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Abstract. The simplest hypothesis of DNA strand symmetry states that proportions of nucleotides
of the same base pair are approximately equal within single DNA strands. Results of extensive
empirical studies using asymmetry measures and various visualization tools show that for long DNA
sequences (approximate) strand symmetry generally holds with rather rare exceptions. In the paper,
a formal definition of DNA strand local symmetry is presented, characterized in terms of generalized
logits and tested for the longest non-coding sequences of bacterial genomes. Validity of a special
regression-type probabilistic structure of the data is supposed. This structure is compatible with
probability distribution of random nucleotide sequences at a steady state of a context-dependent
reversible Markov evolutionary process. The null hypothesis of strand local symmetry is rejected
in majority of bacterial genomes suggesting that even neutral mutations are skewed with respect to
leading and lagging strands.
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Due to symmetry, the nature is perfect.

Spices of asymmetry make it beautiful.

1. Introduction

Genetically (or biologically) informative sequences can be defined as those which are ei-
ther close to a known genetically important sequence or are far from sequences known
to be noninformative. The first criterion seems to be more practical, however it is lim-
ited since it tries to reproduce what is already known. The second principle is more fun-
damental and more convenient for mathematical formalization and statistical inference.
When employing this principle, the problem is how to define the noninformative genetic
sequence (we call it the genetic noise), i.e. the sequence which has no genetically or bio-
logically important information.

*Corresponding author.
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A model of the genetic noise is also crucial for statistical hypotheses testing, the phy-
logenetic tree reconstruction, simulations of the (neutral) evolutions, and in assessing the
variability and uncertainty.

Genome regions whose evolution is not subjected to natural selection pressure and
hence evolve with a neutral mutation rate can be viewed as the genetic noise. Those regions
could be parts of non-coding regions of genoms of primitive species.

A generic formulation of empirical findings is sometimes called a stylized fact. The
definition of the genetic noise should be consistent with the stylized facts about non-coding
DNA sequences as well as with a probabilistic model of their evolution. Thus, the gen-
eral aim of our investigation is to specify and to test statistically the basic properties of
non-coding DNA sequences implied by a model of DNA evolution (Markov property, ho-
mogeneity, long-range dependence, reverse-complement symmetry, CpG content, etc.).
In this work we focus on symmetry/asymmetry properties of two complementary DNA
strands.

Chargaff’s second parity rule. The simplest hypothesis of DNA strand symmetry
(sometimes referred to as Chargaff’s second parity rule) states that proportions of nu-
cleotides of the same base pair are approximately equal within single DNA strands (Rud-
ner et al., 1968), i.e. %A ≈ %T and %C ≈ %G. Since the lagging strand is read in the
reverse order, an extension of this first-order symmetry to higher-orders is called reverse-

complement symmetry, or intra-strand parity (ISP) (Powdel et al., 2009), or simply strand

symmetry (Baisnée et al., 2002; Zhang and Huang, 2008). Although rather natural, this
universal phenomenon of strand symmetry in the chromosomes needs explicit description
and explanation. Actually, it may be the effect of a wide range of mechanisms operating
at multiple orders and length scales (Baisnée et al., 2002).

Thus far the issue about strand symmetry, its origins and biological significance is
controversial. On the one hand, results of empirical studies using various asymmetry mea-
sures and visualization tools show that for long DNA sequences (approximate) strand
symmetry generally holds with rather rare exceptions. The fact that the strand sym-
metry should hold at the equilibrium state is also derived theoretically (Sueoka, 1995;
Lobry, 1995). Baisnée et al. (2002) defined strand symmetry indices through relative L1

distance between the observed frequencies of respective reverse-complementary oligonu-
cleotides and compare them with critical values calculated for completely random se-
quences. In Kong et al. (2009), various symmetry indices (reverse, complement and in-
verse symmetry indices, global as well as segmental) based on L2 distance have been cal-
culated for 786 complete chromosomes. The authors have found that reverse-complement
symmetry (inverse-complement plus reverse-symmetry in terms of the authors) is preva-
lent in complex patterns in most chromosomes. Rosandić et al. (2016) considered 20
symbolic quadruplets of trinucleotides obtained via interstrand mirror symmetry map-
pings (direct, reverse complement, complement, and reverse) and demonstrated quadru-
plet’s symmetries in chromosomes of wide range of organisms, from Escherichia coli to
human genomes. Powdel et al. (2009) have noticed another strand symmetry manifes-
tation, intra-strand frequency distribution parity (ISFDP), which represents closeness of
frequency distributions between the complementary mono/oligonucleotides. This general
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feature (with rare exceptions) was observed in chromosomes of bacteria, archaea and eu-
karyotes. It has been also noticed that the frequency of an genomic word is more similar
to the frequency of its reversed complement than to the frequencies of other words of
equivalent composition. This phenomenon is called exceptional symmetry. Afreixo et al.

(2017) proposed a new measure to evaluate the exceptional symmetry effect based on
discrepancy between frequency of symmetric word pair and frequencies of word pairs
of equivalent composition. They identified words that show high symmetry effect across
the 31 species, and across the 9 animal species studied. Fractal-like symmetry structures
are considered in Petoukhov et al. (2018). Sobottka and Hart (2011) proposed a model
based on a hidden Markov process for approximating the distributions of primitive DNA
sequences. The model provides an alternative interpretation of strand symmetry and de-
scribes new symmetries in bacterial genomes. Cristadoro et al. (2018) introduced flexible
statistical measures of symmetry and used them to define an extended Chargaff symme-
try. The definition actually coincides with global strand symmetry of genoms defined and
studied in Simons et al. (2005). Domain models introduced in Cristadoro et al. (2018)
alow to explain simultaneously symmetries as well as non-random structures in genetic
sequences and unravel previously unknown symmetries, which are organized hierarchi-
cally through different scales.

On the other hand, statistical analyzes of the genomic sequences (Shporer et al., 2016;
Tavares et al., 2018), especially those based on Markov-type models (Hart and Martínez,
2011; Hart et al., 2012), have demonstrated significant deviations from the second Char-
gaff’s parity rule and its extensions. A statistical IS-Poisson model introduced in Shporer
et al. (2016) assumes that frequencies of oligonucleotides (DNA k-mers) follow the Pois-
son distribution. The model allows to conclude that for k-mers with low k (even for nu-
cleotides, k = 1) violations of symmetry, although extremely small, are significant. In
Tavares et al. (2018), both the distance distributions and the frequencies of symmetric
words in the human DNA have been compared. The results obtained suggest that some
asymmetries in the human genome go far beyond Chargaff’s rules.

One of the explanations of strand asymmetry (skew), i.e. violation of symmetry, is mu-
tation bias. When investigating asymmetries in mutation patterns, phylogenetic estima-
tion based on maximum likelihood can be applied. Usually independent evolution mod-
els completely determined by nucleotide substitution rates are employed, see, e.g. Faith
and Pollock (2003), Marin and Xia (2008). Note that mathematical models for evolution-
ary inference considered in Parks (2015) also assume independent evolution. However,
Siepel and Haussler (2004) presented extensions of standard phylogenetic models with
context-dependent substitution and showed that the new models improve goodness of fit
substantially for both coding and non-coding data. Moreover, considering context depen-
dence leads to much larger improvements than does using a richer substitution model or
allowing for rate variation across sites, under the assumption of site independence. We
refer to Bérard and Guéguen (2012) for a more recent application of context-dependent
substitution models in a phylogenetic context.

In this paper, DNA strand local symmetry introduced in Židanavičiūtė (2010) is tested
for the longest non-coding (in the both leading and lagging strands) sequences of bacte-
rial genomes taken from GenBank (https://www.ncbi.nlm.nih.gov/genbank/). Validity of



556 M. Radavičius et al.

a special regression-type probabilistic structure of the data is supposed. This structure is
compatible with probability distribution of random nucleotide sequences at a steady state
of a context-dependent reversible Markov evolutionary process (Jensen, 2005), see also
Arndt et al. (2003), Lunter and Hein (2004). The null hypothesis of strand local symme-
try is rejected in majority of bacterial genomes suggesting that even neutral mutations are
skewed with respect to leading and lagging strands.

The rest of the paper is organized as follows. In the next section the definition of strand

local symmetry is presented and characterization of this property in terms of generalized
logits is given. Results of statistical analysis are discussed in Section 3. We end with some
concluding remarks.

2. Local Symmetry

In this section we present the formal definition of local symmetry (Židanavičiūtė, 2010)
and recall necessary notions and facts about discrete Markov random fields and loglinear
modelling.

2.1. Complementary Transformation

Nucleotide sequences x = x[n] are sequences of elements (xi, i ∈ [n]) with values from
the alphabet A := {A,C,G,T}. Here [n] := [1, n] = {1, . . . , n} is an interval of (positive)
integers.

If x = (x1, . . . , xn) is the leading strand of a DNA sequence, then the complementary
one (the lagging strand read in the opposite direction) is denoted by x∗ = (x∗1 , . . . , x

∗
n),

where x∗i is the complementary nucleotide to xi in the ith base pair, and x∗ = x∗[n] :=
(x∗1, . . . , x∗n) = (x

∗
n, . . . , x

∗
1 ). This determines the complementary transformation. For

instance,

x = (x1, . . . , xn):
−−−−−−−−−−−−−−−−→
. . .CGGATTTAGCTA . . . , (1)

x∗ = (x∗1 , . . . , x
∗
n):
←−−−−−−−−−−−−−−−−
. . .GCCTAAATCGAT . . . , (2)

x∗ = (x∗n, . . . , x
∗
1 ):
−−−−−−−−−−−−−−−−→
. . .TAGCTAAATCCG . . . . (3)

Chargaff and his colleagues (Rudner et al., 1968) have noticed that

∣

∣

{

t ∈ [n] : xt = A
}
∣

∣≈
∣

∣

{

t ∈ [n] : xt = T
}
∣

∣,
∣

∣

{

t ∈ [n] : xt = C
}
∣

∣≈
∣

∣

{

t ∈ [n] : xt = G
}
∣

∣,

(|A| is the number of elements in a set A) which actually means that

∣

∣

{

t ∈ [n] : xt = ν
}
∣

∣≈
∣

∣

{

t ∈ [n] : x∗t = ν
}
∣

∣, ∀ν ∈A.

Thus, if x is treated as a random sequence, the last expression can be interpreted and
generalized as follows: a probabilistic law generating x is invariant with respect to the
complementary transformation x→ x∗.



Local Symmetry of Non-Coding Genetic Sequences 557

2.2. Basics of Markov Random Fields

Let us start with basic notation and notions. Set N = [n], fix some positive integer
m < n/2 and define the m-interior N ◦m, the m-boundary ∂Nm of N , and a collection
of neighbourhoods:

N ◦ =N ◦m := [m+ 1, . . . , n−m], ∂N = ∂Nm :=N \N ◦m,

N (ℓ)=Nm(ℓ) := [ℓ−m,ℓ+m] \ {ℓ}, ℓ ∈N ◦. (4)

Given x ∈An and a set of indices J ⊂N , let xJ := (xi, i ∈ J ) denote the corresponding
subsequence of x treated as an element of A|J |.

Definition 1. A random sequence x ∈ An is called an m-order Markov random field

(MRF) with the state space A and the collection of neighbourhoods (4) iff ∀a ∈An and
∀ℓ ∈N ◦m

P
{

xℓ = aℓ | xi = ai, i ∈ [n], j 6= ℓ
}

= P
{

xℓ = aℓ | xNm(ℓ) = aNm(ℓ)

}

. (5)

A MRF x is called an m-order homogeneous MRF (m-MRF) if its m-order marginal con-
ditional probabilities given in the right-hand side of (5) are independent of the site ℓ ∈N◦ .

Definition 2. For a fixed reference value r ∈A and given m-order marginal conditional
probabilities

p(v|u) := P{xm+1 = v | xNm(m+1) = u}, (6)

the respective generalized logit 3v(u) = 3v|r (u) of a state v ∈ A versus r , given the
neighbouring values u ∈A2m, is defined as

3v|r (u) := log

(

p(v|u)

p(r|u)

)

, (7)

where we set log(0/0)= 0 and log(p/0)=∞ for p > 0.

Suppose that values of m-MRF x are fixed on the boundary ∂N : x∂N = b a.s. for some
b ∈A2m. Denote

Xb :=
{

w ∈An: w∂N = b
}

.

From Hammersley–Clifford theorem (Besag, 1974), we obtain the following statement.

Proposition 1. Suppose the distribution of m-MRF x is positive on Xb , i.e. P{x =w}> 0

for all w ∈ Xb . Then the distribution of x is uniquely determined by the family of gene-
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Table 1
Nucleotide recoding rule.

Purine (Bonds) Pyrimidine s

Weak (2 bonds) A ( = ) T s =−1

Strong (3 bonds) G ( ≡ ) C s =+1

y y =−1 y =+1

ralized logits 3v|r(u), r, v ∈A, u ∈A2m, which for w ∈A2m+1, take the following form

3wm+1|r(wNm(m+1))=

m+1
∑

j=1

[

λm(w[j,m+j ])− λm
(

w
(r)
[j,m+j ]

)]

, (8)

and in general depend on M = (|A| − 1)|A|m free scalar parameters. Here λm:

Am+1 → R is an arbitrary function and w(r) is obtained from w by substituting r for

wm+1.

The statement is well-known, it is just rewritten in the notation introduced above.

2.3. Local Symmetry: Definition and Characterization

Let us recall that DNA strand symmetry means that probability distribution of oligonu-
cleotides (sequences of adjacent nucleotides) of the both complementary strands of DNA,
read in the respective direction, are similar in some sense. Having in mind the definition of
m-MRF, the following formal definition of DNA strand symmetry can be given in terms
of complementary transformation w→w∗,w ∈A

2m+1, defined in Subsection 2.1.

Definition 3 (See Židanavičiūtė, 2010.). A random sequence x[n] ism-order locally sym-

metric (m< n/2) iff

P{xℓ = v | xNm(ℓ) = u} = P
{

xℓ = v
∗
∣

∣xNm(ℓ) = u
∗
}

(9)

for all ℓ ∈N ◦, v ∈A, u ∈A2m.

Thus, for locally symmetric sequence, the marginal conditional distributions given m
nearest neighbours (from the each side) are invariant under the complementary transfor-
mation. Under the assumption that DNA sequence x is m-MRF, the local strand symmetry
can be expressed in terms of the conditional distributions p(v|u) and/or the generalized
logits 3v(u).

For characterization of local symmetry in terms of the generalized logits, it is conve-
nient to change the initial alphabet A = {A,C,G,T} of nucleotides v to A2

1 =A1 ×A1,
A1 := {−1,+1}, via mapping v→ z := (s, y) by the rule indicated in Table 1. The com-
ponents s = s(v) ∈ A1 and y = y(v) ∈ A1 of a nucleotide v ∈ A represent its bonding
property strong versus weak and its hydrophobic property pyrimidine (large molecule,
less hydrophobic) versus purine (small molecule, more hydrophobic), respectively.
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Now, let x = (x1, . . . , xk) ∈A
k be a nucleotide sequence in the leading strand of DNA

and let x∗ be its complement read from the left to the right but taken in the common
direction. Set

z= z(x) := (−→s ,−→y ) ∈A2k
1 , (−→s )i := s(xi), (−→y )i := y(xi), i = 1, . . . , k,

(10)

z∗ = z∗(x) := (
−→s ∗,
−→y ∗)= (

←−s ,−←−y ), (11)

(←−s )i = (
−→s )k−i+1, (

←−y )i = (
−→y )k−i+1, i = 1, . . . , k. (12)

Then z(x∗)= z∗(x). To illustrate the notation we apply them to the nucleotide sequence
from (1) (to save space here and below we will omit the numeral 1):

x = (x1, . . . , xn): . . .CGGATTTAGCTA . . . ,

s = (s1, . . . , sn): . . .+++---++- . . . ,

y = (y1, . . . , yn): . . .+--+++-++- . . . ,

x∗ = (x
∗
n, . . . , x

∗
1 ): . . .TAGCTAAATCCG . . . ,

−→s ∗ = (sn, . . . , s1): . . .-++---+++ . . . ,

−→y ∗ =−(yn, . . . , y1): . . .+-++--+++- . . . .

In what follows we identify p(v|u) with p(z(v)|z(u)) and 3v|r(u), r = A, with
3z(v)(z(u)).

Let us introduce functions that are symmetric (antisymmetric) with respect to the com-
plementary transformation z→ z∗, z ∈A

2k
1 , defined in (10)–(12).

Definition 4. A functionψ :A2k
1 →R is called symmetric (antisymmetric) with respect

to the complementary transformation w→w∗ iff ψ(w)= ψ(w∗) (respectively, ψ(w)=
−ψ(w∗)) for all w ∈A2k

1 .

Proposition 2. Let p(η|w),η ∈ A2
1, w ∈ A4m

1 , denote the m-order conditional prob-

abilities of a bivariate random sequence z(x) obtained from the nucleotide sequence

x ∈A2m+1 via z-transform (10). The following statements are equivalent:

(a) the sequence x and the marginal conditional probabilities p(·|·) are m-order lo-

cally symmetric;

(b) there exist a symmetric function ψ : A4m
1 → R and two antisymmetric functions

ψ− :A
4m
1 →R and ψ+ :A

4m
1 →R such that

log

(

p(−,+ |w)

p(−,− |w)

)

=ψ−(w), (13)

log

(

p(+,+ |w)

p(+,− |w)

)

=ψ+(w), (14)
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log

(

p(+,+ |w) · p(+,− |w)

p(−,+ |w) · p(−,− |w)

)

=ψ(w), ∀w ∈A4m
1 . (15)

Another form of (13)–(15) expressed in terms of the generalized logits 3s,y(w):

3−,+(w) = ψ−(w), (16)

3+,−(w) =
1

2

(

ψ(w)−ψ+(w)+ψ−(w)
)

, (17)

3+,+(w) =
1

2

(

ψ(w)+ψ+(w)+ψ−(w)
)

. (18)

Proof. From the definition of generalized logits (7) and the recoding rule defined in Ta-
ble 1 and (10), (11), we obtain, for all w ∈A4m

1 ,

3−,+(w) = log

(

p(−,+ |w)

p(−,− |w)

)

=ψ−(w),

3+,+(w)−3+,−(w) = log

(

p(+,+ |w)

p(+,− |w)

)

=ψ+(w),

3+,+(w)+3+,−(w)−3−,+(w) = log

(

p(+,+ |w) · p(+,− |w)

p(−,− |w) · p(−,+ |w)

)

=ψ(w).

Let us check that the functions ψ−(w),ψ+(w) and ψ(w) possess the respective proper-
ties. By the definition of the local symmetry

p(s, y |w)= p
(

s,−y
∣

∣w∗
)

, ∀w ∈A4m
1 . (19)

Consequently, for all w ∈A4m
1 ,

ψ−(w) = log

(

p(−,+ |w)

p(−,− |w)

)

= log

(

p(−,− |w∗)

p(−,+ |w∗)

)

(20)

= − log

(

p(−,+ |w∗)

p(−,− |w∗)

)

=−ψ−(w
∗). (21)

Thus, ψ−(u) is antisymmetric. Analogously, for all w ∈A4m
1 ,

ψ+(w) = log

(

p(+,+ |w)

p(+,− |w)

)

= log

(

p(+,− |w∗)

p(+,+ |w∗)

)

(22)

= − log

(

p(+,+ |w∗)

p(+,− |w∗)

)

=−ψ+(w
∗) (23)

and
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ψ(w) := log

(

p(+,+ |w)p(+,− |w)

p(−,+ |w)p(−,− |w)

)

(24)

= log

(

p(+,− |w∗)p(+,+ |w∗)

p(−,− |w∗)p(−,+ |w∗)

)

=ψ(w∗). (25)

The proof is completed. �

When estimating the generalized logits 3τ (w) one needs some parametrization. Be-
low convenient parametric representations for symmetric and antisymmetric functions are
presented.

According to the recoding rule defined in Table 1 and (10)–(12), z = (s, y), s, y ∈
A2m

1 , and hence in the sequel we deal with functionsψ(s, y), ψ :Ak
1×Ak

1→R, k := 2m.
Let J ⊂K := {1, . . . , k}. Define the conjugate set J∗ of the set J by

J∗ := k + 1− J = {k + 1− j : j ∈ J }. (26)

For a given sequence s = (s1, . . . , sk) ∈Ak
1, denote

sJ :=
∏

i∈J

si , s∅ := 1. (27)

Any function ψ :Ak
1 ×Ak

1→R has the unique representation

ψ(s, y)=
∑

J ′,J⊂K

aJ ′J s
J ′yJ , s, y ∈Ak

1, (28)

where summation is over all subsets of K (including the empty set ∅), aJ ′J =
aJ ′J (ψ), J

′, J ⊂ K, are free parameters determining the function ψ . In general, there
are 4k free parameters.

For a symmetric (antisymmetric) function ψ , we have

ψ(←−s ,−←−y )=ψ(s, y)
(

respectively,ψ(←−s ,−←−y )=−ψ(s, y)
)

. (29)

Consequently, in the case of the symmetric ψ , for all s, y ∈Ak
1,

∑

J ′,J⊂K

aJ ′J s
J ′yJ =

∑

J ′,J⊂K

(−1)|J |aJ ′J s
J ′∗yJ∗ =

∑

J ′,J⊂K

(−1)|J |aJ ′∗J∗ s
J ′yJ , (30)

and hence

aJ ′J = (−1)|J |aJ ′∗J∗, J ′, J ⊂K. (31)

If J∗ = J and J ′∗ = J
′ (i.e. the both subsets J ′ and J are self-conjugate), the set J has

an even number of elements and the equations (31) become the identities. Thus, there are
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no restrictions on the parameter aJ ′J values in this case. Let k∗ = k∗(k) denote the total
number of the self-conjugate subsets of K .

Let τ be some total order (enumeration of elements) in the class of pairs (J ′, J ) of the
set K . Equations (31) imply that, for not self-conjugate pairs (J ′, J ), (J ′, J ) 6= (J ′∗, J∗),
values of the coefficients aJ ′,J , τ (J

′, J ) < τ(J ′∗, J∗), uniquely determine values of the
remaining coefficients aJ ′,J , τ (J ′, J ) > τ(J ′∗, J∗). Define

K2 :=
{

(J ′, J ) : τ (J ′, J ) < τ(J ′∗, J∗)
}

, (32)

K20 :=
{

(J ′, J ) : τ (J ′, J )= τ (J ′∗, J∗)
}

. (33)

From (28), (31), (32) and (33) we derive a general parametric form of a symmetric func-
tion ψ :

ψS(s, y)=
∑

(J ′,J )∈K20

aJ ′J s
J ′yJ +

∑

(J ′,J )∈K2

aJ ′J
(

sJ
′

yJ + (−1)|J |sJ
′
∗yJ∗

)

. (34)

It has

kS = kS(k) := k
2
∗ + (4

k − k2
∗)/2 (35)

free parameters.
The case of antisymmetric function differs from that of symmetric function only in

additional minus sign in equations (31). For self-conjugate pairs (J ′, J ), these equations
hold if and only if aJ ′,J = 0. Thus, the first summand in (34) and in (35) disappears giving
the function

ψA(s, y)=
∑

(J,J ′)∈K2

aJ,J ′
(

sJ yJ
′

− (−1)|J |sJ
′
∗yJ∗

)

(36)

with

kA = kA(k) :=
(

4k − k2
∗

)

/2 (37)

free parameters.
Form= 1, k∗ = 2, thus kA = (42−22)/2= 6 and kS = k2

∗+kA = 10. Then symmetric
(34) and antisymmetric (36) functions in a general form are given by

ψS(s, y) = a∅∅ + a∅{12}y1y2 + a{12}∅s1s2 + a{12}{12}s1s2y1y2

+ a∅{1}(y1 + y2)+ a{1}∅(s1 − s2)

+ a{1}{1}(s1y1 − s2y2)+ a{1}{2}(s1y2 − s2y1)

+ a{1}{12}(s1y1y2 − s2y1y2)+ a{12}{1}(s1s2y1 + s1s2y2),
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ψA(s, y) = a∅{1}(y1 − y2)+ a{1}∅(s1 + s2)

+ a{1}{1}(s1y1 + s2y2)+ a{1}{2}(s1y2 + s2y1)

+ a{1}{12}(s1y1y2 + s2y1y2)+ a{12}{1}(s1s2y1 − s1s2y2),

respectively.

Remark 1. An ordered sequence of symbols x = −→x is said to be palindromic iff −→x =
←−x . We refer to the mapping −→x →←−x as palindromic transformation. In particular, for a
DNA sequence x , the sequence (x, x∗∗) (here x∗∗ = (x∗)

∗ = (x∗)∗) is palindromic and for
a palindromic DNA sequence x , we have s(x)= s(x∗) and y(x)=−y(x∗). Note that the
mapping A1→{+1,−1} is a palindromic transform of the binary alphabet A1. Thus, the
transform y(x)→ y(x∗) is a superposition of two palindromic transforms: the transform
of ordering of the sequence y(x) elements and the transform of their alphabet.

Palindromic distributions are defined as those invariant under some palindromic oper-
ation. For instance, palindromic Bernoulli distributions (Marchetti and Wermuth, 2016)
and palindromic Ising models (Marchetti and Wermuth, 2017) are invariant with respect
to palindromic transforms of the alphabet. Formulas (34) and (36) are analogues of the
characterization of palindromic Bernoulli distribution in terms of log-linear parameters
of multivariate Bernoulli distribution given in Marchetti and Wermuth (2016).

3. Statistical Analysis

In this section, the first-order local symmetry of the longest non-coding sequences of bac-
terial genomes is tested by making use of its characterization in terms of generalized logits.
A special regression-type probabilistic structure is imposed on the data.

3.1. Regression-Type Probabilistic Structure of the Data

Let us introduce the following data structure of the observed sequence x ∈An with n=
(nm + 1) · (m+ 1)− 1, the quantity nm being an integer:

D :=
{

(vℓ, zℓ), ℓ ∈ S
}

, S = Sn,m = {1,2, . . . , nm}, (38)

where vℓ := x(m+1)ℓ is a response variable and zℓ = xUm((m+1)ℓ) ∈ A2m is a vector of
explanatory variables, ℓ ∈ S.

Assumption (Am):

1. {vℓ, ℓ ∈ S} are conditionally independent given {zℓ, ℓ ∈ S},
2. the conditional distribution of vℓ when value of zℓ is given does not depend on the

site ℓ ∈ S.
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Assumption (Am) ensures that usual conditions of the generalized logit model with
the response variable v ∈A and the vector z ∈A2m of explanatory variables are satisfied,
see (Agresti, 1990; Stokes et al., 2001).

Remark 2 (Compatible evolutionary models). Suppose that a DNA sequence x is an out-
come of a “long” homogeneous Markov evolution and hence has a stationary distribution.
Assumption (Am) imposed on x is compatible with some common DNA evolutionary
models. In particular, assumption (Am) with m= 2 hold for the independent codon evo-
lution (Goldman and Yang, 1994). Assumption (Am) is also fulfilled if x is generated
by m-MRF. Thus, it is valid in case of time-reversible, site-homogeneous and context-
dependent Markov evolution model withm-order nearest neighbour interactions (see, e.g.
Jensen, 2005). However, it is satisfied for some non-homogeneous, say (m+ 1)-periodic,
MRF of order m as well.

In general, the introduced regression-typedata structure supplemented with a saturated
generalized logit model for m-order conditional probabilities does not determine the dis-
tribution of x . However, if assumption (Am) holds for S =N ◦ (to be precise, for all shifts
((m+ 1)S + ℓ) ∩N ◦ of the set of central nucleotides (m+ 1)S by ℓ, ℓ= 1, . . . ,m− 1,
simultaneously), then, due to Hammersley–Clifford theorem (Proposition 1), x is m-MRF,
and m-order generalized logits take the form of (8) and determine the distribution of x .

3.2. Testing of Local Symmetry

We analyse data of bacterial genomes (1221 genomes) taken from the database GenBank

(https://www.ncbi.nlm.nih.gov/genbank/). In order to bypass the data sparsity problem the

longest non-coding (for the both strands) DNA sequences are extracted from each genome.
Assuming that the extracted sequences satisfy assumption (Am) with m= 2 we test their
first order local symmetry.

In Fig. 1, the length distribution density of the extracted sequences is plotted in a
logarithmic scale. The sequence lengths range from 1891 to 42901 with median 6605 and
mean 7721. About a half of the sequences have length between 6000 and 8000. Since we
assume (Am) with m = 2, the logit analysis is based on three-dimensional contingency
tables (64 cells) of nonintersecting triplets in the DNA sequences. The average and median
of cell counts in the tables are 40 and 34, respectively. The percentage of cells with less
than 6 counts does not exceed 1%. Thus we can ignore p-value approximation problems
incident to statistical analysis of sparse contingency tables (Agresti, 1990).

Generalized logit model is fitted to the data and the Wald criterion is applied to test if
the coefficients of the generalized logit model satisfy conditions implied by antisymmetric
(36) and symmetric (34) components of generalized logits specified in Proposition 2.

In Figs. 2–4, values of the logarithmized Student statistic (the Student statistic S trans-
formed by S → sgn(S) log2(1 + |S|)) for testing the significance of the coefficients of
response functions ψ−,ψ+ and ψ defined in (13)–(15), respectively, are presented. For
better visibility of the logarithmized Student statistic distributions, we use the violin plot
(Hintze and Nelson, 1998; Wickham, 2016), which combines a box plot and a kernel den-
sity plot that is rotated and placed on each side, to show the distribution shape of the
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Fig. 1. The length distribution density of the longest non-coding sequences of bacteria genomes plotted in a
logarithmic scale.

data. The first 6 coefficients represent the antisymmetric part of the response functions
and the last 10 represent the symmetric part. According to Proposition 2, in case of the
local symmetry, the first 2 response functions should be antisymmetric while the last one
should be symmetric. Hence the last 10 and, respectively, the first 6 coefficients should
be insignificant. In the figures, the approximate critical value obtained by 3σ rule (i.e. for
the significance level ≈ 0.0054) corresponds to y-coordinates±2.

First response function (expected to be antisymmetric). The distributions of its coef-
ficient estimates are represented in Fig. 2. The coefficient estimates of the antisymmetric
part (white violins) have skewed distributions, especially the second, which is left-skewed
and has large positive bias, and the third, which is right-skewed and has large negative
bias. The distributions in the symmetric part (grey violins) are quite symmetric about
zero. A large proportion of the non-coding DNA sequences (> 40%) has significant (at
the approximate significance level of 0.005) 7th coefficient (7th parameter) expected to
be zero in the case of local symmetry.

In what follows only violations of local symmetry (grey violins) are discussed.
Second response function (expected to be antisymmetric). A major part (> 70%) of the

non-coding sequences has significant 7th coefficient (23rd parameter) expected to be zero
in the case of local symmetry. A large proportion of the sequences also exhibits significant
deviations from 0 of the 8th coefficient (24th parameter).

Third response function (expected to be symmetric). The second coefficient (34th pa-
rameter) expected to be zero in case of local symmetry shows a clear tendency to deviate
significantly from 0.
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Fig. 2. Distribution of the logarithmized Student statistic of the 1st response function coefficients: the first 6
coefficients represent the antisymmetric part, the last 10 – the symmetric part (expected to be null).
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Fig. 3. Distribution of the logarithmized Student statistic of the 2nd response function coefficients: the first 6
coefficients represent antisymmetric part, the last 10 – the symmetric part (expected to be null).
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Fig. 4. Distribution of the logarithmized Student statistic of the 3rd response function coefficients: the first 6
coefficients represent antisymmetric part (expected to be null), the last 10 – the symmetric part.

In Fig. 5, centres of 8 clusters obtained using the standard R function for k-means clus-
tering (R Core Team, 2018) of 48-dimensional vectors of the estimated model parameters
(i.e. estimated coefficients of the all three response functions) are drawn. The coordinates
of each centre are joint thus representing 8 different patterns of their interrelationships.
The centre of the 8th cluster represents DNA sequences which approximately satisfy the
local symmetry hypothesis. The sequences of the third cluster are also rather close to sym-
metry. Clusters 8 and 3, however, apparently differ in the regions [17,19] and [19,41]. All
the clusters are similar in [1,6]. In the grey zones (regions [7,16] and [23,38]), we have
two triplets of similar clusters: (1,2,6) and (4,5,7). The 39th parameter for cluster 1
clearly differs from that of clusters 2 and 6 having the opposite sign. The same applies
to clusters 4, 5 and 7, respectively. Clusters 2 and 6, as well as 5 and 7, exhibit some
discrepancy in values of parameter 41. Cluster 5 also has specific values in the region
[18,19].

Note that the deviations of the parameter estimates in the grey region, i.e. their devia-
tions from the DNA local symmetry hypothesis, are quite symmetric, see also Figs. 2–4.
This observation is consistent with the ISFDP property noticed in (Powdel et al., 2009).

3.3. Concluding Remarks

Elements of DNA sequences x are treated as random variables taking values from the
alphabet A := {A,C,G,T}. A definition of the local symmetry of x of order m is given
and is characterized in terms of generalized logits (Židanavičiūtė, 2010). To test the first
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Fig. 5. Lines represent the patterns of 8 clusters obtained via k-means clustering from 48-dimensional data of
the logarithmized Student statistics. The grey region indicates the model parameters vanishing under the null
hypothesis of the local symmetry.

order local symmetry of non-coding sequences of bacteria genoms a special regression-
type structure is imposed on probability distribution of x (assumption (Am) with m= 2).
It defines a generalized logit model with 48 scalar parameters. In the case of the first order
local symmetry, 22 of them should vanish.

The generalized logit model was fitted to the longest non-coding sequences of 1221
bacteria genomes taken from GenBank and Wald test was applied to check the null hy-
pothesis of the first order local symmetry.

Conclusions:

1. Most of the non-coding sequences of bacteria genomes do not possess the first order
local symmetry.

2. The deviations from the local symmetry of the non-coding sequences are pretty
symmetric: the sample distributions of estimates of the model parameters that
should vanish in case of the local symmetry are very close to symmetric one. Appar-
ently this symmetry is related to intra-strand frequency distribution parity noticed
in Powdel et al. (2009).

3. As a by-product of the statistical analysis of the local symmetry, we show that dis-
tributions of adjacent nucleotides are not independent even for the non-coding se-
quences of bacteria genoms. Hence independent evolution models (see, e.g. Faith
and Pollock, 2003; Marin and Xia, 2008) are not consistent with the data of bacteria
genomes.
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Further work. A natural next step is to study higher order asymmetry patterns. Under
assumptions (Am) with m= 2, for the statistical analysis of the second order local asym-
metries the saturated generalized logit model can be applied. Then the analysis is based
on 5-dimensional contingency tables (1024 cells). Hence for the data of the longest non-
coding bacterial sequences, the average cell frequency in the contingency tables is less
than 3, thus indicating their sparsity. A straightforward solution of the sparsity problem
by joining all non-coding sequences of each genome seems to be inappropriate because
of heterogeneity of DNA sequences (see, e.g. Cristadoro et al., 2018). Special statistical
methods are needed to deal with both the sparsity and heterogeneity.
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J. Židanavičiūtė, Dr., received a master’s degree in statistics from 2003 and a PhD de-
gree in mathematics from 2010 from Vilnius Gediminas Technical University. She has
been working at Vilnius Gediminas Technical University for 15 years. Her major research
interests is applications of statistics in engineering, medicine and other fields.


