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Abstract. This paper presents a model which integrates inbound and outbound logistics with a cross-

docking system. This model integrates the problem of routing inbound vehicles between suppli-

ers and cross-docks and outbound vehicles between cross-docks and retailers, considering logistics

costs and the products properties. This model aims to minimize the total cost by optimizing as-

signment of products to suppliers and retailers and operations of inbound and outbound vehicles.

We developed an endosymbiotic evolutionary algorithm, which yields good performance in concur-

rent searches for the solutions of multiple subproblems and validate the performance using several

numerical examples.

Key words: logistics, cross-docking, vehicle routing, truck scheduling, endosymbiotic evolutionary

algorithm.

1. Introduction

Distribution operations reportedly account for 30% of product prices (Apte and Viswan-

than, 2000). Hence, it is very important to optimize distribution networks so as to reduce

logistics costs and realize a profitable supply chain management policy. Among various

distribution activities, the storage of goods is expensive because of space requirements,

inventory holding costs, and labour-intensive order picking tasks. Compared to traditional

warehousing with its high cost functions, the cross-docking strategy can increase the prod-

uct flow while reducing the storage space requirements, inventory holding costs, and de-

livery lead time (Boysen and Fliedner, 2010; Wen et al., 2009). In addition, transportation

costs can be decreased by using cross-docking owing to the economies of scale in trans-

portation caused by consolidating different shipments (Apte and Viswanthan, 2000). For

example, the reduction in order picking and storage costs resulting from the use of cross-

docking decreased warehousing costs by up to 70% (Vahdani and Zandieh, 2010). There-

fore, the cross-docking strategy has been used by many companies in different industries

and is well known to be one of the most efficient distribution systems.

*Correspoding author.



482 K.-Y. Lee et al.

Cross-docking systems are better suited to stable-demand products such as groceries

or agricultural products; perishable bulk materials, including various chemical materi-

als and food compounds requiring prompt shipment; and pharmaceutical materials that

need to be transported in a cold-chain environment (Dondo and Cerdá, 2014). In addition,

hazardous materials are usually transported via cross-docks to remedy sites for treatment

and disposal. As a result, chemical companies such as Eastman Kodak reported that they

successfully implemented cross-docking strategies to gain competitive advantages (Van

Belle et al., 2012).

Cross-docking is defined as continuous processing to the final destination through

a cross-dock, without storing products and materials in a distribution centre (Apte and

Viswanthan, 2000). A cross-dock is usually an I-shaped facility with strip and stack dock

doors located on opposite sides of the facility and minimal storage space in between

(Dondo and Cerdá, 2014). The cross-docking process includes three operations: receiving

products from inbound vehicles at strip docks, consolidating the products into groups ac-

cording to their destinations, and shipping them on outbound vehicles from stack docks.

Both the pickup and delivery operations need to be considered to effectively apply cross-

docking. Moreover, in addition to the pickup and delivery operations, vehicle routing and

scheduling also need to be considered. Therefore, the physical flow in cross-dock op-

erations can be improved by synthetic optimization of all operations, including pickup,

cross-docking, and delivery. Moreover, to synthetically optimize the physical flow, the

routes and schedules of vehicles need to be considered. Therefore, in this paper, the ve-

hicle routing and truck scheduling problems are addressed along with cross-docking to

improve material flow in the supply chain.

Boysen and Fliedner (2010) and Van Belle et al. (2012) reviewed cross-docking sys-

tems thoroughly, and Buijs et al. (2014) presented a research classification and framework

for cross-docking network synchronization. Although cross-docking is rapidly becoming

important in academia and industry, most studies on cross-docking have focused on the

concept, physical design, cases in point, determination of optimal locations, and vehicle

allocation. Sung and Song (2003) addressed a service network design problem for find-

ing the optimal location of cross-docks and optimal allocation of vehicles. Jayaraman and

Ross (2003) and Gumus and Bookbinder (2004) dealt with a distribution design problem

that incorporates cross-docking into the supply chain by deciding whether to operate each

cross-dock and the locations of open cross-docks.

The truck scheduling problem handles operational issues at the cross-dock, which in-

clude assigning vehicles to dock doors, determining the processing sequence of trucks at

strip and stack doors, and transferring goods from inbound to outbound trucks. Tsui and

Chang (1992) introduced a bilinear programming model to deal with the truck scheduling

problem. Chen et al. (2006) studied the truck scheduling problem for a network of cross-

docks considering delivery and pickup time windows and warehouse capacities. Lee et

al. (2006) considered both cross-docking operations and truck scheduling; they assumed

that all vehicles departing from suppliers arrive at the cross-dock simultaneously. Yu and

Egbelu (2008) presented two approaches to scheduling trucks at the strip and stack docks.

Kreng and Chen (2008) studied production–distribution planning for a traditional ware-
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housing strategy versus a cross-docking strategy. Li et al. (2009) considered a situation

where the number of vehicles is higher than the number of cross-dock doors.

For the deterministic truck scheduling problem, where the trucks in the pickup and

delivery processes are the same, Wen et al. (2009) proposed a tabu search algorithm, Liao

et al. (2010) developed a new tabu search algorithm, Santos et al. (2011, 2013) stud-

ied branch-and-price algorithms, and Morais et al. (2014) developed some heuristics al-

gorithms. In addition, Alpan et al. (2011) studied schedule operations in a cross-dock

where preemption and temporary storage are allowed to increase the operational flexibil-

ity. Dondo et al. (2011) formulated the truck scheduling problem using a mixed integer

programming model where products are transported from manufacturers to customers us-

ing warehousing and/or cross-docking strategies. Miao et al. (2012) considered a multiple

cross-dock transshipment problem with time windows. Dondo and Cerdá (2013) investi-

gated a truck scheduling problem assuming an unlimited number of doors. For distribution

networks under uncertainty, Mousavi et al. (2014) considered the location and the truck

scheduling problem, proposing a hybrid fuzzy possibilistic-stochastic model.

The problem considered in this study extends these pickup and delivery problems for a

single cross-dock, integrating cross-docking with vehicle route scheduling. Owing to the

NP-hardness of this problem, even small-scale instances cannot be optimally solved within

a reasonable amount of time. Hence, an endosymbiotic evolutionary algorithm (EEA) has

been developed to solve the problem; EEA is known to performwell in concurrent searches

for the solutions of multiple subproblems, especially when the original problem consists of

multiple interconnected subproblems that need to be solved as a whole instead of solving

each subproblem separately.

The rest of the paper is organized as follows. The description and mathematical formu-

lation of the problem are presented in the next section. The proposed EEA for the problem

is described in Section 3, and in Section 4, the algorithm performance is validated using

several numerical examples in comparison with the mixed integer programming model as

well as two genetic algorithms. Finally, the conclusions and future research directions are

presented in the last section.

2. Problem Formulation

2.1. Problem Description

The integrated model of the cross-dock vehicle routing and truck scheduling problem

(VRTSP) is defined as the problem of transporting a set of products from suppliers to

customers (or retailers) by passing them through an intermediate cross-docking facility at

the minimum transportation cost. Figure 1 illustrates how a cross-docking facility operates

in VRTSP. A fleet of inbound vehicles picks up products from suppliers and is assigned to

strip (receiving) doors in the cross-dock. Picked-up products are consolidated, transported

to outbound vehicles assigned to stack (shipping) doors, and immediately delivered to

customers without storage.
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Fig. 1. VRTSP model.

Inbound and outbound vehicles operate exclusively; i.e. suppliers are served only by

inbound vehicles, whereas customers are served only by outbound vehicles. Both inbound

and outbound vehicles need to be operated efficiently to serve all suppliers and customers

with a limited number of vehicles. This is a so-called vehicle routing problem. If each

node must be served within a certain time period, the time windows can be considered in

terms of an earliness and/or tardiness penalty cost.

When an inbound (outbound) truck arrives at (departs from) the cross-dock, it needs to

be assigned to a strip door with the aim of increasing the cross-dock productivity and re-

ducing the handling cost. A truck scheduling problem seeks to find the optimal assignment

of inbound/outboundtrucks to dock doors. In this study, we assume that the cross-dock has

a limited number of strip doors and stack (shipping) doors; consequently, truck scheduling

is an important problem because dock doors are scarce resources that need to be scheduled

over time, and lines of trucks waiting for service can arise at every dock door.

As simultaneous treatment of both the vehicle routing problem and the truck schedul-

ing problem is usually quite demanding, most studies have solved these integrated prob-

lems sequentially. However, in this paper we consider both the vehicle routing problem

and the truck scheduling problem at the same time.

2.2. Assumptions

The basic characteristics of and assumptions applied to the proposed model are as follows:

• The sum of all demands is equal to the sum of all supplies for all product types; i.e.

unloaded product types are the same as loaded product types, and holding inventory

at the cross-dock is not allowed.

• The cross-dock yard is unlimited.

• All nodes excluding the cross-dock must be served by one vehicle.

• Service time (loading or unloading time) for each product type is fixed at each node.

• All vehicles have homogeneous capacity and fixed cost.

• An inbound vehicle cannot leave a strip door until its task is completed. Similarly,

an outbound vehicle cannot leave a stack door until its task is completed.
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• Inbound vehicles and outbound vehicles are operated separately. Therefore, inbound

vehicles cannot visit customers, whereas outbound vehicles cannot visit suppliers.

• The vehicle changeover time is fixed.

• Tardiness or earliness is allowed with a separate penalty cost.

2.3. Notation and the Proposed Model

The following notations are used to formulate VRTSP:

Sets:

S – set of supplier (inbound) nodes,

C – set of customer (outbound) nodes,

N = S ∪ C ∪ {0} – entire set of nodes, where 0 indicates the cross-dock,

A1 = {(i, j)|i, j ∈ S ∪ {0}, i 6= j } – set of feasible arcs in the picking phase,

A2 = {(i, j)|i, j ∈ C ∪ {0}, i 6= j } – set of feasible arcs in the delivery phase,

A = A1 ∪ A2 – set of all feasible arcs in the network,

K1 – set of inbound vehicles,

K2 – set of outbound vehicles,

K = K1 ∪ K2 – set of all vehicles,

D1 – set of strip doors,

D2 – set of stack doors,

D = D1 ∪ D2 – set of dock doors,

G – set of product types.

Parameters:

[ai, bi] – time window at node i ,

cij – transportation cost from node i to node j ,

CT – changeover time of vehicles at dock doors,

o – operation cost of vehicles,

Q – maximum load capacity of vehicles,

q
g

i – supply/demand of product type g at node i ,

st
g

i – service time of product type g at node i ,

ttij – travel time from node i to node j ,

α
g
i – earliness penalty cost of product type g at node i ,

β
g
i – tardiness penalty cost of product type g at node i ,

Ki – maximum number of available inbound vehicles,

Ko – maximum number of available outbound vehicles.

Decision variables:

xk
ij – 1 if vehicle k moves from node i to node j , otherwise 0,

Xk
d – 1 if vehicle k is assigned to strip door d , otherwise 0,

Y k
d – 1 if vehicle k is assigned to stack door d , otherwise 0,

Pij – 1 if inbound vehicles i and j are assigned to the same strip door and vehicle i is

the predecessor of vehicle j , otherwise 0,
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Qij – 1 if outbound vehicles i and j are assigned to the same stack door and vehicle i

is the predecessor of vehicle j , otherwise 0,

vij – 1 if product units have to be transported from inbound vehicle i to outbound

vehicle j , otherwise 0,

tf
g
ij – amount of product type g transported from inbound vehicle i to outbound

vehicle j ,

yij – total quantity of products from node i to node j ,

AT i – arrival time at node i ,

ei – earliness time at node i ,

ti – tardiness time at node i ,

usk – unloading start time of inbound vehicle k,

uek – unloading end time of inbound vehicle k,

atk – available unloading start time of inbound vehicle k,

lsk – loading start time of outbound vehicle k,

lek – loading end time of outbound vehicle k,

dkk – available departure time of outbound vehicle k.

The proposed VRTSP model is formulated as follows:

• Objective Function

min

∑

(i,j)∈A

∑

k∈K

cijx
k
ij + o

∑

(0,j)∈A

∑

k∈K

xk
0j +

∑

i∈S∪C

ei

∑

g∈G

α
g
i q

g
i +

∑

∈S∪C

ti
∑

g∈G

β
g
i q

g
i ; (1)

• Constraints

– Vehicle routing constraints:

∑

k∈K1

(

∑

{p:(p,i)∈A1}

xk
pi +

∑

{j :(i,j)∈A1}

xk
ij

)

= 2, ∀i ∈ S, (2)

∑

k∈K2

(

∑

{p:(p,i)∈A2}

xk
pi +

∑

{j :(i,j)∈A2}

xk
ij

)

= 2, ∀i ∈ C, (3)

∑

{i:(i,p)∈A}

∑

k∈K

xk
ip −

∑

{j :(p,j)∈A}

∑

k∈K

xk
pj = 0, ∀i ∈ S ∪ C, ∀k ∈ K, (4)

∑

j∈S

∑

k∈K1

xk
0j 6 Ki , (5)

∑

j∈C

∑

k∈K2

xk
0j 6 Ko, (6)

∑

{k:(j,k)∈A}

yjk −
∑

{i:(i,j)∈A}

yij =











∑

g∈G q
g
i if i ∈ S,

−
∑

g∈G q
g
i if i ∈ C,

0 otherwise

∀j ∈ S ∪ C, (7)

yij 6 Q, ∀i, j ∈ S ∪ C, (8)
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ATj > ATi +
∑

g∈G

st
g
i q

g
i + ttij − M

(

1 −
∑

k∈K

xk
ij

)

, ∀i, j ∈ S ∪ C, (9)

ATj > dtk + tt0j − M
(

1 − xk
0j

)

, ∀j ∈ S ∪ C, ∀k ∈ K, (10)

atk > ATi +
∑

g∈G

st
g
i q

g
i + tti0 − M

(

1 − xk
i0

)

, ∀i ∈ P ∪ D, ∀k ∈ K, (11)

ei > ai − ATi, ∀i ∈ S ∪ C, (12)

ti > ATi − bi, ∀i ∈ S ∪ C; (13)

– Truck scheduling constraints:

∑

d∈D1

Xk
d =

∑

j∈S

xk
0j , ∀k ∈ K1, (14)

∑

d∈D2

Xk
d =

∑

j∈C

xk
0j , ∀k ∈ K2, (15)

Xi
d + X

j
d − 1 6 Pij + Pji , ∀i, j ∈ K1, ∀d ∈ D1, (16)

Pij + Pji 6 1, ∀i, j ∈ K1, (17)

Y i
d + Y

j

d − 1 6 Qij + Qji , ∀i, j ∈ K2, ∀d ∈ D2, (18)

Qij + Qji 6 1, ∀i, j ∈ K2, (19)

usi > ati, ∀i ∈ K1, (20)

usj > uei + CT − M(1 − Pij ), ∀i, j ∈ K1, (21)

uei > usi +
∑

g∈G

st
g

0

∑

j∈K2

tf
g
ij ), ∀i ∈ K1, (22)

lsj > lei + CT − M(1 − Qij ), ∀i, j ∈ K2, (23)

lsj > uei − M(1 − vij ), ∀i ∈ K1, ∀j ∈ K2, (24)

lej > lsj +
∑

g∈G

st
g
0

∑

i∈K1

tf
g
ij , ∀j ∈ K2, (25)

dtk > lek, ∀k ∈ K2, (26)
∑

g∈G

tf
g
ij > 1 − M(1 − vij ), ∀i ∈ K1, ∀j ∈ K2, (27)

∑

g∈G

tf
g
ij 6 Mvij , ∀i ∈ K1, ∀j ∈ K2; (28)

– Product transshipment constraints:

∑

k2∈K2

tf
g
kk2

=
∑

i∈S

q
g
i

∑

{j :(i,j)∈A1}

xk
ij , ∀k ∈ K1, ∀g ∈ G, (29)
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∑

k1∈K1

tf
g

k1k =
∑

i∈C

q
g

i

∑

{j :(i,j)∈A2}

xk
ij , ∀k ∈ K2, ∀g ∈ G. (30)

Objective (1) minimizes the total supply chain cost, which has four components: total

transportation cost, total vehicle operation cost, total earliness penalty cost, and total tar-

diness penalty cost. We note that material handling cost in the cross-dock yard is ignored

by assumption.

Constraints can be divided into three categories. The first type of constraints are re-

lated to the vehicle routing problem (constraints (2)–(13)). Constraints (2) and (3) ensure

that nodes excluding the cross-dock are serviced once by one vehicle. Route continuity is

guaranteed by constraint (4). Constraint (5) determines the number of inbound vehicles

to use for pickup routes; similarly, constraint (6) requires that all delivery routes are made

with available outbound vehicles. The total quantity transported among nodes is expressed

by constraint (7). Constraint (8) restricts the load quantity on all routes, so a vehicle can-

not ship more than its maximum capacity. Constraint (9) computes the arrival times at

each node as the maximum of the sum of the arrival time, total service time, and travel

time from other nodes. Constraint (10) states that the arrival time of vehicles is greater

than the arrival time at the first node from the cross-dock. Constraint (11) ensures that the

return time of vehicles to the cross-dock is greater than the maximum of the sum of the

arrival time, total service time, and travel time. Earliness and tardiness are computed by

constraints (12) and (13), respectively.

The second type is related to the vehicle scheduling problem (constraints (14)–(25)).

Constraint (14) ensures that each inbound vehicle is assigned to a strip door if it is used for

pickup routes. Similarly, constraint (15) ensures that each outbound vehicle is assigned to

a stack door if it is used for delivery routes. Constraints (16) and (17) represent the prece-

dence constraints in a strip door when two vehicles are assigned to the same strip door.

These constraints are used to compute the unloading time of each vehicle. Constraints (20)

and (21) ensure that the unloading start time of each inbound vehicle at the cross-dock is

the maximum of the arrival time of the vehicle and the end time of its predecessor plus

the vehicle changeover time. Constraint (22) describes the unloading end time of each

inbound vehicle. Based on the assumption that a vehicle cannot leave the door before its

task is completed, the unloading end time is equal to its start time plus the time required

to unload all products transported to outbound trucks. Similarly, constraints (18) and (19)

represent the precedent constraints in a stack door. Constraints (23) and (24) determine the

loading start time of an outbound vehicle according to its predecessor and the inbound ve-

hicles that transport products to the outbound vehicle. This can be expressed as the larger

time among the maximum of the loading end time of the predecessor and the maximum

of the unloading end times of the inbound vehicles that transport products to the outbound

vehicle. The loading end time of an outbound vehicle can be computed as the sum of its

start time and the time required to load all products transported by inbound vehicles, which

is enforced by constraint (25). An outbound vehicle can depart from the cross-dock after

its loading task is completed; thus, the departure time of an outbound vehicle is equal to

its loading end time, which is expressed by constraint (26). Constraints (27) and (28) rep-

resent the relationship between vij and the amount of product transported from inbound

vehicle i to outbound vehicle j .
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Fig. 2. Endosymbiotic evolutionary algorithm.

Product transshipment between inbound vehicles and outbound vehicles is expressed

by constraints (29) and (30). Constraint (29) ensures that the total quantity of product types

transported from an inbound vehicle to outbound vehicles is equal to its pickup quantity.

Constraint (30) ensures that the total quantity of product types transported from inbound

vehicles to an outbound vehicle is equal to its delivery quantity.

3. Proposed Endosymbiotic Evolutionary Algorithm

3.1. Endosymbiotic Evolutionary Algorithm

The VRTSP under study is a well-known NP-hard problem. Therefore, we propose an

EEA-based method to obtain a good approximation solution within a reasonable time.

EEA proposed by Kim et al. (2001) is a type of symbiotic evolutionary algorithm that im-

itates the natural process of endosymbiotic evolution (Margulis, 1980), in which prokary-

otes with relatively simple structure enter a larger host prokaryote,where they live together

in symbiosis and evolve into a eukaryote. Since the advent of EEA, this algorithm has been

applied to combinatorial optimization problems and has been proven to be very effective

at solving them. Owing to the intrinsic properties of EEA, it can be a good candidate to

search for the solutions of multiple subproblems concurrently, especially when the orig-

inal problem consists of multiple interconnected subproblems that are solved as a whole

instead of being considered separately.

Figure 2 gives an overview of EEA under consideration. In EEA, the original problem

is split into several subproblems, and each subproblem has its own population (Pop[k])

consisting of symbionts representing partial solutions to the entire problem. To construct

a complete solution to the entire problem, all the partial solutions, one from each of the

populations, are combined. Each population evolves while cooperating with correspond-

ing symbionts from other populations so as to find better solutions to the original problem.



490 K.-Y. Lee et al.

However, because individuals in each population of subproblems are only partial solu-

tions, we can evaluate the solution only when the corresponding symbionts are combined

appropriately into endosymbionts. In addition, the population (PopC ) of the combined

problem in this algorithm consists of the endosymbionts, which carry the genes of all

the symbionts (partial solutions). Hence, individuals in the population of the combined

problem represent solutions to the original problem. Individuals in the population of the

original problem compete with new offspring generated by combining individuals from

each population of subproblems. However, the population of the original problem also

evolves to find a better solution to the original problem.

Each population forms a two-dimensional structure consisting of a toroidal grid with

the same number of individuals, n×n, and individuals in the population are mapped onto

the cells of the grid. Let (i, j), i, j = 1, . . . , n be the location index of the n × n toroidal

grids. Then NP[k]ij is defined as the neighbourhood of individual (i, j) in Pop[k] and

forms a 3 × 3 grid with (i, j) in the centre of this structure and eight neighbouring indi-

viduals. Only the individuals in these neighbourhoods are considered for the interactions

among these populations in each generation. The neighbourhoods of selected individuals

in each population cooperate to find a good solution of the problem. Here, because each

neighbourhood contains nine individuals, 9
K (where K is the number of subproblems)

combinations are considered as candidate solutions of the original problem. The best com-

bination among them is compared with the current best solution in the algorithm, which

competes with nine individuals in NP from PopC as well. On the basis of the interactions

among these neighbourhoods, a parallel search for partial solutions of the subproblems

from each population and an integrated search for complete solutions from the population

of the combined problem are conducted simultaneously in all generations.

The overall EEA procedure is as follows. In the procedure, bk represents an individ-

ual in Pop[k], and a1a2 · · ·ak · · ·aK is an individual (endosymbiont) in the population of

endosymbionts.

Step 1: Initialization

– For each cell in Pop[k] (k = 1,2, . . . ,K) and PopC , generate n2 individuals ran-

domly.

– Set fbest = ∞.

Step 2: Neighbourhood construction

– Select an arbitrary location (i, j) and set up the neighbourhoods, NP[k] (k =

1,2, . . . ,K), and NP in each population.

Step 3: Competition between symbiont and endosymbiont

– If there exists bk ∈ NP[k] such that for each a1a2 · · ·ak · · ·aK ∈ NP, f (a1a2 · · ·bk

· · ·aK) is better than f (a1a2 · · ·ak · · ·aK), then substitute a1a2 · · ·bk · · ·aK for

a1a2 · · ·ak · · ·aK ∈ NP and replace bk with ak in NP[k].

Step 4: Generation of potential endosymbionts
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– Evaluate the fitness of individuals in NP[k] (k = 1,2, . . . ,K), where symbiotic part-

ners are selected from the neighbourhood of the corresponding other populations.

– Let Enew be a potential endosymbiont that is the best combination of symbionts. If

f (Enew) is better than fbest , then update fbest .

Step 5: Competition between an endosymbiont and a potential endosymbiont

– Compare f (Enew) to the fitness of NPw , which is the worst individuals in NP.

– If f (Enew) is better than f (NPw), then replace NPw with Enew. The replaced NPw is

separated and moved into the position of component symbionts in the neighbourhood

to which it belongs.

Step 6: Evolution

– Call Genetic Evolution(NP[k],Rc,Rm) for k = 1,2, . . . ,K .

– Call Genetic Evolution(NP,Rc,Rm).

– Release the evolved neighbourhoods, NP[k] (k = 1,2, . . . ,K), and NP to the popu-

lations Pop[k] (k = 1,2, . . . ,K) and PopC .

Step 7: Termination criteria of evolution

– If one of the following conditions is satisfied: (i) the maximum number of iterations

is reached, or (ii) the solution is not improved for a fixed number of consecutive

iterations, then stop.

– Otherwise, go to Step 2.

The overall procedure of the general genetic algorithm used in Step 6 is as follows. The

binary tournament method is applied as a selection mechanism method in this algorithm.

*Genetic Evolution(P,Rc,Rm)

Substep 1: Selection and reproduction

– Select individuals from P using the binary tournament method.

– Generate a random number for each selected individual. If the random number is

smaller than Rc(crossover rate), the individual becomes a candidate for crossover

operation.

– Produce two offspring (individuals) by applying a crossover operator to a pair of

candidate individuals.

Substep 2: Replacement

– Select individuals for replacement from P , where a high probability is given to those

having high fitness.

– Replace the selected individuals with the newly created offspring (individuals).

Substep 3: Mutation

– Generate a random number for each individual from the newly generated P . If the

random number is smaller than or equal to Rm(mutation rate), apply mutation oper-

ators to the individuals.
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3.2. Genetic Representations for VRTSP

Eq. (1) is used as a fitness function (f (·)) to compute the total supply chain cost. And then

EEA for VRTSP under consideration breaks down the original problem into four different

subproblems and also considers the original problem itself as the combination of the four

subproblems. The first subproblem is the inbound vehicle routing problem (Pop[1]), and

the second is the outbound vehicle routing problem (Pop[2]). The inbound vehicle routing

problem represents a pickup route, whereas outbound vehicle routing problem represents

a delivery route. The third one is the vehicle sequencing problem (Pop[3]) for outbound

vehicles determined in cross-docking. The last subproblem is the product transshipment

problem (Pop[4]) to assign product units from inbound trucks to outbound trucks. Then

the combined problem (PopC ) constitutes the VRTSP. Separate populations are main-

tained for these four subproblems and the combined problem. The four populations of the

subproblems correspond to the symbionts in the endosymbiotic theory, and individuals in

those populations represent partial solutions of the original problem.

When the populations evolve, EEA follows the steps of the steady-state genetic algo-

rithm: selection, reproduction, replacement, and mutation. The crossover operators used

for reproduction not only transmit good genes from parents to offspring, but should also

ensure that new offspring can meet the problem constraints. Mutation is necessary in evo-

lutionary algorithms to escape local optima and consistently search for the global opti-

mum; thus, appropriate mutation operators must be introduced. In this study, we applied

two crossover operators, one for the vehicle routing population and one for the other pop-

ulations, and three mutation operators are considered for all populations.

3.2.1. Genetic Components for Vehicle Routing

For the vehicle routing problem, a genetic representation based on permutation is generally

used. In this study, the two-dimensional representation proposed by Pereira et al. (2002)

is employed for the inbound and outbound vehicle routing problems. It is more intuitive

than the one-dimensional representation using a splitter. In this representation, the genetic

material of the chromosome is broken down into several routes, each of which consists of

an ordered subset of suppliers or customers. Figure 3 gives an example of chromosomes

for an inbound vehicle route with 10 supplier nodes and 3 inbound vehicles. Because

all the vehicles must depart from and arrive at the cross-dock, the vehicle routes in the

example are interpreted as {0-8-2-3-0}, {0-1-7-6-9-5-0}, and {0-10-4-0}.

Because each vehicle has limited capacity, each route cannot include suppliers whose

summed supply exceeds the corresponding vehicle’s capacity. In the outbound vehicle

routing population, the genetic representation of the chromosomematches that of the chro-

mosome in the inbound vehicle routing population. The genetic material of individuals in

the outbound vehicle routing population is composed of customers, whereas the genetic

material of individuals in the inbound vehicle routing population is composed of suppliers.

Individuals in vehicle routing populations should obey the constraints imposed by the

number of vehicles and vehicle capacity. For reproduction, we apply the Best-Cost Route

Crossover (BCRC) operator proposed by Ombuki et al. (2006). BCRC minimizes not only
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Fig. 3. Examples of pickup route representations.

the number of vehicles but also the cost while checking the feasibility constraints. BCRC

is applied as follows.

1. Select a route from two parents, P1 and P2.

2. Delete the nodes in the selected route from the opposite parent.

3. For P1 and P2, array the deleted nodes in a random order.

4. Find feasible positions at which to insert deleted nodes.

5. Insert the deleted nodes at the position among the feasible positions that minimizes

the total cost.

6. Select the offspring from among the newly reproduced individuals by comparing

their fitness.

Figure 4 illustrates how BCRC works. Individuals in vehicle routing populations repre-

sent subsolutions, not complete solutions. Therefore, the best position in Step 4 of EEA

procedure described in Section 3.1 is the position that minimizes the sum of the total

transportation cost and vehicle operation cost. BCRC usually aims to generate two off-

springs. In EEA, however, the steady-state genetic algorithm requires only one offspring.

Therefore, Step 4 is applied to choose the better offspring by comparing their fitness. For

the mutation process, we adopt three mutation operators: sweep, Insertion, and Inversion.

Mutation is accepted only under feasible conditions.

3.2.2. Genetic Components for Vehicle Sequencing and Product Transshipment

The vehicle scheduling problem determines the dock assignment and the sequence of in-

bound and outbound vehicles. Dock assignment of inbound vehicles is performed using

First-Come First-Serve in most experiments in existing literature. Hence, only the schedul-

ing of outbound vehicles needs to be considered. An outbound vehicle scheduling solution

can be represented by a sequence of outbound vehicles obtained using a dispatching rule.

The dispatching rule assigns outbound vehicles to the doors at which they can start their

task as soon as possible. Figure 5 gives an example of the genetic representation of an

outbound vehicle sequence. Suppose that only stack doors 1 and 2 are available. Vehicle

8 is assigned to stack door 1. Vehicle 7 can be assigned to stack door 2 or 1 depending

on whether vehicle 8 is working on its task or not. Vehicles 6, 10, and 9 are assigned

following the same procedure.

The loading start time of outbound vehicles depends on the unloading end time of in-

bound vehicles. Therefore, product transshipment is employed to link outbound vehicles

to inbound vehicles. The relationship between inbound vehicles and outbound vehicles
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Fig. 4. Example of a BCRC operator.

Fig. 5. Example of outbound vehicle sequence representation.

determines the loading start time of outbound vehicles. That is, the loading start time of

an outbound vehicle also depends on the maximum of the unloading end time of inbound

vehicles that transport products to the outbound vehicle. Therefore, we know that the ge-

netic representation of product transshipment is the same as that of the outbound vehicle

sequence.

In this study, we apply Partially Mapped Crossover (PMX), which is the most widely

used crossover operator for chromosomes having permutation encoding for reproduction.

It was proposed by Goldberg and Lingle (1985) for the traveling salesman problem. In

PMX, two chromosomes are aligned, and two crossover points are selected randomly. The

two crossover points give a matching selection, called a swab, which is used to perform
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cross-through position-by-position exchange operations. The steps in PMX process are as

follows:

1. Copy the swap from the first parent (P1) into the first offspring.

2. Starting from the first crossover point, look for elements in the swap of the second

parent (P2) that have not been copied.

3. For each uncopied element (say i), look in the first offspring to find the elements

that have been copied from P1 (say j ).

4. Place i in the position occupied by j in P2.

5. If the place occupied by j in P2 is already filled in the offspring by k, then put i in

the position occupied by k in P2.

6. Fill all the positions of the first offspring similarly for all elements in P2.

7. Repeat this set of steps for the second offspring, reversing the order of parents.

4. Computational Results

In this section, we evaluate the effectiveness of the proposed EEA by comparing with

a monolithic method (Dondo and Cerdá, 2014) and other symbiotic evolutionary algo-

rithms.

4.1. Test Problems and Parameter Settings

Because no benchmark dataset is available for this study, we generate 20 test problem

instances to assess the performance of the algorithm. The crucial parameters of each in-

stance are shown in Table 1, and the locations of all the nodes are generated randomly.

The proposed EEA has been coded in the Java programming language. The binary

tournament method is employed as a selection mechanism. The parameters in EEA are

determined by preliminary experiments. A 100-cell (10 × 10) toroidal grid is used for

Pop[k], k = 1,2,3,4, and PopC . The crossover rate and mutation rate are set to 0.7 and

0.01, respectively. To determine the crossover rate (Rc) and mutation rate (Rm), an experi-

mental design has been developed at different levels. We tested crossover rates in the range

of [0.5, 0.9] with an increment of 0.1 and mutation rates in the range of [0.01, 0.05] with

an increment of 0.01. Finally, we selected the pair, Rc = 0.7 and Rm = 0.01, that yields

the highest performance in case of ‘Instance 20’. When the current number of generations

reaches 5,000, the proposed algorithm has been terminated. And, we solved 40 times for

each problem instance shown in Table 1 and obtained serveral key measures such as mean

and standard deviation of objective value, and computation times.

4.2. Performance Analysis

First, we compared EEA with the monolithic approach to handle the NP-hardness of

VRTSP proposed by Dondo and Cerdá (2014) as well as with the mixed integer program-

ming (MIP) model in Section 2. The main idea of the monolithic approach is to assign
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Table 1

Problem instances.

Instance Suppliers Customers Product Inbound Outbound Q Strip Stack

types vehicles vehicles doors doors

Instance 01 5 5 1 3 3 13 1 1

Instance 02 5 5 2 3 3 30 1 1

Instance 03 4 6 4 3 3 35 1 1

Instance 04 4 6 4 3 3 30 1 1

Instance 05 8 12 1 3 3 30 1 1

Instance 06 8 12 2 3 3 50 1 1

Instance 07 10 10 2 3 3 60 1 1

Instance 08 10 10 3 3 3 60 1 1

Instance 09 10 10 3 3 3 60 1 1

Instance 10 8 12 4 3 3 70 1 1

Instance 11 20 30 1 6 7 50 2 2

Instance 12 20 30 1 6 7 50 2 2

Instance 13 25 25 2 6 6 60 2 2

Instance 14 25 25 2 6 6 60 2 2

Instance 15 25 25 3 6 6 70 2 2

Instance 16 25 25 4 6 6 75 2 2

Instance 17 40 60 1 12 12 70 2 2

Instance 18 50 50 2 12 12 80 2 2

Instance 19 50 50 2 12 12 70 2 2

Instance 20 50 50 4 12 12 90 3 3

Table 2

Computational results from EEA, monolithic approach, and MIP model.

Instance EEA Monolithic approach MIP model

Objective Run-time Objective Run-time Objective Run-time

(mean) (s) (mean) (s) (mean) (s)

Instance 01 2125.92 2.16 2138.40 52.73 2125.92 47.16

Instance 02 3167.91 2.24 3452.45 28.32 3167.91 47.16

Instance 03 2712.35 3.19 3515.15 32.56 2712.35 52.77

Instance 04 3680.49 3.04 3605.62 12.33 3594.65 78.02

Instance 05 4116.70 4.04 4797.14 622.16 4483.69 3600.00

Instance 06 4957.08 4.63 4432.60 3172.53 4982.33 3600.00

Instance 07 3825.29 4.46 5376.53 1098.67 5188.81 3600.00

Instance 08 19023.91 4.31 19678.07 2039.78 22827.99 3600.00

Instance 09 22449.95 4.44 24141.73 3600.00 22885.03 3600.00

Instance 10 30922.97 4.30 31908.43 924.25 37546.22 3600.00

vehicles to nodes and set the driving direction by mimicking the sweep algorithm. This ap-

proach has a potential to find a reasonably good solution within a shorter computational

time, compared to exact algorithms for the optimal solutionl. The monolithic approach

and the MIP model have been implemented on Cplex Optimizer version 12.6.2, and we

set the time limit to 1 h (3,600 s). All the experiments in this study have been conducted

on a computer with 2.20 GHz CPU and 8.0 GB RAM.

Table 2 summarizes the results of the experiments for all problem instances. But For the

monolithic approach and MIP model, Cplex Optimizer could not find any feasible solution



EEA for VRTS problem with Cross-Docking System 497

for instance 11–20 with more than 50 nodes (Suppliers + Customers) in the preset time

limit (3,600 s). Table 2 shows that the monolithic approach shows reasonable results only

in some environments, because of the basic assumption of the monolithic approach that

all vehicles must travel counterclockwise and a node must form a route with nodes located

at positions counterclockwise from itself. In addition, MIP modelling does not seem to be

a good approach to large scale problems.

Unlike other approaches, EEA gives good solutions for all problem instances in the

shortest computational time. For small instances, both EEA and Cplex Optimizer found

an optimal solution for the MIP model. From the results for these test instances, we can

see that while the MIP model approach using Cplex Optimizer does not guarantee an

optimal solution in large-scale problems within the preset time limit, EEA gives good

solutions within a reasonable computation time. Moreover, the computation time in EEA

increases not exponentially but as a quadratic function of the number of nodes (suppliers

and customers), which demonstrates the usefulness of our proposed algorithm.

We also compared the proposed algorithm to other genetic approaches: SPA (Sepa-

rated and Population-based Algorithm) and SNA (Separated and Neighbourhood-based

Algorithm). SPA and SNA are symbiotic evolutionary algorithms that divide the problem

into subproblems. SPA has been used as the core algorithm in most existing symbiotic

evolutionary algorithms (Maher and Poon, 2009). In SPA, a solution is divided into more

than one type of partial solution. Individuals representing each type of partial solution

are maintained in a population, and they can evolve with the population to which they

belong. Although the SNA is similar to SPA, they differ in that SNA uses neighbourhood-

based co-evolution to maintain population diversity, whereas SPA uses population-based

co-evolution (Kim et al., 2000).

Under same parament setting (Rc = 0.7 and Rm = 0.01), experimental results are sum-

marized in Table 3 in which the average and the standard deviations of the solutions for

each experimental condition are reported. As shown in Table 3, for every problem in-

stance, EEA showed the best results and SNA produced the next-to-best ones. Hence the

last column (Gap) indicates the improvement rate, which is computed as

Improvement Rate =
|Mean of EEA − Mean of SNA|

Mean of SNA
× 100%.

The main difference between EEA and SNA is the existence of endosymbionts. EEA

allows the formation and evolution of endosymbionts that are a combination of good indi-

viduals obtained while evolving the populations of the subproblems and combined prob-

lem. Hence, we can infer that endosymbionts enhance the performance of the proposed

algorithm, although a longer computation time is inevitable. Even though EEA compu-

tation time is reasonably short, it is still 3.5 times longer than that of SNA in average

computation time for all instances. Therefore SNA may be used for a quick solution while

EEA may be used for a better and more exact solution.

For detailed analysis, we compared convergence pattern of objective value of instance

20 in terms of the number of generation as shown in Fig. 6. While objective values of

SNA decrease smoothly without sudden change in trend, those of EEA decrease smoothly
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Table 3

Computational results from EEA, SPA, and SNA.

Instance SPA SNA EEA Gap

Mean S.D. Mean S.D. Mean S.D.

Instance 01 2125.92 – 2125.92 – 2125.92 – 0

Instance 02 3167.91 – 3167.91 – 3167.91 – 0

Instance 03 2712.35 – 2712.35 – 2712.35 – 0

Instance 04 3680.49 – 3691.30 40.76 3680.49 – 0%

Instance 05 6296.91 444.93 4429.23 341.30 4116.70 224.56 7%

Instance 06 5781.59 302.40 5762.38 521.41 4957.08 683.10 14%

Instance 07 7645.23 644.09 4842.14 680.19 3825.29 408.37 21%

Instance 08 24651.91 1067.31 20031.98 1084.47 19023.91 759.04 5%

Instance 09 27943.59 1162.44 23802.30 1458.23 22449.95 1127.05 6%

Instance 10 38701.39 1578.90 34795.58 2720.43 30922.97 2432.34 11%

Instance 11 19215.70 1426.24 6435.90 742.82 4713.22 375.39 27%

Instance 12 20091.32 1038.84 7308.07 778.87 5259.30 419.87 28%

Instance 13 47341.58 2310.59 19392.46 2559.45 11971.18 1843.43 38%

Instance 14 60928.81 2832.51 27007.88 3037.31 18134.63 3715.49 33%

Instance 15 39016.55 1592.40 28502.67 2189.54 18128.09 937.56 36%

Instance 16 87548.26 3889.85 65141.56 6057.46 44744.94 3899.56 31%

Instance 17 331027.02 10240.01 207381.35 18003.46 95955.32 10741.19 54%

Instance 18 249954.00 12494.57 127543.23 15833.90 37362.67 9148.41 71%

Instance 19 312035.33 9865.61 223908.94 13556.05 170200.87 10126.49 24%

Instance 20 516568.92 18478.62 312789.88 27946.20 154071.06 23627.00 51%

Fig. 6. Sample convergence rate for instance 20.

after high drop improvement in initial generation period. This shows that in a smaller

generation, the EEA can produce a better solution than the SNA and we can also find that

similar phenomena occur in other instance problems.

We also compared the result of EEA with that of SNA under the same run-time for

each instance. These run-times are the average computation time to solve each instance
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Table 4

Comparison of SNA and EEA under the same run-time.

Instance SNA EEA Run-time Gap

Mean S.D. Mean S.D.

Instance 01 2125.92 – 2125.92 – 0%

Instance 02 3167.91 – 3167.91 – 0%

Instance 03 2712.35 – 2712.35 – 0%

Instance 04 3691.30 40.76 3680.49 – 0%

Instance 05 4429.23 341.30 4285.00 309.57 3.02 3%

Instance 06 5762.38 521.41 4987.18 672.62 2.83 13%

Instance 07 4842.14 680.19 4201.37 623.19 1.63 13%

Instance 08 20031.98 1084.47 19477.59 1003.17 1.61 3%

Instance 09 23802.30 1458.23 22957.74 1450.34 1.64 4%

Instance 10 34795.58 2720.43 31883.37 2758.46 1.65 8%

Instance 11 6435.90 742.82 4822.21 409.37 3.83 25%

Instance 12 7308.07 778.87 5399.30 374.17 3.80 26%

Instance 13 19392.46 2559.45 13991.27 3090.22 3.65 28%

Instance 14 27007.88 3037.31 20799.50 3664.06 3.67 23%

Instance 15 28502.67 2189.54 18479.78 1048.65 7.00 35%

Instance 16 65141.56 6057.46 45881.88 4999.99 7.06 30%

Instance 17 207381.35 18003.46 109947.28 13523.93 19.15 47%

Instance 18 127543.23 15833.90 51688.50 11049.59 19.10 59%

Instance 19 223908.94 13556.05 188672.99 12146.38 20.74 16%

Instance 20 312789.88 27946.20 185855.84 28857.88 19.84 41%

by SNA with 5,000 generations. Table 4 shows the comparison results. We can see that

EEA outperforms SNA for all instances under the same run-time but improvement rate is

slightly decreased compared with the values in Table 3. In addition, to check whether EEA

is superior to SNA in our experiments, we performed t-test with null hypothesis that the

objective values from these two algorithms are equal. The resulting p-values are almost

zero for all instances. Therefore, we can conclude that EEA outperforms SNA.

5. Conclusion

This work considered a cross-docking system, which is a promising logistics strategy

that distributes products from inbound vehicles directly to outbound vehicles by using

the warehouse as temporary storage instead of a place for storage and retrieval, eliminat-

ing the need for storage and order-picking. This system is well known to be quite suitable

for stable-demand products, perishable bulk materials, and pharmaceutical materials.

Many studies have investigated the vehicle routing and truck scheduling problems with

cross-docking separately; however, there are few studies of the integration of these sub-

problems, although the components of a cross-docking system are interconnected with

each other. This study investigated an integrated model with cross-docking for a three-

echelon supply chain made up of suppliers, cross-docks, and customers.

This study described a MIP formulation for cross-docking, where vehicle routing and

truck scheduling were planned cooperatively to achieve the minimum total cost. Further,
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we proposed an EEA-based method to obtain a good approximate solution within a rea-

sonable time. The method was applied and proven to be very effective for combinato-

rial optimization problems; it is a good candidate method for searching for the solutions

of multiple subproblems concurrently, especially when the original problem consists of

multiple interconnected subproblems that are solved as a whole instead of being consid-

ered separately. A computational study has been conducted to quantify the performance of

the proposed algorithm, and the computational results show that the proposed algorithm

outperforms existing algorithms.
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