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Abstract. Fuzzy c-means (FCM) is a well-known and widely applied fuzzy clustering method. Al-

though there have been considerable studies which focused on the selection of better fuzzifier values

in FCM, there is still not one widely accepted criterion. Also, in practical applications, the distribu-

tions of many data sets are not uniform. Hence, it is necessary to understand the impact of cluster

size distribution on the selection of fuzzifier value. In this paper, the coefficient of variation (CV)

is used to measure the variation of cluster sizes in a data set, and the difference of coefficient of

variation (DCV) is the change of variation in cluster sizes after FCM clustering. Then, considering

that the fuzzifier value with which FCM clustering produces minor change in cluster variation is bet-

ter, a criterion for fuzzifier selection in FCM is presented from cluster size distribution perspective,

followed by a fuzzifier selection algorithm called CSD-m (cluster size distribution for fuzzifier se-

lection) algorithm. Also, we developed an indicator called Influence Coefficient of Fuzzifier (ICF)

to measure the influence of fuzzifier values on FCM clustering results. Finally, experimental results

on 8 synthetic data sets and 4 real-world data sets illustrate the effectiveness of the proposed crite-

rion and CSD-m algorithm. The results also demonstrate that the widely used fuzzifier value m = 2

is not optimal for many data sets with large variation in cluster sizes. Based on the relationship be-

tween CV0 and ICF, we further found that there is a linear correlation between the extent of fuzzifier

value influence and the original cluster size distributions.

Key words: fuzzy c-means, fuzzifier, CSD-m algorithm, cluster size distribution.

1. Introduction

Clustering (Jain, 2010; Hartigan, 1975; Khemchandani and Pal, 2019) is an unsupervised

learning process to partition a given data set into clusters based on similarity/dissimilarity

functions, such that the data objects partitioned in the same cluster are as similar as pos-

sible, while those in different clusters are dissimilar at the same time. Currently, there

have been various clustering methods that were proposed and applied in many areas

(Olde Keizer et al., 2016; Benati et al., 2017; Truong et al., 2017; Pham et al., 2018;

Motlagh et al., 2019; Borg and Boldt, 2016; Mokhtari and Salmasnia, 2015).
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For crisp clustering method, like k-means (MacQueen, 1967; Mehdizadeh et al.,

2017) or hierarchical clustering method (Johnson, 1967), each data object can only

be partitioned into one cluster. While fuzzy c-means (FCM) (Bezdek et al., 1984;

Zhao et al., 2013) introduced the concept of membership degree so that each object

can belong to two or more clusters with a certain membership degree value. FCM

is the extension of hard k-means clustering, and the rich information conveyed by

the membership degree and fuzzifier in FCM further expanded its application areas.

FCM algorithm was first proposed by Dunn and generalized by Bezdek (Dunn, 1973;

Bezdek, 1981), and it has become a popular and widely used fuzzy clustering method

in pattern recognition (Ahmed et al., 2002; Dembélé and Kastner, 2003; Park, 2009;

Hou et al., 2007).

However, the fuzzifier, also known as the weighting exponent or fuzziness parameter

in FCM, is an important parameter in FCM which can significantly influence the perfor-

mance of FCM clustering (Pal and Bezdek, 1995). There have been considerable research

efforts that focused on the selection of fuzzifier, and many suggestions have been pro-

posed (Cannon et al., 1986; Hall et al., 1992; Shen et al., 2001; Ozkan and Turksen, 2004;

Ozkan and Turksen, 2007; Wu, 2012). However, there is still not one generally accepted

criterion and few theoretical guides for the selection of fuzzifier in FCM (Fadili et al.,

2001). In many cases, users subjectively select the value of fuzzifier while using FCM

clustering.

In addition, the distributions of many data sets are not uniform in practical applications

(Wu et al., 2012). It has been demonstrated that clustering performance is always affected

by data distributions (Xiong et al., 2009; Wu et al., 2009c). In our previous work (Zhou

and Yang, 2016), we have also found that FCM has the uniform effect similar to k-means

clustering. The clustering results of FCM can be significantly influenced by the cluster size

distributions. Therefore, to improve the performance of FCM for data sets with different

cluster size distributions, it is important to select the appropriate value of fuzzifier. In this

study, a new fuzzifier selection criterion and a corresponding algorithm called CSD-m

algorithm are proposed from the perspective of cluster size distribution. The cluster size

distribution mainly refers to the variation of cluster sizes. First, we use the coefficient of

variance (CV) to measure the variation of data in cluster sizes. Then, the values of DCV,

which indicate the change of variation in cluster sizes after FCM clustering, are calcu-

lated iteratively with different fuzzifier values within an initial search interval. Finally,

according to the minimum absolute value of DCV, the optimal value of fuzzifier is deter-

mined. Our experiments on both synthetic data sets and real-world data sets illustrate the

effectiveness of the proposed criterion and CSD-m algorithm. The experimental results

also reveal that the widely used fuzzifier value m = 2 is not optimal for many data sets,

especially for data sets with large variation in cluster sizes.

The fuzzifier, denoted as m in FCM, is an important parameter which can significantly

influence the performance of FCM clustering. Currently, there have been considerable

studies on fuzzifier selection. Bezdek proposed a range interval of fuzzifier, 1.1 6 m6 5,

based on experience (Bezdek, 1981). Pal and Bezdek presented a heuristic criteria for

the selection of optimal fuzzifier value, and the interval they suggested was [1.5,2.5]
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(Pal and Bezdek, 1995). They also pointed out that the median, namely m = 2, can be

selected when there is no other specific constraints. Some studies (Cannon et al., 1986;

Hall et al., 1992; Shen et al., 2001) presented the similar suggestion as the work of Pal and

Bezdek (1995). In addition, Bezdek studied the physical interpretation of FCM when m =

2 and pointed out that m = 2 was the best selection (Bezdek, 1976). The study of Bezdek

et al. further demonstrated that the value of m should be greater than n/(n − 2), where n

is the total number of sample objects (Bezdek et al., 1987). Based on their work of word

recognition, Chan and Cheung suggested that the value range of m should be [1.25,1.75]

(Chan and Cheung, 1992). However, Choe and Jordan pointed out that the performance

of FCM is not sensitive to the value of m based on the fuzzy decision theory (Choe and

Jordan, 1992). Ozkan and Turksen presented an entropy assessment for m considering the

uncertainty contained (Ozkan and Turksen, 2004). To obtain the uncertainty generated

by m in FCM, Ozkan and Turksen also identified the upper and lower values of m as 1.4

and 2.6, respectively, (Ozkan and Turksen, 2007). Wu proposed a new guideline for the

selection of m based on a robust analysis of FCM, and suggested implementing FCM with

m ∈ [1.5,4] (Wu, 2012).

In summary, there is still not one widely accepted criterion and little theoretical support

for the selection of fuzzifier in FCM (Pal and Bezdek, 1995; Yu et al., 2004). In most prac-

tical applications, the value of fuzzifier is always subjectively selected by users, and m = 2

is the most common selection (Pal and Bezdek, 1995; Cannon et al., 1986; Hall et al.,

1992; Shen et al., 2001). Indeed, this selection may not be always the optimal, and inappro-

priate selection of fuzzifier value can significantly affect the clustering results of FCM. Ad-

ditionally, few of the above researches have focused on the cluster size distribution while

studying the related issue of fuzzifier selection. The characteristics of cluster size distri-

bution may have an impact on the performance of FCM clustering. Fuzzifier is a key pa-

rameter that influences the clustering results of FCM. Furthermore, in some studies, only

the range intervals of empirical reference values were presented without specific criterion

and method for the selection of optimal fuzzifer value in practical applications. Therefore,

the motivation of this study is to explore the influence and measure the influence extent

of fuzzifier value on FCM clustering results, and further investigate the fuzzifier selection

from a cluster size distribution perspective. The main contributions of this study are as fol-

lows. First, the mechanism that fuzzifier influences the FCM clustering result is revealed.

Second, we point out that the widely used fuzzifier value m = 2 is not optimal for many

data sets with large variation in cluster sizes. Third, a criterion and a CSD-m algorithm

for fuzzifier selection in FCM is presented from cluster size distribution perspective.

We note that, for a given data set, “data distribution” typically means many aspects of

the characteristics, such as the shapes, densities and dimensions. While the focus of this

study is the cluster size distributions of data sets. So we use cluster size distribution to

represent the variation in cluster sizes of a data set.

The remainder of this paper is organized as follows. The FCM clustering algorithm

is briefly reviewed in Section 2. In Section 3, we propose the fuzzifier selection criterion

from cluster size distribution perspective and the corresponding algorithm called CSD-m

algorithm. Experimental results and discussion are presented in Section 4. Finally, con-

clusions are made in Section 5.
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2. FCM Clustering

FCM algorithm (Bezdek et al., 1984; Bezdek, 1981) starts with determining the num-

ber of clusters followed by guessing the initial cluster centres. Then every sample point

is assigned a membership degree for each cluster. Each cluster centre’s point and corre-

sponding membership degrees are updated iteratively by minimizing the objective func-

tions until the stopping criteria are met. The stopping criteria mainly include the iterations

t reach the maximum number tmax, or the difference of the cluster centres between two

consecutive iterations is within a small enough threshold ε, i.e. ‖vi,t − vi,t−1‖ 6 ε. The

objective function of FCM algorithm is defined as:

Jm(U,V ) =

c
∑

i=1

n
∑

j=1

µm
ijd

2

ij , (1)

where U is the membership degree matrix. V represents the cluster centre’s matrix. n

is the total number of data objects in the data set. c is the number of clusters. m is the

fuzzifier. µij is the membership degree of the j th data object xj to the ith cluster Ci . vi is

the cluster centre of Ci . d2

ij is the squared Euclidean distance between xj and the cluster

centre vi , and d2

ij = ‖xj − vi‖
2.

In the iterative procedure, membership degree µij and the cluster centres vi are up-

dated by:

µij =
1

∑c
k=1

(
dij

dkj
)

2

m−1

, (2)

vi =

∑n
j=1

µm
ijxj

∑n
j=1

µm
ij

, (3)

where µij satisfies

µij ∈ [0,1], (4)

c
∑

i=1

µij = 1, ∀j = 1, . . . , n, (5)

0 <

n
∑

j=1

µij < n, ∀i = 1, · · · , c. (6)

The meanings of the symbols in Eq. (2) to Eq. (6) are the same as those in Eq. (1).

The basic FCM algorithm is briefly reviewed as Algorithm 1.

The flowchart of FCM algorithm can be shown in Fig. 1.
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Algorithm 1 Fuzzy c-means (FCM)

Input: the data set, X; the number of clusters, c; and the initial cluster centre’s matrix,

V0.

Output: the membership degree matrix, U ; and the cluster centre’s matrix, V .

l = 0;

Initialize U (l);

repeat

l = l + 1;

Calculate V (l) using Eq. (3) and U (l−1);

Calculate U (l) using Eq. (2) and V (l);

until the stopping criterion is met.

Initialize the parameters c, m, ,

and initial cluster centers

tmax

Set the number of clusters and calculate the

initial membership degree using Eq. (2)

Iterate and update the cluster center using Eq.

(3) and membership degree using Eq. (2)

Stopping criteria are met ?

Stop and output clustering results

Y

N

c n C

s

Fig. 1. Flow chart of FCM clustering.

3. Fuzzifier Selection Method from Cluster Size Distribution Perspective

3.1. Measure of Cluster Size Distribution

The coefficient of variance (CV ) (Papoulis, 1990) in statistics can be used as a measure

for the variation in cluster sizes of a data set (Xiong et al., 2009; Wu et al., 2009c).

Definition 1 (Coefficient of Variance, CV ). CV is the ratio of the standard deviation to

the mean of cluster sizes, which is calculated as follows:

n̄ =
1

c

c
∑

i=1

ni , (7)
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σ =

√

∑c
i=1

(ni − n̄)2

c − 1
, (8)

CV =
σ

n̄
, (9)

where c is the number of clusters, ni is the number of objects in cluster Ci , n̄ is the average

size of all the clusters, and σ is the standard deviation of the cluster size distribution.

CV can be used to measure the distribution of cluster sizes since it is the ratio of the

standard deviation and the average value of cluster sizes. CV is a dimensionless measure,

which makes it more effective in measuring cluster size distributions. Generally, the larger

the CV value is, the greater the variability is in the data.

Definition 2 (DCV ). CV0 is the CV value of the original “true” clusters, and CV1 is the

CV value of the clustering result partitioned by FCM. DCV is defined as the change of

variation in cluster sizes after FCM clustering (Zhou and Yang, 2016; Wu et al., 2009a,

2009b).

DCV = CV0 − CV1. (10)

From the perspective of cluster size distribution, a clustering partition which results in

minor change of variation in cluster sizes (i.e. a smaller absolute value of DCV ) refers

to a steady state of clustering result. Based on this, we propose a criterion for fuzzifier

selection in FCM from cluster size distribution perspective.

Criterion 1 (Fuzzifier selection criterion from cluster size distribution perspective). In

a certain range of fuzzifier values, the fuzzifier value with which the FCM clustering can

result in the minimum absolute value of DCV is the optimal selection.

We note that DCV is more of an indication of reaching steady state of the clustering

process, and it does not necessarily indicate a better partition result. However, in FCM

clustering with different fuzzifier values, for a specific data set, the distribution changes

are mainly reflected in the cluster sizes. Therefore, to a certain extent, we can say that

criterion 1 is valid.

3.2. CSD-m Algorithm for Fuzzifer Selection

Based on the fuzzifier selection criterion from cluster size distribution perspective, we pro-

pose a fuzzifier selection algorithm considering the change of variation in cluster sizes.

The algorithm is called cluster size distribution based fuzzifier m selection algorithm

(CSD-m algorithm), as described in Algorithm 2.

The flow chart of the proposed CSD-m algorithm is shown in Fig. 2.

The DCV measure for the change of variation in cluster sizes after FCM clustering

and the search process of fuzzifier values in a range interval are added to the traditional

FCM algorithm to form the CSD-m algorithm. Apart from the number of clusters and the

initial cluster centres, the search interval of fuzzifier values is also needed as the input of
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Algorithm 2 CSD-m algorithm

Input: the data set, X; the number of clusters, c; the initial cluster centre’s matrix, V (0);

and the search interval of fuzzifier values, [mmin,mmax].

Output: the membership degree matrix, U ; the cluster centre’s matrix V ; and the optimal

value of fuzzifier, m.

1: Initialize U (0) using Eq. (2) and V (0), m(0) = mmin;

2: Calculate V using Eq. (3);

3: Calculate U using Eq. (2);

4: if the stopping criterion of FCM is met then

5: return U and V ;

6: else

7: repeat Steps 2 and 3;

8: Calculate CV using Eq. (9);

9: Calculate DCV using Eq. (10);

10: if |DCV | reaches the minimum value then

11: return the corresponding m

12: else

13: m = m + 1m;

14: repeat

15: Steps 2 and 3;

16: until m > mmax.

CSD-m algorithm. This interval can be determined according to the existing suggestions,

as discussed in Section 2. The key steps of CSD-m algorithm are the calculation of CV

values partitioned by FCM clustering with different fuzzifier values, and the comparison

of absolute DCV values. Through the iterations, the optimal value of fuzzifier is obtained

when |DCV | reaches its minimum.

4. Experimental Study

4.1. Experimental Setup

In the experiments, 8 synthetic data sets and 4 real-world data sets are used to demonstrate

the effectiveness of our proposed fuzzifier selection criterion and the CSD-m algorithm.

The experimental tool is Matalb R2012b. Based on the existing research on fuzzifier se-

lection, the search range of fuzzifier is set to [1.2,3.0]. Taking into account the efficiency

of the CSD-m algorithm, we set 1m = 0.2. The maximum number of iterations and the

termination threshold of FCM are the default values, namely, 100 and 1e−5, respectively.

Also, due to the randomness of initial cluster centres in FCM, we run the algorithm ten

times with each m value for each data set, and the average values are obtained as the final

results.
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Initialize the parameters c, ,

Initial cluster centers, and the search

interval of fuzzifier

tmax

Set the number of clusters, calculate the initial

membership degree using Eq. (2), and the initial

fuzzifier value

Iterate and update the cluster center using Eq.

(3) and membership degree using Eq. (2)

Stopping criteria are met ?

Stop and output clustering results and

optimal fuzzifier value

Y

N

[mmin, mmax]

Return membership degree matrix U

and cluster center matrix V

m
(0)

Calculate CV using Eq. (9)

and DCV using Eq. (10)

Y

N

m= m+

calculate DCV

∆m,

m > mmax

Fig. 2. Flow chart of the CSD-m algorithm.

The synthetic data sets are named SDXYYYY, in which “SD” refers to synthetic data

set, “X” refers to the dimension of the data set, and “YYYY” indicates the number of data

objects in the data set. The synthetic data sets are randomly generated by using the nngenc

function in Matlab R2012b with different bounds and standard deviation parameters. We

control the parameters of nngenc function, such that all of these synthetic data sets have

great variation in cluster sizes. The generation parameters of the 8 synthetic data sets are

shown in Table 1.

The distributions of the 8 synthetic data sets are shown in Fig. 3.

The four real-world data sets are from different areas in the UCI Machine Learning

Repository (Bache and Lichman, 2013). The abalone data set is a real-world data set

to predict the age of abalone from physical measurements. The balance-scale data set

contains information about balance scale weight and distance. The breast-cancer data set

includes the original Wisconsin breast cancer related information of 699 instances. The

page-blocks data set measures the blocks of the page layout of a document that has been

detected by a segmentation process.
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Table 1

Generation parameters of the synthetic datasets.

Dataset No. of No. of Cluster centre bounds Std. of each cluster

clusters dimensions

SD21000 2 2 (2, 4); (4, 4) 0.4; 0.3

SD20550 3 2 (1, 1); (2, 3); (4, 2) 0.4; 0.4; 0.4

SD21800 4 2 (2, 2); (2, 7); (5, 2); (6, 7) 0.7; 0.8; 0.4; 0.5

SD21950 5 2 (2, 2); (2, 6); (6, 2); (6, 6); (4, 4) 0.5; 0.4; 0.4; 0.4; 0.6

SD31500 2 3 (2, 2, 2); (4, 4, 3) 0.5; 0.5

SD32050 3 3 (2, 2, 2); (4, 4, 3); (5, 3, 2) 0.6; 0.4; 0.4

SD32800 4 3 (2, 2, 2); (4, 4, 3); (5, 3, 2); (6, 6, 4) 0.7; 0.4; 0.4; 0.7

SD34000 5 3 (2, 2, 2); (4, 4, 3); (5, 3, 2); (6, 6, 4); (6, 7, 2) 0.7; 0.4; 0.5; 0.6; 0.5

 

(a) SD21000                                               (b) SD20550 

 

(c) SD21800                                               (d) SD21950 

 
(e) SD31500                                               (f) SD32050 

 
(g) SD32800                                              (h) SD34000 
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Fig. 3. Distributions of the synthetic data sets.
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Table 2

Some characteristics of experimental data sets.

Data sets # Objects # Features # classes MinSize MaxSize AvgSize CV0

Synthetic SD21000 1000 2 2 100 900 500 1.131

data SD20550 550 2 3 50 350 183 0.833

sets SD21800 1800 2 4 200 950 450 0.754

SD21950 1950 2 5 100 1200 390 1.176

SD31500 1500 3 2 200 1300 750 1.037

SD32050 2050 3 3 200 1500 683 1.041

SD32800 2800 3 4 200 1500 700 0.849

SD34000 4000 3 5 200 2000 800 0.923

Real-world abalone 4177 8 29 1 689 144 1.414

data balance-scale 625 4 3 49 288 208 0.662

sets breast-cancer 699 10 8 17 367 87 1.320

pageblocks 5473 10 5 28 4913 1095 1.953

Some key characteristics of the experimental data sets are summarized in Table 2.

In Table 1, “# objects” represents the total number of data objects in the data set. “#

features” is the number of attributes of the data. “# classes” refers to the number of clusters

in the data.

4.2. Results and Discussion

The clustering results of both the 2-D and 3-D synthetic data sets can be visualized so that

we can directly understand the effect of different fuzzifier values on the clustering results.

For simplicity, we only present the FCM clustering results with the popular fuzzifier values

of m = 2.0 on the 8 synthetic data sets, as shown in Fig. 4.

The clustering results on four synthetic data sets show that the smaller the fuzzifier

value is, the better the clustering result is. With the increase of fuzzifier value, the small

clusters in the data sets tend to merge with part of the larger clusters.

The clustering results of all the experimental data sets with different fuzzifier values

are presented in Table 3.

Then, based on the CV1 values in Table 3, we calculate the DCV values with different

fuzzifier values on all of the 12 experimental data sets. The changes of DCV values on all

the experimental data sets with different fuzzifier values are shown in Fig. 5.

According to the criterion of fuzzifier selection, we can see from Fig. 5 that the optimal

values of fuzzifier determined by the CSD-m algorithm on different data sets are not the

same. Furthermore, the relationships between m and DCV values are not the simple linear

relationship. Nevertheless, for most data sets which have large variation in clusters sizes,

smaller fuzzifier values tend to produce better clustering results. Generally, small clusters

tend to merge with parts of the large clusters with the increase of fuzzifier values, as

illustrated in Fig. 2.

From the obtained DCV values, the optimal fuzzifier values of the 12 data sets are

shown in Fig. 6.
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Fig. 4. Clustering partitions of FCM with fuzzifier value m = 2.0.

As we can see from Fig. 6, the widely accepted and applied fuzzifier value in FCM,

namely m = 2, is not an optimal value for most of the data sets. Interestingly, we find that

for most of the data sets, the smaller fuzzifier, m = 1.2, is an optimal value.

As we know, the inappropriate selection of fuzzifier value can significantly influence

the clustering results of FCM. From Fig. 3, we can also see that the extents to which
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Table 3

Clustering results of all the experimental data sets with different fuzzifier values.

Data sets CV0 CV1

m = 1.2 m = 1.4 m = 1.6 m = 1.8 m = 2.0 m = 2.2 m = 2.4 m = 2.6 m = 2.8 m = 3.0

Synthetic SD21000 1.131 1.095 1.081 1.064 1.027 1.001 0.950 0.857 0.713 0.619 0.580

data SD20550 0.833 0.824 0.824 0.824 0.819 0.819 0.819 0.819 0.814 0.814 0.814

sets SD21800 0.754 0.738 0.736 0.736 0.735 0.732 0.732 0.732 0.732 0.730 0.728

SD21950 1.176 1.075 1.072 1.069 1.063 0.640 0.623 0.610 0.600 0.593 0.589

SD31500 1.037 1.033 1.033 1.033 1.031 1.030 1.030 1.030 1.020 1.015 1.005

SD32050 1.041 0.162 0.162 0.162 0.163 0.168 0.180 0.187 0.188 0.187 0.194

SD32800 0.849 0.739 0.790 0.725 0.716 0.704 0.170 0.171 0.174 0.179 0.180

SD34000 0.923 0.489 0.308 0.307 0.306 0.306 0.305 0.303 0.301 0.299 0.299

Real-world abalone 1.414 0.661 0.564 0.558 0.509 0.511 0.453 0.406 0.355 0.378 0.354

data balance-scale 0.662 0.183 0.083 0.030 0.023 0.145 0.316 0.211 0.294 0.227 0.287

sets breast-cancer 1.320 0.929 0.966 0.978 0.802 0.747 0.858 0.901 0.850 0.831 0.879

pageblocks 1.953 1.547 1.547 1.564 1.518 1.485 1.562 1.474 1.277 1.233 1.276
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Fig. 6. Optimal fuzzifier values obtained for the experimental data sets.

the clustering partitions are influenced by the fuzzifier values are different. Therefore, we

define an indicator called Influence Coefficient of Fuzzifier (ICF) based on the change

of CV1 values and the threshold of fuzzifier parameter m, to measure the influence of

fuzzifier parameter m on FCM clustering results. The ICF indicator is defined as

ICF =
|1CV1|

1m
. (11)



Fuzzifier Selection in Fuzzy C-Means from Cluster Size Distribution Perspective 625

 

0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

CV0

IC
F

 

 
 
y = 0.64*x - 0.47

Fig. 7. Relationship between ICF and CV0.

With the change of m, if the change of CV1 is large, then the value of ICF indicator

is large. It demonstrates that the influence of m on FCM clustering is large. In contrast,

within the similar threshold of m, a smaller 1CV1 value indicates the influence of m on

FCM clustering is relatively small.

We choose the range of m values from 1.2 to 3.0, and then the ICF values on the

12 experimental data sets can be obtained. To discover the different influences of fuzzifier

value on different data sets, the relationship between ICF values and CV0 values are fitted

as shown in Fig. 7.

From Fig. 7, we can see that there exists a linear relationship between CV0 and ICF .

The linear regression equation, y = 0.64x − 0.47, reveals an interesting relationship be-

tween the influence extent of fuzzifier value and the original cluster size distributions. It

demonstrates that the influences of fuzzifier value on FCM clustering results are relatively

small on data sets with small variation in sizes. However, for data sets with large variation

in cluster sizes, it is of particular importance to pay attention to the great influence of

fuzzifier value on FCM clustering.

We also note that to a certain extent, the very small clusters in a data set can be regarded

as noises and outliers. It has been recognized that the outliers can affect the performance

of FCM. To address this problem, some existing studies have suggested to modify the Eu-

clidean distance of FCM (Hathaway et al., 2000; Kersten, 1999). However, the focus of

this study is the influence of fuzzifer values in FCM. Without modifying the FCM algo-

rithm itself, the small clusters can be effectively identified with an appropriate fuzzifier

value using our proposed CSD-m algorithm. Therefore, our method also contributes to

the identification of noises and outliers when using traditional FCM clustering.

5. Conclusion

The fuzzifier in FCM is an important parameter which can significantly influence the

clustering results of FCM. Considering that the distribution of many data sets are not

uniform in practical applications, we propose a new criterion and the corresponding algo-

rithm called CSD-m algorithm for the selection of fuzzifier from the cluster size distribu-

tion perspective. The CV and DCV values are used to measure the original variation and



626 K. Zhou, S. Yang

change of variations after FCM clustering in cluster sizes, respectively. The optimal value

of fuzzifier is obtained when the absolute value of DCV reaches its mininum. The experi-

mental results on both synthetic and real-world data sets demonstrate the effectiveness of

our proposed algorithms. We can see that the influence of noisy and outlier on the results

are limited, and it demonstrates the robustness of our model. The results also reveal that

the widely used fuzzifier value m = 2 is not always the optimal, especially for data sets

with large variation in cluster sizes. The novelty and specialty of this study include that a

new algorithm for fuzzifier selection in FCM clustering was proposed, and a new indicator

ICF was developed to measure the influence of fuzzifier value on FCM clustering results.

Also, the extensive experimental results revealed a linear relationship between the extent

of fuzzifier value influence (ICF) and the original cluster size distributions (CV0).
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