cn such that b1 6= 0, . . . , bn 6= 0. These series converge abso-

lutely and uniformly on compact subsets of Cn.
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The aim of this paper is to prove a multidimensional version of (2.2). In the case of two

variables, in Fang and Li (2006) (see also a tutorial review Jerri, 2017; p. 40) a version

of (2.2) involving only the following sample values sequences was given
{
f

(
2π

u

σ

)}

u∈Z2

,

{
∂f

∂x1

(
2π

u

σ

)}

u∈Z2

and

{
∂f

∂x2

(
2π

u

σ

)}

u∈Z2

. (2.3)

Namely, in Fang and Li (2006) the following representation was given:

f (z) =
∑

u∈Z2

[
f

(
2π

u

σ

)
+

(
z1 −

2πu1

σ1

)
·

∂f

∂x1

(
2π

u

σ

)

+

(
z2 −

2πu2

σ2

)
·

∂f

∂x2

(
2π

u

σ

)]

× sinc 2

(
σ1

2π
z1 − u1

)
sinc 2

(
σ2

2π
z2 − u2

)
(2.4)

for all f ∈ B
p

Q2
σ
, 1 6 p < ∞. We say that such a sampling theorem fails in general. Indeed,

let us take any χ ∈ S(R2), χ 6≡ 0, such that suppχ ⊂ {x ∈ R2: |xk|6 σk/2, k = 1,2} and

define

3(x) = sin

(
σ1

2
x1

)
sin

(
σ2

2
x2

)
· χ̂(x),

x ∈ R2. Since S(R2) is invariant under the Fourier transform, it follows that χ̂ ∈ S(R2),

and consequently 3 is in B
p

Q2
σ

for all 1 6 p 6 ∞. On the other hand, if f = 3, then all

sequences in (2.3) are null sequences. Hence, (2.4) generates null function, but not 3.

Even more, this example with our function 3 shows that the same is still true if we add to

(2.4) an arbitrary number of sample values sequences

{
∂j3

∂x
j
k

(
2π

u

σ

)}

u∈Z2

,

k = 1,2, j = 2,3, . . . . Therefore, any multidimensional version of (2.2) must necessarily

contain also mixed partial derivatives of f .

Our basic idea based on observation that any sampling series are also an interpolation

formula. For example, the m-th coefficient in (2.1) equals to the value of the sum, i.e. the

value of f at the point with the number m, i.e. at πm/σ .

We now state the main result of this paper.

Theorem 1. If f ∈ B
p

Q2
σ
, 1 6 p < ∞, then

f (z) =
∑

u∈Z2

[
f

(
2π

u

σ

)
+

(
z1 −

2πu1

σ1

)
·

∂f

∂x1

(
2π

u

σ

)

+

(
z2 −

2πu2

σ2

)
·

∂f

∂x2

(
2π

u

σ

)
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+

(
z1 −

2πu1

σ1

)(
z2 −

2πu2

σ2

)
·

∂2f

∂x1∂x2

(
2π

u

σ

)]

× sinc 2

(
σ1

2π
z1 − u1

)
sinc 2

(
σ2

2π
z2 − u2

)
. (2.5)

The series (2.5) converge absolutely and uniformly on R2 and on compact subsets of C2.

3. Preliminaries and Proofs

Set Q2
π = {x ∈ R2: |x1|, |x2| 6 π}. We may assume without loss of generality below that

σ1 = σ2 = π , since the operator

A(f )(z) = f

(
π

σ1
z1,

π

σ2
z2

)

is an isometric isomorphism between B
p

Q2
σ

and B
p

Q2
π
.

Let 1 6 p < q 6 ∞. Then there exists 0 < M(p; q) < ∞ such that

‖f ‖B
q

Q2
π

6 M(p; q)‖f ‖B
p

Q2
π

(3.1)

for all f ∈ B
q

Q2
π

(see Triebel, 1983; pp. 21–22). Therefore,

B1
Q2

π
⊂ B

p

Q2
π

⊂ B
q

Q2
π

⊂ B∞
Q2

π
. (3.2)

If f ∈ B
p

Q2
π

with 1 6 p < ∞, then

lim
x∈Rn; x→∞

f (x) = 0 (3.3)

(see Nikol’skii, 1975; p. 118). If f ∈ B∞
Q2

π
, then (see, e.g. Nikol’skii, 1975; p. 117; Jager-

man and Fogel, 1956; p. 181 or Hörmander, 1990; p. 181).

∣∣f (z)
∣∣6 sup

x∈R2

∣∣f (x)
∣∣eπ(|y1|+|y2|) (3.4)

for all z = x + iy , x, y ∈ R2. Note that (3.2) shows that (3.4) also holds true for any

f ∈ B
p

Q2
π
, 1 6 p < ∞.

In the sequel, we shall use several times the following function in B∞
Q2

π/2

:

sπ (z) = sin

(
πz1

2

)
sin

(
πz2

2

)
.

Let us start by proving a simple auxiliary statement for functions of one variable. For

completeness, we also give its proof.
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Lemma 1. Suppose that F ∈ B
p
π , 1 6 p < ∞. If

F(2n) = F ′(2n) = 0 (3.5)

for all n ∈ Z, then F ≡ 0.

Proof. Define

G(z) =
F(z)

sin2(πz
2

)
. (3.6)

Then (3.5) implies that G is a well-defined entire function on C. Now, for each positive

integer m, set

Dm =
{
z ∈ C: |ℜz|6 1 + 2m, |ℑz|6 2

}
.

It can easily be checked that

min
z∈∂Dm

∣∣∣∣sin
πz

2

∣∣∣∣> 1 (3.7)

for each m = 1,2, . . . . On the other hand, according to (3.2) and (3.4), we have that there

is a finite number M1 > 0 such that

∣∣F(z)
∣∣ 6M1e

π |ℑz| (3.8)

for all z ∈ C. Therefore, by the maximum principle for analytic functions, we see that

|G| is bounded on Dm. Moreover, (3.7) and (3.8) imply that |G| is bounded by the same

constant on each Dm. Thus, |G| is bounded on

D =

∞⋃

m=1

Dm =
{
z ∈C: |ℑz|6 2

}
. (3.9)

Now take any z ∈ C \ D. Then it is easy to see that

∣∣∣∣sin
πz

2

∣∣∣∣>
1

2
e

π
2
|ℑz|.

Combining this with (3.8), we conclude that |G| is also bounded on C \D. By Liouville’s

theorem, G is a constant. Therefore, (3.6) implies that there exists c ∈ C such that F(z) =

c sin2(πz/2) on C. Finally, using (3.3), since F ∈ B
p
π , 1 6 p < ∞, we see that c = 0.

Thus, F ≡ 0. �

Lemma 2. Let F ∈ B
p

Q2
π
, 1 6 p 6 ∞. Assume that

F(2k,λ) = 0 and F(λ,2k) = 0 (3.10)
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for all λ ∈ C and each k ∈ Z2. Then there exists an entire function G :C2 →C such that

F(z) = sπ (z)G(z), (3.11)

z ∈ C
2.

Proof. First we claim that there is an entire function H : C2 →C such that

F(z) = z1z2H(z) (3.12)

for all z ∈ C2. To that end, we expand F in a series of homogeneous polynomials

F(z) =

∞∑

m=0

pm(z), pm(z) =
∑

|n|=m

cnz
n1

1 z
n2

2 , (3.13)

where n ∈ Z2 is a non-negative multi-index and |n| = n1 +n2. Note that (3.13) converges

uniformly on compact subsets of C2 (see, e.g. Shabat, 1992; p. 36). In particular, the first

condition in (3.10) shows that

F(0, z2) = 0 (3.14)

for all z2 ∈ C. Using this and the identity theorem for entire function F̃ (λ) := F(0, λ)

onC, we see that (3.14) is equivalent to the condition cn = 0 in (3.13) for each n = (n1, n2)

such that n1 = 0. Hence in (3.13) we have that p0 = 0 and pm = z1qm, m = 1,2, . . . ,

where qm is a homogeneous polynomial of degree m − 1 or qm ≡ 0. Next, using the

second condition in (3.10), we obtain in the same manner that p1 ≡ 0 and

pm(z) = z1qm(z) = z1z2rm(z),

m = 2,3, . . . , where rm is a homogeneous polynomial of degree m − 2 or rm ≡ 0. The

series
∑∞

2 rm converge uniformly on compact subsets of C2, since
∑∞

0 pm has this prop-

erty. Therefore,
∑∞

2 rm defines on C
2 an entire function, say H . Therefore, (3.13) implies

our claim (3.12).

We denote by N(sπ ) the zero set of sπ . Clearly,

N(sπ ) =
{
(λ, k): λ ∈C, k ∈ Z

}
∪

{
(k, λ): λ ∈C, k ∈ Z

}
. (3.15)

Hence, the function

G(z) =
F(z)

sπ (z)
(3.16)

is well-defined on C
2 \ N(sπ ). We claim that G can be extended to an entire function on

C2. Our proof is based on the Riemann removable singularity theorem (see, e.g. Shabat,
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1992; p. 175) for G and the analytic set N(sπ ). Since N(sπ ) is an analytic set of the

codimension codim (N(sπ )) = 1 (see Scheidemann, 2005; p. 72), it follows that it remains

to prove that G is locally bounded on N(sπ ), i.e. for every z ∈ N(sπ ) there is an open

neighbourhood Uz of z such that G is bounded on (C2 \ N(sπ )) ∩ Uz.

Fix λ ∈ N(sπ ). By (3.15), we see that the proof of the fact that G is bounded on

(C2 \ N(sπ )) ∩ Uz can be divided into two following cases:

a) λ1 ∈ 2Z but λ2 6∈ 2Z or λ1 6∈ 2Z but λ2 ∈ 2Z;

b) λ1, λ2 ∈ 2Z.

Note that if ω ∈ Z2, then

sπ (z + 2ω) = (−1)ω1+ω2sπ (z)

for all z ∈ C2. Next, sπ (z1, z2) = sπ (z2, z1). Moreover, the functions Fω(z) = F(z + 2ω)

and F̃ (z) = F(z2, z1) also satisfy (3.10). Therefore, we may assume without loss of gen-

erality that we have the only following two cases:

a1) λ1 = 0 and λ2 6∈ 2Z or λ1 6∈ 2Z and λ2 = 0;

b1) λ1 = λ2 = 0.

Suppose that λ = (λ1, λ2) with λ1 = 0 and λ2 6∈ 2Z. Substituting (3.12) into (3.16),

we get

G(z) =
z1z2H(z)

sπ (z)
=

H0(z)

H1(z)H2(z)
, (3.17)

where

H0(z) = z2H(z), H1(z) =
sin πz1

2

z1
and H2(z) = sin

πz2

2
. (3.18)

Of course, H0,H1 and H2 are entire functions on C
2 such that

H1(λ) = H1(0, λ2) =
2

π
6= 0 and H2(λ) = H2(0, λ2) 6= 0,

since in this case λ2 6∈ 2Z. Therefore, there is an ε > 0 and a neighbourhood Uλ ⊂C2 of

λ such that

|H1(z)| > ε and |H2(z)| > ε (3.19)

for all z ∈ Uλ. Using this and (3.17), we see that G is bounded on (C2 \ N(sπ )) ∩ Uz.

In the second part of a1), i.e. if λ1 6∈ 2Z and λ2 = 0, then we are proving (3.19) in

a similar way.

Suppose now that λ1 = λ2 = 0. In this case it is enough to change H0,H1 and H2 in

(3.18) by the following functions:

H0(z) = H(z), H1(z) =
sin πz1

2

z1
and H1(z) =

sin πz2
2

z2
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and repeat the above proof. This finished the proof that G is locally bounded on N(sπ ).

Thus, G is entire and (3.16) implies (3.11). Lemma 2 is proved. �

Theorem 2. Let f1, f2 ∈ B
p

Q2
σ
, 1 6 p < ∞. Assume that

f1

(
2π

u

σ

)
= f2

(
2π

u

σ

)
,

∂f1

∂xj

(
2π

u

σ

)
=

∂f2

∂xj

(
2π

u

σ

)
(3.20)

and

∂2f1

∂x1∂x2

(
2π

u

σ

)
=

∂2f2

∂x1∂x2

(
2π

u

σ

)
(3.21)

for j = 1,2 and all u ∈ Z
2. Then f1 ≡ f2.

Proof. Set f = f1 − f2. We must prove that f ≡ 0. In our case σ1 = σ2 = π . Therefore

(3.20) and (3.21) are equivalent to

f (2u) = 0,
∂f (2u)

∂x1
=

∂f (2u)

∂x2
= 0 (3.22)

and

∂2f (2u)

∂x1∂x2
= 0, (3.23)

u ∈ Z2, respectively. First, we claim that

f (2k,λ) = f (λ,2k) = 0 (3.24)

for all λ ∈ C and each k ∈ Z. Indeed, fix k ∈ Z and let us define F1(λ) := f (λ,2k) and

F2(λ) := f (2k,λ) for λ ∈C. Then (3.22) implies that

F1(2m) = F2(2m) = 0, F ′
1(2m) =

∂f (2m,2k)

∂x1
= 0 and

F ′
2(2m) =

∂f (2m,2k)

∂x2
= 0

for all m ∈ Z. Since F1,F2 ∈ B
p
π , Lemma 1 yields our claim (3.24).

Now, using Lemma 2, we see that there is an entire function g on C2 such that

f (z) = sπ (z)g(z). (3.25)

Now we claim that

g(2k,λ) = g(λ,2k) = 0 (3.26)
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for each k ∈ Z and all λ ∈C. To that end, fix k ∈ Z and set

F1(λ) =
∂f (z)

∂x1
(2k,λ) and F2(λ) =

∂f (z)

∂x2
(λ,2k),

λ ∈C. From (3.22) we have that

F1(2m) = F2(2m) = 0 (3.27)

for all m ∈ Z. Since

F ′
1(λ) =

∂2f (z)

∂x1∂x2
(2k,λ) and F ′

2(λ) =
∂2f (z)

∂x2∂x1
(λ,2k),

it follows from (3.23) that

F ′
1(2m) = F ′

2(2m) = 0, (3.28)

m ∈ Z. Next, according to Bernstein’s inequality (Nikol’skii, 1975; p. 116), if f ∈ B
p

Q2
π
,

then all partial derivatives of f also are elements of B
p

Q2
π
. Hence, F1,F2 ∈ B

p
π . Therefore,

using (3.27) and (3.28), we see that

F1 = F2 ≡ 0 (3.29)

by Lemma 1. On the other hand, from (3.25) we get

F1(λ) = (−1)k
π

2
sin

(
π

2
λ

)
g(2k,λ) and F2(λ) = (−1)k

π

2
sin

(
π

2
λ

)
g(λ,2k).

Together with (3.29), this implies that

g(2k,λ) = g(λ,2k) = 0

for all λ ∈ C such that λ 6= 2πn, n ∈ Z. Since h1(λ) := g(2k,λ) and h2(λ) := g(λ,2k),

λ ∈ C, are entire functions on C, we obtain that h1 = h2 ≡ 0, which yields our claim

(3.26).

Now Lemma 2 shows that then there is an entire function h on C2 such that g(z) =

sπ (z)h(z). Then (3.25) implies that

h(z) =
f (z)

s2
π (z)

.

Combining (3.4), (3.6) and (3.9) with the definition of sπ , we see that |h| is bounded on

the whole C2. Therefore, by Liouville’s theorem, we obtain that h ≡ ch, ch ∈ C. Hence,

f (z) = chs
2
π (z). Since f ∈ B

p

Q2
π

with 1 6 p < ∞, it follows from (3.3) that ch = 0, i.e.

f ≡ 0. This proves Theorem 2. �
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Set

BQ2
σ

=
{
f ∈ C0

(
R

2
)
: supp f̂ ⊂ Q2

σ

}
,

where C0(R
2) is the usual space of continuous functions on R2 that vanish at infinity.

BQ2
σ

is a Banach space with respect to the sup-norm inherited from C0(R
2). Next, (3.3)

implies that

B
p

Q2
σ

⊂ BQ2
σ

(3.30)

for all 1 6 p < ∞.

Let us look again at the proof of Theorem 2. Then we can see that together with (3.20)

and (3.21), we used, in addition, only the following two properties of fj , j = 1,2: a) f̂j

is supported in Q2
π ; b) fj satisfies (3.3). Hence, the following corollary is true:

Corollary 1. Let f1, f2 ∈ BQ2
π
. If f1 and f2 satisfy (3.20) and (3.21), then f1 ≡ f2.

Next, for each 1 < r < ∞ and any w > 0, the following estimate is true (see

Splettstösser, 1982; p. 811):

∑

k∈Z

∣∣sinc (wt − k)
∣∣r 6 r

r − 1
(3.31)

for all t ∈ R. In particular, this implies that the series in (3.31) converge on the whole R

and its sum is a bounded function on R.

Proof of Theorem 1. To begin, we recall the following Nikol’skii’s inequality (Nikol’skii,

1975; p. 123): for any 1 6 p < ∞ and each 0 < ̺ < ∞, there exists a finite positive

number c(σ ;p;̺) such that

( ∑

u∈Z2

∣∣f (̺u)
∣∣p

)1/p

6 c(σ ;p;̺)‖f ‖B
p

Q2
σ

for all f ∈ B
p

Q2
σ
. A similar inequality holds also for all partial derivatives of f , since by

Bernstein’s inequality (Nikol’skii, 1975; p. 116), any partial derivative of f also is an

element of B
p

Q2
σ
.

Suppose again that σ1 = σ2 = π and let l
p
2 be the usual space of sequences {cu ∈ C :∑

u∈Z2 |cu|
p < ∞}. First, we claim that the series (2.5) converge absolutely and uniformly

onR2. Indeed, if z = x ∈ R2, then (2.5) can be divided into four series of the following type

Iν;∞(x) =
∑

m∈Z2

[
αm

(
x1

2
− m1

)ν1
(

x2

2
− m2

)ν2

× sinc 2

(
x1

2
− m1

)
sinc 2

(
x2

2
− m2

)]
(3.32)



A Note on Reconstruction of Bandlimited Signals of Several Variables 541

with certain α ∈ l
p

2 and some ν = (ν1, ν2), where ν1, ν2 ∈ {0,1}. Therefore, it suffices to

show that for any ε > 0 there is a positive integer N such that

∣∣Iν;N (x)
∣∣ =

∣∣∣∣
∑

m∈Z2

|m1|,|m2|>N

[
αm

(
x1

2
− m1

)ν1
(

x2

2
− m2

)ν2

sinc 2

(
x1

2
− m1

)

× sinc 2

(
x2

2
− m2

)]∣∣∣∣ < ε (3.33)

for all x ∈R2. Take any p1 > p such that 1 < p1 < ∞. Then Hölder’s inequality implies

that

∣∣Iν;N (x)
∣∣ 6

( ∑

m∈Z2

|m1|,|m2|>N

|αm|p1

)1/p1
( ∑

m∈Z2

|m1|,|m2|>N

∣∣∣∣
x1

2
− m1

∣∣∣∣
q1ν1

∣∣∣∣
x2

2
− m2

∣∣∣∣
q1ν2

×

∣∣∣∣sinc

(
x1

2
− m1

)∣∣∣∣
2q1

∣∣∣∣sinc

(
x2

2
− m2

)∣∣∣∣
2q1

)1/q1

(3.34)

with 1 < q1 < ∞ such that 1/p1 + 1/q1 = 1. Since α ∈ l
p

2 ⊂ l
p1

2 , it follows that, for any

ε1 > 0, there exists a positive integer N1 such that

( ∑

m∈Z2

|m1|,|m2|>N1

|αm|p1

)1/p1

< ε1. (3.35)

On the other hand, it is clear that

∣∣∣∣
xj

2
− mj

∣∣∣∣
q1νj

∣∣∣∣sinc

(
xj

2
− mj

))∣∣∣∣
2q1

6

∣∣∣∣sinc

(
xj

2
− mj

))∣∣∣∣
(2−νj )q1

6 1

for j = 1,2, mj ∈ Z and all xj ∈ R. Hence, by (3.31), we see that the second series in

(3.34) converge and

( ∑

m∈Z2

|m1|,|m2|>N

∣∣∣∣
x1

2
− m1

∣∣∣∣
q1ν1

∣∣∣∣
x2

2
− m2

∣∣∣∣
q1ν2

∣∣∣∣sinc

(
x1

2
− m1

)∣∣∣∣
2q1

∣∣∣∣sinc

(
x2

2
− m2

)∣∣∣∣
2q1

)1/q1

6

( ∑

m1∈Z, |m1|>N

∣∣∣∣sinc

(
x1

2
− m1

)∣∣∣∣
(2−ν1)q1

)1/q1
)

6

(
(2 − ν1)q1

(2 − ν1)q1 − 1

)1/q1

(3.36)
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for all x ∈ R2 and each N > 0. Combining this with (3.33), (3.34) and (3.35), we get that

(3.32) converges absolutely and uniformly on R2.

Next, for any compact subset K of C2, there is a strip Eτ = {z ∈ C
2 : |ℑz1|, |ℑz2|6 τ },

0 < τ < ∞, such that K ⊂ Eτ . If f ∈ B
p

Q2
π
, then (3.2) shows that f ∈ B∞

Q2
π
. Therefore,

using (3.4), we obtain that (2.5) also converges absolutely and uniformly on K .

Let us denote by F the sum of (2.5). Any sum of partial finite subseries of (2.5) belongs

to B
p

Q2
π

for any 1 6 p < ∞. By (3.30), it is also an element of BQ2
π
. Since BQ2

π
is a Banach

space and (2.5) converges absolutely and uniformly on R2, i.e. in BQ2
π
-norm, it follows

that F ∈ BQ2
π
. Using the fact, that f ∈ B

p

Q2
π

⊂ BQ2
π

for each 1 6 p < ∞, it is easy to

check that the functions f1 := f and f2 = F satisfy the conditions of Corollary 1. Hence,

f ≡ F and this proves our theorem. �

4. The Truncation Error

The sampling formula (2.5) requires us to know values of a signal f at infinitely many

points {2πu/σ }u∈Z2 . In practice, only finitely many samples are available. For N ∈ Z2

with certain positive integers N1 and N2, let us define the partial sum of (2.5) by

fN−1(z) =
∑

u∈Z2

|u1|6N1−1, |u2|6N2−1

[
f

(
2π

u

σ

)
+

(
z1 −

2πu1

σ1

)
∂f

∂z1

(
2π

u

σ

)

+

(
z2 −

2πu2

σ2

)
∂f

∂z2

(
2π

u

σ

)

+

(
z1 −

2πu1

σ1

)(
z2 −

2πu2

σ2

)
∂2f

∂z1∂z2

(
2π

u

σ

)]

× sinc 2

(
σ1

2π
z1 − u1

)
sinc 2

(
σ2

2π
z2 − u2

)
. (4.1)

Then the truncation error of f is defined by

Ef ;N (x) = f (x) − fN−1(x), (4.2)

x ∈ R2. The best known EN (x) estimates are local, i.e. these estimates are valid only on

certain compacts subsets of R2. We shall indicate some uniform bounds of Ef ;N (x), i.e.

the bounds of

eN;f := sup
x∈R2

∣∣Ef ;N (x)
∣∣.

Such an estimate is simpler in the case if we apply to functions f ∈ B
p

Q2
σ

certain additional

conditions of constructiveness relating to the decay of f at infinity in (3.3) (see, e.g. Lin,
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2019 and Wang et al., 2018). Note that the spectral function, i.e. the Fourier transform f̂ ,

of many important signals f are smooth enough. Hence, these signals f have rapid decay

in the time domain for large time. In light of this, it is natural to study the truncation error

for functions f ∈ B
p

Q2
σ
, 1 6 p < ∞ that satisfy the following simple decay condition

∣∣f (x)
∣∣6 cf

|x1||x2|
, (4.3)

for all x ∈R2 such that , |x1|> N1 > 1, |x2|> N2 > 1. Here cf is a positive number that

depends on f . Note that the function

f (x) = sinc

(
σ1

π
x1

)
sinc

(
σ2

π
x2

)

satisfies (4.3) with cf = 1/(σ1σ2).

Theorem 3. Let f ∈ B
p

Q2
σ
, 1 6 p < ∞, and let N1 and N2 be two positive integers. As-

sume that f satisfies (4.3). Then, for any 1 < ω < ∞, we have that

ef ;N 6
cf σ1σ2

4π2

[(
4ω2

(ω + 1)2

)1−1/ω

+ 2

(
2ω2

ω + 1

)1−1/ω(
2 +

1

2πN1
+

1

2πN2

)

+ 4ω2(1−1/ω)

(
1 +

1

2πN1
+

1

2πN2
+

3

4π2N1N2

)]
(2(ω − 1)2)1/ω

(N1N2)1−1/ω
.

(4.4)

The estimate (4.4) can be substantially simplified. Indeed, the following corollary

holds:

Corollary 2. Under the assumptions of Theorem 3, we get

ef ;N 6
3cf σ1σ2

π2
ω2(1−1/ω)

(
2(ω − 1)2

)1/ω 1

(N1N2)1−1/ω
(4.5)

for all x ∈R2.

Of course, (4.5) is less exact than (4.4).

Proof of Theorem 3. For ν = (ν1, ν2) with ν1, ν2 ∈ {0; 1}, set

αν(u) =
∂ν1+ν2f

∂ν1x1∂ν2x2

(
2π

u

σ

)
,

u ∈ Z2. The truncation error EN;f (x) can be divided into four series of the type
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Iν(x) =
∑

u∈Z2

|u1|>N1, |u2|>N2

[
αν(u)

(
x1 −

2π

σ1
u1

)ν1
(

x2 −
2π

σ2
u2

)ν2

sinc 2

(
σ1

2π
x1 − u1

)

× sinc 2

(
σ2

2π
x2 − u2

)]
. (4.6)

Next, for any ω such that 1 < ω < ∞, Hölder’s inequality implies that

∣∣Iν(x)
∣∣ 6

( ∑

u∈Z2

|u1|>N1,|u2|>N2

∣∣αν(u)
∣∣ω

)1/ω( ∑

u∈Z2

|u1|>N1, |u2|>N2

∣∣∣∣x1 −
2π

σ1
u1

∣∣∣∣
sν1

∣∣∣∣x2 −
2π

σ2
u2

∣∣∣∣
sν2

×

∣∣∣∣sinc

(
σ1

2π
x1 − u1

)∣∣∣∣
2s∣∣∣∣sinc

(
σ2

2π
x2 − u2

)∣∣∣∣
2s)1/s

(4.7)

with 1 < s < ∞ such that 1/ω + 1/s = 1.

We claim that

( ∑

u∈Z2

|u1|>N1, |u2|>N2

∣∣∣∣x1 −
2π

σ1
u1

∣∣∣∣
sν1

∣∣∣∣x2 −
2π

σ2
u2

∣∣∣∣
sν2

∣∣∣∣sinc

(
σ1

2π
x1 − u1

)∣∣∣∣
2s∣∣∣∣

× sinc

(
σ2

2π
x2 − u2

)∣∣∣∣
2s)1/s

6
2ν1+ν2

σ
ν1

1 σ
ν2

2

(
s2 (2 − ν1)(2 − ν2)

[(2 − ν1)s − 1)][(2 − ν2)s − 1]

)1/s

(4.8)

for all x ∈R2. Indeed,

∣∣∣∣xj −
2π

σj

uj

∣∣∣∣
sνj

∣∣∣∣sinc

(
σj

2π
xj − uj

)∣∣∣∣
2s

6

(
2

σj

)sνj
∣∣∣∣sinc

(
σj

2π
xj − uj

)∣∣∣∣
(2−νj )s

,

j = 1,2, x ∈ R2. Therefore, by a similar argument as is used in the proof of (3.36), we

obtain (4.8).

Now we estimate the first series in (4.6). Here we have four cases. Start with ν1 =

ν2 = 0. Then

α0,0(u) = f

(
2π

σ
u

)
,
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u ∈ Z2. Hence, using (4.3), we get

∑

u∈Z2

u1>N1, u2>N2

∣∣α0,0(u)
∣∣ω 6 cω

f

∑

u∈Z2

u1>N1, u2>N2

1

|2πu1/σ1|ω|2πu2/σ2|ω
. (4.9)

Since

∑

k∈Z

k>N>0

1

|2πk/σ |ω
6

(
σ

2π

)ω ∫ ∞

N

1

tω
dt =

(
σ

2π

)ω
ω − 1

Nω−1
,

it follows from (4.9) that

∑

u∈Z2

u1>N1, u2>N2

∣∣α0,0(u)
∣∣ω 6

(
cf σ1σ2

4π2

)ω
(ω − 1)2

(N1N2)ω−1
. (4.10)

Thus,

( ∑

u∈Z2

|u1|>N1, |u2|>N2

∣∣α0,0(u)
∣∣ω

)1/ω

6
cf σ1σ2

4π2

(2(ω − 1)2)1/ω

(N1N2)1−1/ω
. (4.11)

Next, assume that ν1 = 1 and ν2 = 0. Then

α1,0(u) =
∂f

∂x1

(
2π

u

σ

)
, u ∈ Z

2.

We shall estimate these α1,0. For this purpose let us define the function

F(x) := x1x2f (x), (4.12)

x ∈ R2. According to (4.3), it is in B∞
Q2

σ
and

‖F‖∞ 6 cf .

Given any nonnegative multi-index ν ∈ Z2 with ν1, ν2 ∈ {0; 1}, we get by Bernstein’s

inequality in B∞
Q2

σ
(see Nikol’skii, 1975; p. 116) that

∣∣∣∣
∂ν1+ν2F(x)

∂ν1x1∂ν2x2

∣∣∣∣6 σ
ν1

1 σ
ν2

2 cf (4.13)
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for all x ∈R2. Now ν1 = 1 and ν2 = 0. Hence, (4.13) implies that

∣∣∣∣x2f (x) + x1x2
∂f

∂x1
(x)

∣∣∣∣ =

∣∣∣∣
∂F

∂x1
(x)

∣∣∣∣6 cf σ1.

Hence, using (4.3), we get that

∣∣∣∣
∂f

∂x1
(x)

∣∣∣∣6
cf σ1

|x1x2|
+

|f (x)|

|x1|
6

cf

|x1x2|

(
σ1 +

1

|x1|

)
(4.14)

for all x ∈R2. Therefore, we have that

∑

u∈Z2

u1>N1, u2>N2

∣∣α1,0(u)
∣∣ω

6 cω
f

∑

u∈Z2

u1>N1, u2>N2

[
1

|2πu1/σ1|ω|2πu2/σ2|ω

(
σ1 +

1

2πu1/σ1

)ω]
. (4.15)

Since

sup

u1∈Z

u1>N1

(
σ1 +

1

2πu1/σ1

)
6

(
σ1 +

σ1

2πN1

)
,

it follows from (4.15) that

∑

u∈Z2

u1>N1, u2>N2

∣∣α1,0(u)
∣∣ω 6 cω

f

(
σ1 +

σ1

2πN1

)ω ∑

u∈Z2

u1>N1, u2>N2

1

|2πu1/σ1|ω|2πu2/σ2|ω
.

Finally, with (4.9), (4.10) and (4.11) in mind, we obtain that

( ∑

u∈Z2

|u1|>N1,
∣∣u2|>N2

∣∣α1,0(u)|ω
)1/ω

6
cf σ 2

1 σ2

4π2

(
1 +

1

2πN1

)
(2(ω − 1)2)1/ω

(N1N2)1−1/ω
. (4.16)

A similar argument shows that

( ∑

u∈Z2

|u1|>N1, |u2|>N2

|α0,1(u)|ω
)1/ω

6
cf σ1σ

2
2

4π2

(
1 +

1

2πN2

)
(2(ω − 1)2)1/ω

(N1N2)1−1/ω
. (4.17)
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Assume now that ν1 = ν2 = 1. Then

α1,1(u) =
∂2f

∂x1∂x1

(
2π

u

σ

)
, u ∈ Z

2.

Now (4.13) implies that

∣∣∣∣f (x) + x1
∂f

∂x1
(x) + x2

∂f

∂x2
(x) + x1x2

∂2f

∂x1∂x2
(x)

∣∣∣∣ =

∣∣∣∣
∂F 2

∂x1∂x2
(x)

∣∣∣∣6 cf σ1σ2

for all x ∈ R2. Therefore, using (4.3) and (4.14), we have that

∣∣∣∣
∂2f

∂x1∂x2
(x)

∣∣∣∣ 6
cf σ1σ2

|x1||x2|
+

|f (x)|

|x1||x2|
+

1

|x2|

∣∣∣∣
∂f

∂x1
(x)

∣∣∣∣ +
1

|x1|

∣∣∣∣
∂f

∂x2
(x)

∣∣∣∣

6
cf

|x1||x2|

(
σ1σ2 +

σ1

|x2|
+

σ2

|x1|
+

3

|x1||x2|

)
, (4.18)

x ∈ R2. Since

sup

u1∈Z
u1>N1, u2>N2

(
σ1σ2 +

σ1

|2πu2/σ2|
+

σ2

|2πu1/σ1|
+

3

|2πu1/σ1||2πu2/σ2|

)

6 σ1σ2

(
1 +

1

2πN1
+

1

2πN2
+

3

4π2N1N2

)
,

we obtain from (4.18) that

∑

u∈Z2

u1>N1, u2>N2

∣∣α1,1(u)
∣∣ω =

∑

u∈Z2

u1>N1, u2>N2

∣∣∣∣
∂2f

∂x1∂x1

(
2π

u

σ

)∣∣∣∣
ω

6 (cf σ1σ2)
ω

(
1 +

1

2πN1
+

1

2πN2
+

3

4π2N1N2

)ω

×
∑

u∈Z2

u1>N1, u2>N2

1

|2πu1/σ1|ω|2πu2/σ2|ω

6

(
cf σ 2

1 σ 2
2

4π2

)ω(
1 +

1

2πN1
+

1

2πN2
+

3

4π2N1N2

)ω
(ω − 1)2

(N1N2)ω−1
.
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Therefore,

( ∑

u∈Z2

|u1|>N1, |u2|>N2

∣∣α1,1(u)
∣∣ω

)1/ω

6
cf σ 2

1 σ 2
2

4π2

(
1 +

1

2πN1
+

1

2πN2
+

3

4π2N1N2

)

×
(2(ω − 1)2)1/ω

(N1N2)1−1/ω
. (4.19)

Now, combining (4.7), (4.8), (4.11), (4.16), (4.16) and (4.19) with the estimate

∣∣Ef ;N (x)
∣∣6

∑

ν=(ν1,ν2) ν1,ν2∈{0;1}

∣∣Iν(x)
∣∣,

x ∈R2, we have that

eN;f 6 sup
x∈R2

∣∣Ef ;N (x)
∣∣6 cf σ1σ2

4π2

[(
4s2

(2s − 1)2

)1/s

+ 2

(
2s2

(s − 1)(2s − 1)

)1/s

×

(
2 +

1

2πN1
+

1

2πN2

)
+ 4

(
s2

(s − 1)2

)1/s

×

(
1 +

1

2πN1
+

1

2πN2
+

3

4π2N1N2

)]
(2(ω − 1)2)1/ω

(N1N2)1−1/ω
. (4.20)

Finally, since

s

s − 1
= ω and

2s

2s − 1
=

2ω

ω + 1
,

(4.20) implies (4.4). This proves our theorem. �

Proof of Corollary 2. Using the following elementary inequality 2ω/(2ω + 1) < ω that

holds for each ω > 1, we get from (4.4) that

ef ;N 6
cf σ1σ2

4π2
ω2(1−/ω)

×

[
1 + 2

(
2 +

1

2πN1

)
+ 4

(
1 +

1

2πN1
+

1

2πN2
+

3

4π2N1N2

)]

×
(
2(ω − 1)2

)1/ω 1

(N1N2)1−1/ω
.

Now since N1,N2 > 1, a direct estimation gives (4.5). Corollary 2 is proved. �
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5. A Numerical Analysis of the Truncation Error

In this section, we comment the estimates (4.4) and (4.5) for the uniformly truncated error

eN;f . We also give two numerical examples of eN;f by tables.

The estimates (4.4) and (4.5) depend on the signal f magnitude cf , the highest fre-

quencies σ = (σ1, σ2) of f , the numbers N1 and N2 of samples that are used in the partial

sum (4.1), and a number ω which we can choose free. Now we will briefly comment on

their action on ef ;N .

Magnitude cf .

If f ∈ B
p

Q2
σ
, 1 6 p < ∞, satisfies (4.3), then the function F(x) = x1x2f (x) is in B∞

Q2
σ
.

Hence, we can choose cf equal to the maximal amplitude of F in the domain {x ∈ R2 :

|x1|> N1, |x2|> N2}, i.e.

cf = max
{
|F(x)| : |x1|> N1, |x2|> N2

}
.

However, instead of this choice for cf , we can associate cf with certain function relating

to the p -energy of signal f . Indeed, if f satisfies (4.3), then we can take

cf =

(
(p − 1)2

4

)2/p

(N1N2)
1−1/p6p;N (f ),

where 6p;N (f ) is a part of the p-energy of f supported in {x ∈ R2: |x1| > N1, |x2| >

N2}, i.e.

6p;N (f ) =

(∫

|x1|>N1,|x2|>N2

∣∣f (x)
∣∣p dx

)1/p

.

Therefore, we shall calculate below only the quantity eN;f /cf instead of the usual trun-

cated error eN;f .

Frequencies σ = (σ 1,σ 2).

We recall that humans can hear a range of frequencies from 20 to 20,000 Hz, i.e. we

can hear signals which have 20-20000 full cicles per second. On the other hand, in the

case of smartphones (cell phones) the frequency band ranges from approximately 300 Hz

to 3400 Hz. Cutting out the other frequencies reduced the amount of information that

would have to be transmitted and reduced the Nyquist frequency. Consequently, our smart-

phones have such low quality, i.e. they are not picking up all the frequencies that make up

our voices or that we can hear. For this reason, we shall calculate below the estimates of

eN;f /cf in the case σ1 = σ2 = 3400 Hz.

The numbers of samples N1 and N2.

Obviously, by getting higher values of N1 and N2, we get a better estimate of eN (f )

and eN (f )/cf . For example, if N1 and N2 are such that |eN (f )/cf | < 0.01, then we can

understand that the difference |f − fN | is less than 1 percent of the maximal amplitude
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Table 1

Estimates of eN;f /cf in (4.4) with N1 = N2 = n and with frequencies up to σ1 = σ2 = 3400 Hz.

ω \ n 2 · 104 5 · 104 105 5 · 105 106 2 · 106

1,25 10231,9 7092,18 5374,85 2823,44 2139,76 1621.64

2 328,501 131,399 65,6996 13,1399 6,56994 3.28497

4 10,6876 2,70375 0,95592 8,5499 · 10−2 3,0229 · 10−2 10,6874 · 10−3

8 3,02323 0,60824 0,18083 1,0816 · 10−2 0,3217 · 10−2 0,9560 · 10−3

12 2,72504 0,50794 0,14254 0,7455 · 10−2 0,2092 · 10−2 0,5871 · 10−3

16 3,05007 0,54722 0,14919 0,7297 · 10−2 0,1989 · 10−2 0,5424 · 10−3

20 3,60504 0,63215 0,16938 0,7958 · 10−2 0,2132 · 10−2 0,5714 · 10−3

50 11,4879 1,90666 0,49006 2,0906 · 10−2 0,5373 · 10−2 1,3812 · 10−3

cf of f . Below we calculate the estimates of eN (f )/cf for different values of N1 and N2

and the same values of other parameters σ and ω.

A parameter ω.

From the proof of Theorem 3 follows that we can choose the value of ω in (1,∞)

free, since ω is only the technical parameter that was used in the proof of this theorem.

However, a preliminary analysis of the action of ω on eN;f can be done. Indeed, let us

define

AN,ω(f ) =

[(
4ω2

(ω + 1)2

)1−1/ω

+ 2

(
2ω2

ω + 1

)1−1/ω(
2 +

1

2πN1
+

1

2πN2

)

+ 4ω2(1−1/ω)

(
1 +

1

2πN1
+

1

2πN2
+

3

4π2N1N2

)](
2(ω − 1)2

)1/ω

and

BN (f ) =
1

(N1N2)1−1/ω
.

Then the right-hand side of (4.4) is equal to

cf σ1σ2

4π2
AN,ω(f )BN (f ).

It is obvious that for given N1 and N2, BN (f ) can be made smaller by taking the values

of ω close to infinity. On the other hand, it is easy to check that

lim
ω→+∞

AN,ω(f ) = ∞.

Therefore, the choice of optimized values of ω for the best estimates in (4.4) is a distinct

and nontrivial problem. Here we give two numerical examples for estimate of eN;f .

Those tables give us certain knowledge in the case of smartphones, where the fre-

quency band ranges up to 3400 Hz. For example, assume that we want to know what
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Table 2

Estimates of eN;f /cf in (4.5) with N1 = N2 = n and with frequencies up to σ1 = σ2 = 3400 Hz.

ω \ n 2 · 104 5 · 104 105 5 · 105 106 2 · 106

1,25 13856,6 9604,67 7278,96 3823,68 2897,80 1153,64

2 496,926 198,771 99,3853 19,8771 9,93853 0,99385

4 20,4711 5,17884 1,83099 16,377 · 10−2 5,7912 · 10−2 20,471 · 10−3

8 7,05162 1,41872 0,42179 2,5229 · 10−2 0,7501 · 10−2 2,2299 · 10−3

12 6,88186 1,28277 0,35996 1,8829 · 10−2 0,5284 · 10−2 1,4827 · 10−3

16 8,03339 1.44132 0.39294 1,9220 · 10−2 0,5239 · 10−2 1,4286 · 10−3

20 9,74328 1,70852 0,45778 2,1510 · 10−2 0,5763 · 10−2 1,5442 · 10−3

50 33,0651 5,48788 1,41054 6,0174 · 10−2 1,5466 · 10−2 3,9752 · 10−3

quantity N = (N1,N2) of sample values of a signal f and its derivatives in (4.1) guaran-

tees us that |f − fN | is less than 1 percent of the maximal amplitude cf . In Table 1 we

see that that is enough to take N1,N2 > 5 · 105 if the parameter ω ranges from 12 to 20.

Finally, from the Table 2 we conclude that (4.5) gives us the estimate of eN;f such

that it is several times (for example, up to three times) less that (4.4). Hence, although the

estimate (4.5) is a simpler than (4.4) but (4.5) is better suited to theoretical purposes.
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