
INFORMATICA, 2019, Vol. 30, No. 2, 213–242 213
 2019 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2019.204

NH-MADM Strategy in Neutrosophic Hesitant

Fuzzy Set Environment Based on Extended GRA

Pranab BISWAS1∗, Surapati PRAMANIK2, Bibhas C. GIRI3

1Department of Mathematics, Jadavpur University, Kolkata–700032, West Bengal, India
2Department of Mathematics, Nandalal Ghosh B.T College, Panpur, Narayanpur 743126,

West Bengal, India
3Department of Mathematics, Jadavpur University, Kolkata–700032, West Bengal, India

e-mail: prabiswas.jdvu@gmail.com, paldam2010@gmail.com, surapati.math@gmail.com,

bcgiri.jumath@gmail.com

Received: August 2018; accepted: January 2019

Abstract. Neutrosophic hesitant fuzzy set (NHFS) is a convincing tool that deals with uncertain

information. In this paper, we propose an NH-MADM strategy for solving MADM with NHFSs

based on extended GRA. We assume that the information of attributes is partially known or com-

pletely unknown. We develop two models to determine the weights of attributes. Then we rank the

alternatives based on the strategy. Further, we extend the strategy into MADM in interval neutro-

sophic hesitant fuzzy set environment which we call INH-MADM strategy. Finally, we provide two

illustrative examples to show the validity and effectiveness of the proposed strategies.

Key words: single-valued neutrosophic set, hesitant fuzzy set, single-valued neutrosophic hesitant

fuzzy set, interval neutrosophic hesitant fuzzy set, multi-attribute decision making, grey relational

analysis.

1. Introduction

Multiple attribute decision making (MADM) is a process of finding the best alterna-

tive that has the highest degree of satisfaction from a finite set of alternatives character-

ized with multiple attributes. Because of uncertainty and vagueness of human thinking,

decision makers often consider preference values in terms of fuzzy set (Zadeh, 1965),

hesitant fuzzy set (Torra, 2010), intuitionistic fuzzy set (Atanassov, 1986), Pythagorean

fuzzy set (Yager, 2014), etc. However, these sets cannot properly express incomplete,

indeterminate and inconsistent type information which generally occurs in MADM un-

der uncertain environment. Smarandache (1998) introduced neutrosophic set that can

express incomplete, indeterminate and inconsistent type information with its three in-

dependent membership degrees: truth membership, indeterminacy membership, falsity

membership. Since then, many researchers have successfully employed neutrosophic

sets into MADM problem to develop several sophisticated strategies such as TOP-

SIS (Biswas et al., 2016a, 2018, 2019; Mondal et al., 2016; Ye, 2015a; Peng and Dai,
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2018), AHP (Abdel-Basset et al., 2017, 2018a), COPRAS (Baušys et al., 2015; Şahin,

2019), DEMATEL (Abdel-Basset et al., 2018b), VIKOR (Baušys and Zavadskas, 2015;

Liu and Zhang, 2015; Pramanik and Dalapati, 2018; Pramanik et al., 2018a, 2018b),

MULTIMOORA (Stanujkic et al., 2018b; Tian et al., 2017), TODIM (Ji et al., 2018a;

Pramanik et al., 2017a, 2018c), WASPAS (Zavadskas et al., 2015; Nie et al., 2017),

MAMVA (Zavadskas et al., 2017), ELECTREE (Peng et al., 2014; Zhang et al., 2016),

similarity measure strategies (Pramanik et al., 2017b; Mondal et al., 2018a, 2018b; Ye,

2014a; Pramanik et al., 2017c, 2018d), aggregation operator strategies (Liu et al., 2016;

Peng et al., 2015; Ye, 2014b; Ji et al., 2018b; Liu and Wang, 2016; Biswas et al., 2016c;

Mondal et al., 2018c, 2019), cross entropy (Dalapati et al., 2017; Pramanik et al., 2018e,

2018f), etc.

Grey relational analysis (GRA) (Deng, 1989), a part of grey system theory, is another

effective tool that has been successfully applied in solving a variety of MADM strategies

(Zhang et al., 2005; Wei, 2010, 2011; Wei et al., 2011; Zhang and Liu, 2011; Pramanik

and Mukhopadhyaya, 2011; Zhang et al., 2013). Recently, neutrosophic set has caught

attention of the researchers for solving MADM using GRA strategy (Biswas et al., 2014a,

2014b; Pramanik and Mondal, 2015; Dey et al., 2016a, 2016b; Banerjee et al., 2017).

However, when decision makers are in doubt, they often hesitate to assign single value

for rating alternatives, instead they prefer to assign a set of possible values. To deal with

the issue, Torra (2010) introduced hesitant fuzzy set, which permits the membership de-

gree of an element to a given set to be represented by the set of possible numerical values

in [0,1]. This set, an extension of fuzzy set, is useful for handling uncertain information

in MADM process. Xia and Xu (2011) proposed some aggregation operators for hesi-

tant fuzzy information and applied these operators to solve MADM. Wei (2012) studied

hesitant fuzzy MADM by developing some prioritized aggregation operators for hesitant

fuzzy information. Xu and Zhang (2013) developed TOPSIS method for hesitant fuzzy

MADM with incomplete weight information. Li (2014) extended the MULTIMOORA

method for multiple criteria group decision making with hesitant fuzzy sets. Mu et al.

(2015) investigated a novel aggregation principle for hesitant fuzzy elements.

In a hesitant fuzzy MADM, decision maker does not consider non-membership degree

for rating alternatives. However, this degree is equally important to express imprecise in-

formation. Zhu et al. (2012) presented the idea of dual hesitant fuzzy set, in which mem-

bership degrees and non-membership degrees are in the form of sets of values in [0,1].

Ye (2014c) and Chen et al. (2014) proposed correlation method of dual hesitant fuzzy sets

to solve MADM with hesitant fuzzy information. Singh (2017) defined some distance and

similarity measures for dual hesitant fuzzy set and utilized these measures in MADM.

Dual hesitant fuzzy set cannot properly capture indeterminate information in a deci-

sion making situation. Because of the inherent neutrosophic nature of human preferences,

the rating values of alternatives and/or weights of attributes involved in the MADM prob-

lems are generally uncertain, imprecise, incomplete and inconsistent. Ye (2015b) intro-

duced single-valued neutrosophic hesitant fuzzy set (SVNHFS) by coordinating hesitant

fuzzy set and single-valued neutrosophic set. SVNHFS is characterized by truth hesitancy,

indeterminacy hesitancy and falsity-hesitancy membership functions which are indepen-

dent in nature. Therefore, SVNHFS can express the three kinds of hesitancy information
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existing in MADM problems. Ye (2015b) developed single valued neutrosophic hesitant

fuzzy weighted averaging and single valued neutrosophic hesitant fuzzy weighted geo-

metric operators for SVNHFS information and applied these two operators in MADM

problems. Şahin and Liu (2017) defined correlation co-efficient between SVNHFSs and

used to MADM. Biswas et al. (2016a) proposed GRA strategy for solving MADM in

SVNHFS environment. Wang and Li (2018) proposed generalized SVNHF prioritized

aggregation operators to solve MADM problem. Li and Zhang (2018) developed SVNHF

based choquet aggregation operators for solving MADM problems.

Liu and Shi (2015) introduced interval neutrosophic hesitant fuzzy set (INHFS) which

consists of three membership hesitancy functions: the truth, the indeterminacy and the

falsity. The three membership functions of an element to a given set are individually ex-

pressed by a set of interval values contained in [0,1]. Liu and Shi (2015) proposed hybrid

weighted average operator for interval neutrosophic hesitant fuzzy set and utilized the

operators in MADM. Ye (2016) put forward correlation coefficients of INHFSs and ap-

plied it to solve MADM problems. Biswas (2018) proposed an extended GRA strategy

for solving MADM in neutrosophic hesitant fuzzy environment with incomplete weight

information. We observe that the SVNHFS as well as INHFS can be considered in many

practical MADM problems in which the decision maker has to make a decision in neutro-

sophic hesitant fuzzy environment.

Up until now very few number of studies exist in the literature about GRA strategy of

MADM under SVNHFS and INHFS environment. Therefore, we have an opportunity to

extend the traditional methods or to propose new methods regarding GRA to deal with

MADM in neutrosophic hesitant fuzzy environment.

In this study, our objectives are as follows:

1. To present the idea of MADM problem in SVNHFS and INHFS environments,

where the preference values of alternatives are considered with either SVNHFSs

or INHFSs and the weight information of attributes are assumed to be completely

known, incompletely known, and completely unknown.

2. To develop some optimization models for determining weight information of at-

tributes, when attributes’ weights are incompletely known, or completely unknown.

3. To propose GRA based strategy for handling MADM problem under SVNHFS and

INHFS environments.

4. Finally, to present illustrative examples, one for SVNHFS and other for IVNHFs to

show the feasibility and effectiveness of the proposed strategies.

To do so, the paper is organized as follows: Section 2 presents some basic concepts

related to single valued neutrosophic set, interval neutrosophic set, hesitant fuzzy set,

SVNHFS and INHFS. In Section 3, we define score function, accuracy function,Hamming

distance measure for SVNHFS and INHFS. We propose NH-MADM strategy in SVNHFS

environment in Section 4 and INH-MADM strategy in INHFS environment in Section 5.

In Section 6, we illustrate the proposed NH-MADM and INH-MADM strategies with two

examples. Finally, in Section 7 we present some concluding remarks and future scope of

research of the study.
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2. Preliminaries

In this section, we review some basic definitions regarding single valued neutrosophic set,

interval neutrosophic set, hesitant fuzzy set, SVNHFS and INHFS.

2.1. Neutrosophic Set

2.1.1. Single Valued Neutrosophic Set

Definition 1. (See Wang et al., 2010.) A single valued neutrosophic set A in a universe

of discourse X = (x1, x2, . . . , xn) is defined by

A=
{〈

TA(x), IA(x),FA(x)
〉 ∣

∣x ∈X
}

,

where the functionsTA(x), IA(x) andFA(x), respectively, denote the truth, indeterminacy

and falsity membership functions of x ∈X to the set A, with the conditions

0 6 TA(x)6 1, 0 6 IA(x)6 1, 0 6 FA(x)6 1,

0 6 TA(x)+ IA(x)+ FA(x)6 3.

2.1.2. Interval Neutrosophic Set

Definition 2. (See Wang et al., 2005.) Let X be a non-empty finite set. Let D[0,1] be

the set of all closed sub intervals of the unit interval [0,1]. An interval neutrosophic set

Ã in X is an object having the form:

Ã=
{〈

x,TÃ(x), IÃ(x),FÃ(x)
〉 ∣

∣x ∈X
}

,

where TÃ : X → D[0,1], IÃ : X → D[0,1], FÃ : X → D[0,1] with the condition 0 6

TÃ(x)+ IÃ(x)+FÃ(x)6 3 for any x ∈X. The intervals TÃ(x), TÃ(x) and TÃ(x) denote,

respectively, the degree of truth, the indeterminacy and the falsity membership degree of

x to Ã. Then for each x ∈ X the lower and the upper limit points of closed intervals

TÃ(x), IÃ(x) and FÃ(x) are denoted by T L
Ã
(x), T U

Ã
(x), IL

Ã
(x), IU

Ã
(x), T L

Ã
(x), T U

Ã
(x),

respectively. Thus Ã can also be presented in the following form:

Ã=
{〈

x,
[

T L
Ã
(x), T U

Ã
(x)

]

,
[

IL
Ã
(x), IU

Ã
(x)

]

,
[

FL
Ã
(x),FU

Ã
(x)

]〉 ∣

∣x ∈X
}

,

where 0 6 T U
Ã
(x)+ IU

Ã
(x)+FU

Ã
(x)6 3 for any x ∈X. For convenience of notation, we

consider that Ã= 〈[T L
Ã
, T U
Ã

], [IL
Ã
, IU
Ã

], [FL
Ã
,FU

Ã
]〉 as an interval neutrosophic set, where

0 6 T U
Ã

+ IU
Ã

+ FU
Ã

6 3 for any x ∈X.

2.2. Hesitant Fuzzy Set

Definition 3. (See Torra and Narukawa, 2009; Torra, 2010.) Let X be a universe of dis-

course. A hesitant fuzzy set on X is defined by

F =
{〈

x,hF (x)
〉 ∣

∣x ∈X
}

,
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where hF (x), referred to as the hesitant fuzzy element, is a set of some values in [0,1]

denoting the possible membership degree of the element x ∈X to the set F .

Definition 4. (See Chen et al., 2013.) Let X be a non-empty finite set. An interval hesi-

tant fuzzy set on X is represented by

E =
{〈

x, h̃E(x)
〉 ∣

∣x ∈X
}

,

where h̃E(x) is a set of some different interval values in [0,1], which denotes the possible

membership degrees of the element x ∈X to the set E, h̃E(x) can be represented by an

interval hesitant fuzzy element h̃ that is denoted by {γ̃ |γ̃ ∈ h̃}, where γ̃ = [γ L, γU ] is an

interval number.

2.3. Neutrosophic Hesitant Fuzzy Sets

Definition 5. (See Ye, 2015b.) Let X be fixed set. Then a single valued neutrosophic

hesitant fuzzy set n on X is defined as

n=
{〈

x, t (x), i(x), f (x)
〉 ∣

∣x ∈X
}

, (1)

in which t (x), i(x) and f (x) represent three sets of some values in [0,1], denoting, respec-

tively, the possible truth, indeterminacy and falsity membership degrees of the element

x ∈ X to the set N . The membership degrees t (x), i(x) and f (x) satisfy the following

conditions:

0 6 δ, γ, η6 1, 0 6 δ+ + γ+ + η+
6 3,

where δ ∈ t (x), γ ∈ i(x), η ∈ f (x), δ+ ∈ t+(x) =
⋃

δ∈t (x)max t (x), γ+ ∈ i+(x) =
⋃

γ∈t (x)max i(x) and η+ ∈ f+(x)=
⋃

η∈f (x)maxf (x) for all x ∈X.

For convenience, the triplet n(x)= 〈t (x), i(x), f (x)〉 is denoted by n= 〈t, i, f 〉 which

we call single-valued neutrosophic hesitant fuzzy element (SVNHFE).

Definition 6. (See Liu and Shi, 2015.) Let X be a non-empty finite set, an interval neu-

trosophic hesitant fuzzy set on X is represented by

ñ=
{〈

x, t̃(x), ĩ(x), f̃ (x)
〉 ∣

∣x ∈X
}

, (2)

where t̃ (x)= {γ̃ |γ̃ ∈ t̃ (x)}, ĩ(x)= {γ̃ |γ̃ ∈ ĩ(x)} and f̃ (x)= {γ̃ |γ̃ ∈ f̃ (x)} are three sets

of some interval values in real unit interval [0,1], which denotes the possible truth, inde-

terminacy and falsity membership hesitant degrees of the element x ∈X to the set ñ.

The membership values satisfy the limits:

γ̃ =
[

γ L, γU
]

⊆ [0,1], δ̃ =
[

δL, δU
]

⊆ [0,1], η̃=
[

ηL, ηU
]

⊆ [0,1]
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and 0 6 sup γ̃+ + sup δ̃+ + sup η̃++ 6 3, where γ̃+ =
⋃

γ̃∈t̃(x)max{γ̃ }, δ̃+ =
⋃

δ̃∈t̃ (x)max{δ̃} and η̃+ =
⋃

η̃∈t̃ (x)max{η̃}.

For convenience, we represent the set ñ = {t̃ (x), ĩ(x), f̃ (x)} with the symbol ñ =

{t̃ , ĩ, f̃ } and call it interval neutrosophic hesitant fuzzy element (INHFE).

3. Score Function, Accuracy Function and Distance Function of SVNHFEs

Definition 7. (See Biswas et al., 2016b.) Let ni = 〈ti , ii, fi〉 be an SVNHFE and lt , li

and lf are the number of elements in ti , ii , fi , respectively. Then the score function S(ni),

the accuracy function A(ni) and certainty function C(ni) of ni are defined as

1. S(ni)=
1

3

[

2 +
1

lt

∑

γ∈t

γ −
1

li

∑

δ∈i

δ−
1

lf

∑

η∈f

η

]

;

2. A(ni)=
1

lt

∑

γ∈t

γ −
1

lf

∑

η∈f

η;

3. C(ni)=
1

lt

∑

γ∈t

γ.

Definition 8. Let n1 = 〈t1, i1, f1〉 and n2 = 〈t2, i2, f2〉 be any two SVNHFEs. Then the

following rules can be defined for comparison purposes:

1. if s(n1) > s(n2), then n1 is greater than n2, that is, n1 is superior to n2, denoted by

n1 ≻ n2;

2. if s(n1)= s(n2) andA(n1) > A(n2), then n1 is greater than n2, that is, n1 is superior

to n2, denoted by n1 ≻ n2;

3. if s(n1) = s(n2) and A(n1) = A(n2), and C(n1) > C(n2), then n1 is greater than

n2, that is, n1 is superior to n2, denoted by n1 ≻ n2;

4. if s(n1) = s(n2) and A(n1) = A(n2), and C(n1) = C(n2), then n1 is equal to n2,

that is, n1 is indifferent to n2, denoted by n1 ∼ n2.

Definition 9. Let ñi = 〈t̃i , ĩi, f̃i〉 be an INHFE. Then the score function S(ñi ), the accu-

racy function A(ñi) and certainty function C(ñi) of ñi are defined as follows:

1. S(ñi)=
1

6

[

4 +
1

lt

∑

γ∈t

(

γ L + γU
)

−
1

li

∑

δ∈i

(

δL + δU
)

−
1

lf

∑

η∈f

(

ηL + ηU
)

]

;

2. A(ñi)=
1

2

[

1

lt

∑

γ∈t

(

γ L + γU
)

−
1

lf

∑

η∈f

(

ηL + ηU
)

]

;

3. C(ñi)=
1

2

[

1

lt

∑

γ∈t

(

γ L + γU
)

]

.

Definition 10. (See Biswas et al., 2016b.) Let n1 = 〈t1, i1, f1〉 and n2 = 〈t2, i2, f2〉 be

any two SVNHFEs. Then the normalized Hamming distance between n1 and n2 is defined
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as

d(n1, n2) =
1

3

(∣

∣

∣

∣

1

lt1

∑

γ1∈t1

γ1 −
1

lt2

∑

γ2∈t2

γ2

∣

∣

∣

∣

+

∣

∣

∣

∣

1

li1

∑

δ1∈i1

δ1 −
1

li2

∑

δ2∈i2

δ2

∣

∣

∣

∣

+

∣

∣

∣

∣

1

lf1

∑

η1∈f1

η1 −
1

lf2

∑

η2∈f2

η2

∣

∣

∣

∣

)

, (3)

where ltk , lik and lfk are the number of possible membershipvalues of tk , ik , fk for k = 1,2,

respectively.

The distance function d(n1, n2) of n1 and n2 satisfies the following properties:

1. 0 6 d(n1, n2)6 1;

2. d(n1, n2)= 0, if and only if n1 = n2;

3. d(n1, n2)= d(n2, n1);

4. If n1 ⊆ n2 ⊆ n3, then d(n1, n2)6 d(n1, n3) and d(n2, n3)6 d(n1, n3), where n3 is

an SVNHFE on X.

Definition 11. Let ñ1 = 〈t̃1, ĩ1, f̃1〉 and ñ2 = 〈t̃2, ĩ2, f̃2〉 be any two INHFEs. Then the

normalized Hamming distance between ñ1 and ñ2 is defined as follows:

d(ñ1, ñ2)=
1

6















∣

∣

∣

1
lt1

∑

γ1∈t1

γ L1 − 1
lt2

∑

γ2∈t2

γ L2

∣

∣

∣ +

∣

∣

∣

1
lt1

∑

γ1∈t1

γU1 − 1
lt2

∑

γ2∈t2

γU2

∣

∣

∣

+

∣

∣

∣

1
li1

∑

δ1∈i1

δL1 − 1
li2

∑

δ2∈i2

δL2

∣

∣

∣ +

∣

∣

∣

1
li1

∑

δ1∈i1

δU1 − 1
li2

∑

δ2∈i2

δU2

∣

∣

∣

+

∣

∣

∣

1
lf1

∑

η1∈f1

ηL1 − 1
lf2

∑

η2∈f2

ηL2

∣

∣

∣ +

∣

∣

∣

1
lf1

∑

η1∈f1

ηU1 − 1
lf2

∑

η2∈f2

ηU2

∣

∣

∣















,

(4)

where lt̃k , lĩk
and lf̃k

are the number of possible membership values t̃k , ĩk , f̃k for k = 1,2,

respectively.

The distance function d(ñ1, ñ2) of ñ1 and ñ2 satisfies the following properties:

1. 0 6 d(ñ1, ñ2)6 1;

2. d(ñ1, ñ2)= 0 if and only if ñ1 = ñ2;

3. d(ñ1, ñ2)= d(ñ2, ñ1);

4. If ñ1 ⊆ ñ2 ⊆ ñ3, ñ3 is an INHFE on X, then d(ñ1, ñ2)6 d(ñ1, ñ3) and d(ñ2, ñ3)6

d(ñ1, ñ3).

4. GRA Strategy for MADM with SVNHFS

In this section, we propose GRA based strategy to find out the best alternative in MADM

under SVNHFS environment. Assume that A = {A1,A2, . . . ,Am} be the discrete set of
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m alternatives and C = {C1,C2, . . . ,Cn} be the set of n attributes for an SVNHFSs based

MADM problem. Suppose that the rating value of the i-th alternativeAi (i = 1,2, . . . ,m)

over the attribute Cj (j = 1,2, . . . , n) is considered with SVNHFSs xij = (tij , iij , fij ),

where tij = {γij | γij ∈ tij , 0 6 γij 6 1}, iij = {δij | δij ∈ iij , 0 6 δij 6 1} and fij = {ηij |

ηij ∈ fij ,0 6 ηij 6 1} indicate the possible truth, indeterminacy and falsity membership

degrees of the rating xij for i = 1,2, . . . ,m and j = 1,2, . . . , n. With these rating values,

we construct a decision matrixX = (xij )m×n, where the entries assume the form of SVN-

HFSs. The decision matrix is constructed as follows:

X =









x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn









. (5)

We now propose MADM based on GRA to determine the most desirable alternative under

the following cases:

Case 1a. Completely known attribute weights.

The weight vector of attributes prescribed by the decision maker is w = (w1,w2,

. . . ,wn), where wj ∈ [0,1] and
∑n
j=1wj = 1.

Step 1. Determine the single valued neutrosophic hesitant fuzzy positive ideal solution

(SVNHFPIS) A+ and single valued neutrosophic hesitant fuzzy negative ideal solu-

tion (SVNHFNIS) A− of alternatives in the matrix X = (xij )m×n by the following

equations, respectively.

• For benefit type attributes:

A+ =
(

A+
1 ,A

+
2 , . . . ,A

+
n )

=
{〈

max
i

{xi1},max
i

{xi2}, . . . ,max
i

{xin}
〉}

, (6)

A− =
(

A−
1 ,A

−
2 , . . . ,A

−
n )

=
{〈

min
i

{xi1},min
i

{xi2}, . . . ,min
i

{xin}
〉}

. (7)

• For cost type attributes:

A+ =
(

A+
1 ,A

+
2 , . . . ,A

+
n )

=
{〈

min
i

{xi1},min
i

{xi2}, . . . ,min
i

{xin}
〉}

, (8)

A− =
(

A−
1 ,A

−
2 , . . . ,A

−
n )

=
{〈

max
i

{xi1},max
i

{xi2}, . . . ,max
i

{xin}
〉}

. (9)
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Using Definition 8, we compare attribute values xij by using score, accuracy and

certainty values of SVNHFEs.

Step 2. Determine the grey relational coefficient of each alternative fromA+ andA− by using

the following equations:

ξ+
ij =

min16i6mmin16j6nD(xij ,A
+
j )+ ρmax16i6mmax16j6nD(xij ,A

+
j )

D(xij ,A
+
j )+ ρmax16i6mmax16j6nD(xij ,A

+
j )

,

(10)

ξ−
ij =

min16i6mmin16j6nD(xij ,A
−
j )+ ρmax16i6mmax16j6nD(xij ,A

−
j )

D(xij ,A
−
j )+ ρmax16i6mmax16j6nD(xij ,A

−
j )

,

(11)

where the identification coefficient is generally set as ρ = 0.5.

Step 3. Calculate the degree of grey relational coefficient of each alternative Ai (i =

1,2, . . . ,m) from A+ and A− by using Eq. (10) and Eq. (11), respectively, for i =

1,2, . . . ,m:

ξ+
i =

n
∑

j=1

wj ξ
+
ij , (12)

ξ−
i =

n
∑

j=1

wj ξ
−
ij . (13)

Step 4. Calculate the relative closeness coefficient ξi for each alternative Ai(i =

1,2, . . . ,m) with respect to A+ by the following equation:

ξi =
ξ+
i

ξ+
i + ξ−

i

for i = 1,2, . . . ,m. (14)

Step 5. Rank the alternatives according to the descending order of relative closeness co-

efficient values of alternatives to determine the best one.

However, in a real decision making, the information about the attribute weights is often

incompletely known or completely unknown due to decision makers’ limited expertise

about the public domain. In this case, we propose some models for determining the weight

vector of the attributes under the following cases:

Case 2a. Incompletely known attribute weights.

In this case, we have to determine the attribute weights to find out the best alternative.

The incomplete attribute weight information H can be considered in the following

form (Park et al., 2011; Park, 2004; Park et al., 1997):



222 Biswas et al.

1. A weak ranking:{wi >wj }, i 6= j ;

2. A strict ranking:{wi −wj > ǫi(> 0)}, i 6= j ;

3. A ranking of difference:{wi −wj >wk −wp}, i 6= j 6= k 6= p;

4. A ranking with multiples:{wi > αiwj , 0 6 αi 6 1, i 6= j ;

5. An interval form:{βi 6wi 6 βi + ǫi(> 0), 0 6 βi 6 βi + ǫi 6 1.

We can take the weights of attributes as a subset of the above relationships for a

particular decision making problem. We denote the considered weight information

set by H . The similarity measure of xij to A+
j is defined as follows:

S
(

xij ,A
+
j

)

= 1 −
D(xij ,A

+
j )

∑n
j=1D(xij ,A

+
j )
, (15)

where D(xij , A+
j ) (i = 1,2, . . . ,m) denotes the Hamming distance between xij to

A+
j . Similarly, the similarity measure of xij to A−

j is determined as follows:

S(xij ,A
−
j )= 1 −

D(xij ,A
−
j )

∑n
j=1D(xij ,A

−
j )
, (16)

where D(xij , A−
j ) (i = 1,2, . . . ,m) denotes the Hamming distance between xij to

A−
j . Then the weighted similarity measures of the alternativeAi (i = 1,2, . . . ,m) to

A+ = (A+
1 ,A

+
2 , . . . ,A

+
n ) andA− = (A−

1 ,A
−
2 , . . . ,A

−
n ) are respectively determined

as follows:

S+
i =

n
∑

j=1

S
(

xij ,A
+
j

)

, i = 1,2, . . . ,m, (17)

S−
i =

n
∑

j=1

S
(

xij ,A
−
j

)

, i = 1,2, . . . ,m. (18)

An acceptable weight vector w = (w1,w2, . . . ,wn) should make all the similari-

ties (S+
1 , S

+
2 , . . . , S

+
m) to ideal solution (A+

i1,A
+
i2, . . . ,A

+
in) as large as possible and

the similarities (S−
1 , S

−
2 , . . . , S

−
m ) to ideal solution (A−

i1,A
−
i2, . . . ,A

−
in) as small as

possible under the condition w ∈ H . Therefore, we can set the following multiple

objective non-linear optimization model to determine the weight vector:

Model-1







maxSi(w)=

∑n
j=1 wjS(xij ,A

+
j )

∑n
j=1 wjS(xij ,A

+
j )+

∑n
j=1wj S(xij ,A

−
j )
, i = 1,2, . . . ,m

subject to w ∈H.

(19)
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Since each alternative is non-inferior, there exists no preference relation among the

alternatives. Then we can aggregate the above multiple objective optimization mod-

els with equal weights into the following single objective optimization model:

Model-2



















maxS(w)=
m
∑

i=1

Si(w)=
m
∑

i=1

∑n
j=1 wjS(xij ,A

+
j )

∑n
j=1 wjS(xij ,A

+
j )+

n
∑

j=1

wj S(xij ,A
−
j )

,

subject to w ∈H,
n
∑

j=1

wj = 1, wj > 0, j = 1,2, . . . , n.

(20)

By solving the Model-2, we obtain the optimal solution w = (w1,w2, . . . ,wn) that

can be used as the weight vector of the attributes. Using this weight vector and fol-

lowing Step 3 to Step 5, we can easily determine the relative closeness coefficient Si

(i = 1,2, . . . ,m) of each alternative to find out an optimal alternative.

Case 3a. Completely unknown attribute weights.

Here we construct the following non-linear programming model to determine the

weights of attributes.

Model-3















maxS+
i (w)=

n
∑

j=1

wjS
(

xij ,A
+
j

)

, i = 1,2, . . . ,m;

subject to
n
∑

j=1

w2
j = 1, wj > 0, j = 1,2, . . . , n.

(21)

We now aggregate the multiple objective optimization models (see Eq. (21)) to ob-

tain the following single-objective optimization model:

Model-4















maxS+(w)=
m
∑

i=1

S+
i (w)=

m
∑

i=1

n
∑

j=1

wjS
(

xij ,A
+
j

)

,

subject to
n
∑

j=1

w2
j = 1, wj > 0, j = 1,2, . . . , n.

(22)

To solve the Model-4, we consider the following Lagrange function:

L(w,φ)=

m
∑

i=1

n
∑

j=1

wjS
(

xij ,A
+
j

)

+
φ

2

( n
∑

j=1

w2
j − 1

)

, (23)

where the real number φ is called the Lagrange multiplier. Differentiating partially Lwith

respect to wj and φ, we have the following equations:

∂L

∂wj
=

m
∑

i=1

S
(

xij ,A
+
j

)

+ φwj = 0, (24)
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∂L

∂φ
=

1

2

( n
∑

j=1

w2
j − 1

)

= 0. (25)

It follows from Eq. (24) that

wj =
−

∑m
i=1 S(xij ,A

+
j )

φ
, i = 1,2, . . . ,m. (26)

Putting this value of wj in Eq. (25), we have

φ = −

√

√

√

√

n
∑

j=1

( m
∑

i=1

S
(

xij ,A
+
j

)

)2

, (27)

where φ < 0 and

√

∑n
j=1

(
∑m
i=1 S(xij ,A

+
j )

)2
implies the sum of similarities with respect

to the j -th attribute. Combining Eq. (26) and Eq. (27), we obtain

wj =

∑m
i=1 S(xij ,A

+
j )

√

∑n
j=1

(
∑m
i=1 S(xij ,A

+
j )

)2
, j = 1,2, . . . , n. (28)

Then, by normalizing wj (j = 1,2, . . . , n), we make their sum into a unit and obtain the

normalized weight of the j -th attribute:

w̄j =
wj

∑n
j=1wj

, (29)

and consequently, we obtain the weight vector of the attribute as w̄ = (w̄1, w̄2, . . . , w̄n).

Following Step 3 to Step 5, presented in the current section, we can easily determine

the best alternative by using this weight vector.

5. GRA Strategy for MADM with INHFS

We consider a MADM problem in which A= {A1,A2, . . . ,Am} is the set of alternatives

and C = {C1,C2, . . . ,Cn} is the set of attributes. We assume that the rating value of the

alternativeAi (i = 1,2, . . . ,m) over the attributeCj (j = 1,2, . . . , n) is represented by in-

terval neutrosophic hesitant fuzzy element ñij = (t̃ij , ĩij , f̃ij ), where t̃ij = {γ̃ij |γ̃ij ∈ t̃ij },

ĩij = {δ̃ij |δ̃ij ∈ ĩij } and f̃ij = {η̃ij |η̃ij ∈ f̃ij } are three sets of some interval values in

the real unit interval [0,1]. These values denote the possible truth, indeterminacy and

falsity membership hesitant degrees with the following limits: γ̃ij = [γ Lij , γ
U
ij ] ⊆ [0,1],

δ̃ij = [δLij , δ
U
ij ] ⊆ [0,1], η̃ij = [ηLij , η

U
ij ] ⊆ [0,1] and 0 6 sup γ̃ + sup δ̃ + sup η̃+ 6 3,
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where γ̃+ =
⋃

γ̃∈t̃ (x)max{γUij }, δ̃+ =
⋃

δ̃∈ĩ(x)
max{δUij }, and η̃+ =

⋃

η̃∈f̃ (x)
max{ηUij }.

Then we construct an interval neutrosophic hesitant fuzzy decision matrix N as

N =









ñ11 ñ12 · · · ñ1n

ñ21 ñ22 · · · ñ2n
...

...
. . .

...

ñm1 ñm2 · · · ñmn









. (30)

We solve the interval neutrosophic hesitant fuzzy MADM considering the following

two cases:

Case 1b. Completely known attribute.

Assume that 3 = (λ1, λ2, . . . , λn) be the weight vector such that λj ∈ [0,1] and
∑n
j=1 λj = 1.

We now consider the following steps required for the proposed strategy:

Step 1. Determine the interval neutrosophic hesitant fuzzy positive ideal solution

(INHFPIS)Ã+ and interval neutrosophic hesitant fuzzy negative ideal solution

(INHFNIS)Ã− of alternatives from the decision matrixN = (ñij )m×n with the equa-

tions:

• For benefit type attributes:

Ã+ =
(

Ã+
1 , Ã

+
2 , . . . , Ã

+
n

)

=
{〈

max
i

{ñi1},max
i

{ñi2}, . . . ,max
i

{ñin}
〉}

, (31)

Ã− =
(

Ã−
1 , Ã

−
2 , . . . , Ã

−
n

)

=
{〈

min
i

{ñi1},min
i

{ñi2}, . . . ,min
i

{ñin}
〉}

. (32)

• For cost type attributes:

Ã+ =
(

Ã+
1 , Ã

+
2 , . . . , Ã

+
n

)

=
{〈

min
i

{ñi1},min
i

{ñi2}, . . . ,min
i

{ñin}
〉}

, (33)

Ã− =
(

Ã−
1 , Ã

−
2 , . . . , Ã

−
n

)

=
{〈

max
i

{ñi1},max
i

{ñi2}, . . . ,max
i

{ñin}
〉}

. (34)

We compare attribute values ñij by using score, accuracy and certainty values of

INHFSs defined in Definition 9.
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Step 2. Calculate the grey relational coefficient of each alternative from Ã+ and Ã− with

the equations:

χ+
ij =

min16i6mmin16j6n d(ñij , Ã
+
j )+ βmax16i6m max16j6n d(ñij , Ã

+
j )

d(ñij , Ã
+
j )+ βmax16i6mmax16j6n d(ñij , Ã

+)
,

(35)

χ−
ij =

min16i6mmin16j6n d(ñij , Ã
−
j )+ βmax16i6m max16j6n d(ñij , Ã

−
j )

d(ñij , Ã
−
j )+ βmax16i6mmax16j6n d(ñij , Ã

−
j )

,

(36)

where the identification coefficient β = 0.5.

Step 3. Calculate the degree of grey relational coefficient of each alternative Ai (i =

1,2, . . . ,m) from Ã+ and Ã− by using Eq. (10) and Eq. (11), respectively:

χ+
i =

n
∑

j=1

λjχ
+
ij , (37)

χ−
i =

n
∑

j=1

λjχ
−
ij . (38)

Step 4. Determine the relative closeness coefficient χi for each alternativeAi with respect

to the positive ideal solution Ã+:

χi =
χ+
i

χ+
i + χ−

i

for i = 1,2, . . . ,m. (39)

Step 5. Rank the alternatives according to the descending order of relative closeness co-

efficient values of alternatives and choose the best alternative.

Case 2b. Incompletely known attribute weights.

If the information about the attribute weights is incomplete, then we can follow the

same procedures discussed in Case 2a of Section 4. Then we determine the similarity

measure between ñij and Ã+
j as

s
(

ñij , Ã
+
j

)

= 1 −
d(ñij , Ã

+
j )

∑n
j=1 d(ñij , Ã

+
j )
, (40)
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where d(ñij , Ã
+
j ) (i = 1,2, . . . ,m) denotes the Hamming distance between ñij and Ã+

j .

Similarly, we obtain the similarity measure between ñij and Ã−
j as

s
(

ñij , Ã
−
j

)

= 1 −
d(ñij , Ã

−
j )

∑n
j=1 d(ñij , Ã

−
j )
, (41)

where d(ñij , Ã
−
j ) (i = 1,2, . . . ,m) denotes the Hamming distance between ñij to

Ã−
j . The weighted similarity measures of the alternative Ai (i = 1,2, . . . ,m) to Ã+ =

(Ã+
1 , Ã

+
2 , . . . , Ã

+
n ) and Ã− = (Ã−

1 , Ã
−
2 , . . . , Ã

−
n ) are determined as follows:

s+i =

n
∑

j=1

λj s
(

ñij , Ã
+
j

)

, i = 1,2, . . . ,m, (42)

s−i =

n
∑

j=1

λj s
(

ñij , Ã
−
j

)

, i = 1,2, . . . ,m. (43)

We find a suitable weight vector 3 = (λ1, λ2, . . . , λn) that makes all the similarities

(s+1 , s
+
2 , . . . , s

+
m) to ideal solution (Ã+

1 , Ã
+
2 , . . . , Ã

+
n ) as large as possible and the sim-

ilarities (s−1 , s
−
2 , . . . , s

−
m ) to ideal solution (Ã−

1 , Ã
−
2 , . . . , Ã

−
n ) as small as possible with

the condition 3 ∈ H . Therefore, we can set the following multiple objective non-linear

optimization model to determine the weight vector:

Model-5







max si(3)=

∑n
j=1 λj s(ñij ,Ã

+
j )

∑n
j=1 λj s(ñij ,Ã

+
j )+

∑n
j=1 λj s(ñij ,Ã

−
j )
, i = 1,2, . . . ,m,

subject to 3 ∈H.

(44)

Since each alternative is non-inferior, then we construct the following single objective

optimization model by aggregating the above multiple objective optimization models with

equal weights:

Model-6















max s(3)=
m
∑

i=1

si(3)=
m
∑

i=1

∑n
j=1 λj s(ñij ,Ã

+
j )

∑n
j=1 λj s(ñij ,Ã

+
j )+

∑n
j=1 λj s(ñij ,Ã

−
j )
,

subject to 3 ∈H,
n
∑

j=1

λj = 1, λj > 0, j = 1,2, . . . , n.
(45)

Solving the Model-6, we have the optimal solution3= (λ1, λ2, . . . , λn) that can be used

as the weight vector of the attributes. Then we follow Step 3 to Step 5 to determine an

optimal alternative.

Case 3b. Completely unknown attribute weights.
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In this case we develop the following non-linear programming model to determine the

attribute weights.

Model-7















max s+i (3)=
n
∑

j=1

λj s
(

ñij , Ã
+
j

)

, i = 1,2, . . . ,m;

subject to
n
∑

j=1

λ2
j = 1, wj > 0, j = 1,2, . . . , n.

(46)

Similarly, we can aggregate all above multiple objective optimization model:

Model-8















max s+(3)=
m
∑

i=1

s+i (3)=
m
∑

i=1

n
∑

j=1

λj s
(

ñij , Ã
+
j

)

,

subject to
n
∑

j=1

w2
j = 1, λj > 0, j = 1,2, . . . , n.

(47)

To solve the Model-4, we consider the following Lagrange function:

L(3,ψ)=

m
∑

i=1

n
∑

j=1

λj s
(

ñij , Ã
+
j

)

+
ψ

2

( n
∑

j=1

λ2
j − 1

)

, (48)

where the real number ψ is the Lagrange multiplier. Then differentiating partially L with

respect to λj and ψ , we have

∂L

∂λj
=

m
∑

i=1

s
(

ñij , Ã
+
j

)

+ψλj = 0, (49)

∂L

∂ψ
=

1

2

( n
∑

j=1

w2
j − 1

)

= 0. (50)

It follows from equation (49) that

λj =
−

∑m
i=1 s(ñij , Ã

+
j )

ψ
, i = 1,2, . . . ,m. (51)

Putting this value of λj in equation (50), we have

ψ = −

√

√

√

√

n
∑

j=1

( m
∑

i=1

s
(

ñij , Ã
+
j

)

)2

, (52)

where,ψ < 0 and

√

∑n
j=1

(∑m
i=1 s(ñij , Ã

+
j )

)2
implies the sum of similarities with respect

to the j -th attribute. Combining Eqs. (26) and (27), we obtain

λj =

∑m
i=1 s(ñij , Ã

+
j )

√

∑n
j=1

(
∑m
i=1 s(ñij , Ã

+
j )

)2
, j = 1,2, . . . , n. (53)



NH-MADM Strategy in NHFS Environment 229

Fig. 1. The schematic diagram of the proposed strategy.

To normalizeλj (j = 1,2, . . . , n), we make their sum into a unit and obtain the normalized

weight of the j -th attribute:

λ̄=
λj

∑n
j=1 λj

. (54)

Consequently, we obtain the weight vector of the attribute as 3̄= (λ̄1, λ̄2, . . . , λ̄n). With

this weight vector, we follow Step 3 to Step 5 to find out an optimal alternative.

We briefly present the steps of the proposed strategies in Fig. 1.
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Table 1

Single valued neutrosophic hesitant fuzzy decision matrix.

C1 C2 C3

A1 {{0.3,0.4,0.5}, {0.1}, {0.3,0.4}} {{0.5,0.6}, {0.2,0.3}, {0.3,0.4}} {{0.2,0.3}, {0.1,0.2}, {0.5,0.6}}

A2 {{0.6,0.7}, {0.1,0.2}, {0.2,0.3}} {{0.6,0.7}, {0.1}, {0.3}} {{0.6,0.7}, {0.1,0.2}, {0.1,0.2}}

A3 {{0.5,0.6}, {0.4}, {0.2,0.3}} {{0.6}, {0.3}, {0.4}} {{0.5,0.6}, {0.1}, {0.3}}

A4 {{0.7,0.8}, {0.1}, {0.1,0.2}} {{0.6,0.7}, {0.1}, {0.2}} {{0.3,0.5}, {0.2}, {0.1,0.2,0.3}}

6. Illustrative Examples

In this section, we consider two examples: one for MADM with single valued neutrosophic

hesitant fuzzy sets and other for MADM with interval neutrosophic hesitant fuzzy sets.

6.1. Example 1

We consider an example, adapted from Ye (2015b), to illustrate the applicability of the

extended GRA method for MADM with incomplete information. Assume that an invest-

ment company wants to invest a sum of money in the following four possible alternatives

(companies):

• the car company (A1),

• the food company (A2),

• the computer company (A3),

• the arms company (A4).

While making a decision, the company considers the following attributes:

• the risk analysis (C1),

• the growth analysis (C2),

• the environmental impact analysis (C3).

We assume that the rating values of the alternatives Ai (i = 1,2,3,4) are represented by

neutrosophic hesitant fuzzy decision matrixRij = (rij )4×3 (see Table 1). The information

of the attribute weights is incompletely known and the known weight information is given

as follows:

H =







0.306w1 6 0.40,0.206w2 6 0.30,0.356w3 6 0.45,

3
∑

j=1

wj = 1







. (55)

Step 1. Using Eqs. (6) and (9), we determine A+ and A− by the equations:

A+ =
[

A+
1 ,A

+
2 ,A

+
3

]

=

[

{{0.7,0.8}, {0.1}, {0.1,0.2}}, {{0.6,0.7}, {0.1}, {0.2}},

{{0.6,0.7}, {0.1,0.2}, {0.1,0.2}}

]

, (56)
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Table 2

Distance of alternatives from SVNHFPIS.

C1 C2 C3 minj di (j) maxj di (j)

d1(j) 0.1833 0.1333 0.2667 0.1333 0.2667

d2(j) 0.0833 0.0333 0.0000 0.0000 0.1833

d3(j) 0.2000 0.1500 0.1000 0.1000 0.2000

d4(j) 0.0000 0.0000 0.1167 0.0000 0.1167

minj minj di (j) 0.0000

maxj maxj di (j) 0.2667

Table 3

Distance of alternatives from SVNHFNIS.

C1 C2 C3 minj Di (j) maxj Di (j)

d1(j) 0.1833 0.0500 0.000 0.0000 0.1833

d2(j) 0.1167 0.1167 0.2667 0.1167 0.2667

d3(j) 0.0000 0.0000 0.2000 0.0000 0.2000

d4(j) 0.2000 0.1500 0.1833 0.1500 0.2000

minj minj di (j) 0.0000

maxj maxj di (j) 0.2667

A− =
[

A−
1 ,A

−
2 ,A

−
3

]

=

[

{{0.5,0.6}, {0.4}, {0.2,0.3}}, {{0.6}, {0.3}, {0.4}},

{{0.2,0.3}, {0.1,0.2}, {0.5,0.6}}

]

. (57)

Step 2. We assume di(j) as the deviation sequence of A+ and then the sequence of the

rating values of the alternative Ai is considered as follows:

di(j)=
{

d
(

A+
1 , r11

)

, d
(

A+
2 , r12

)

, d
(

A+
3 , r13

)}

for i = 1,2,3,4; j = 1,2,3. (58)

We calculate the deviation sequences of alternatives Ai (i = 1,2,3,4) from A+ in

Table 2.

Similarly, we obtain the deviation sequences of alternatives Ai (i = 1,2,3,4) from

A− in Table 3.

Using Eq. (10), we determine grey relational coefficient ξ+
ij (i = 1,2,3,4; j =

1,2,3) of each alternative from A+ as

ξ+
ij =









0.4210 0.5000 0.3332

0.6154 0.8001 1.0000

0.4000 0.4705 0.5714

1.0000 1.0000 0.5332









. (59)
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Similarly, following Eq. (11), we determine grey relational coefficient ξ−
ij of each

alternative from A−as

ξ−
ij =









0.4210 0.7272 1.0000

0.5332 0.5332 0.3332

1.0000 1.0000 0.4000

0.4000 0.4705 0.4210









. (60)

Before going to next Step for solving the problem, we consider the following two

cases:

Case a. Incompletely known attribute weights.

Step 3a. Using the model M-2 we present the following single-objective programming

model:











































max{ξ} =















0.6857w1+0.7715w2+0.5428w3
0.9000w1+1.57725w2+1.5428w3

0.2856w1+0.7145w2+1.0000w3
1.0522w1+1.48115w2+1.4667w3

0.5556w1+0.6667w2+0.7778w3
1.5556w1+1.66675w2+0.7778w3

1.0000w1+1.0000w2+0.0000w3
1.6250w1+1.71875w2+0.6563w3















,

subject to w ∈H,
n
∑

j=1

wj = 1, wj > 0, j = 1,2, . . . , n.

(61)

We obtain the optimal weight vectorw= (0.35,0.20,0.45) by solving Eq. (61) with

LINGO 13. Using Eqs. (12) and (13), we calculate the degree of grey relational

coefficient of each alternative from A+ and A−, respectively, as

ξ+
1 = 0.3973, ξ+

2 = 0.8260, ξ+
3 = 0.4912, ξ+

4 = 0.7902; (62)

ξ−
1 = 0.7428, ξ−

2 = 0.4437, ξ−
3 = 0.7300, ξ−

4 = 0.4235. (63)

Step 4a. Using Eq. (14), we determine the relative closeness coefficient ξi (i = 1,2,3,4)

for each alternative Ai (i = 1,2,3,4) as

ξ1 = 0.3484, ξ2 = 0.6508, ξ3 = 0.4022, ξ4 = 0.6510. (64)

Step 5a. According to the relative closeness coefficient of ξi (i = 1,2,3,4), the ranking

order of alternativesAi (i = 1,2,3,4) is ξ4 ≻ ξ2 ≻ ξ3 ≻ ξ1. The order indicates that

A4 is the best alternative.

Case b. Completely unknown attribute weights.
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Fig. 2. Pairwise comparison of each alternative.

Step 3b. Using Eqs. (28) and (29), we obtain the normalized weight vector of the attributes

as w = {0.3160,0.3940,0.2900}. The degree of grey relational coefficient of each

alternative from A+ and A− are

ξ+
1 = 0.4266, ξ+

2 = 0.5387, ξ+
3 = 0.4775, ξ+

4 = 0.8648; (65)

ξ−
1 = 0.7095, ξ−

2 = 0.4752, ξ−
3 = 0.8260, ξ−

4 = 0.4339. (66)

Step 4b. Using Eq. (14), we determine the relative closeness coefficient ξi (i = 1,2,3,4)

for each alternative Ai (i = 1,2,3,4) as

ξ1 = 0.3755, ξ2 = 0.5313, ξ3 = 0.3663, ξ4 = 0.6659. (67)

Step 5b. According to the relative closeness coefficient of ξi (i = 1,2,3,4), the ranking

order of alternatives is ξ4 ≻ ξ2 ≻ ξ3 ≻ ξ1. The order indicates that A4 is the best

alternative.

Pairwise comparison of relative closeness coefficient of each alternative is presented

in Fig. 2.

6.2. Example 2

In this section, we consider the same problem presented in Example 1, but we assume that

the rating values of the alternatives Ai (i = 1,2,3,4) are expressed by interval neutro-

sophic hesitant fuzzy sets. The decision matrix Uij = (uij )4×3 are presented in Table 4.
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Table 4

Interval neutrosophic hesitant fuzzy decision matrix.

C1 C2 C3

A1







{[0.3,0.4], [0.4,0.5]},

{[0.1,0.2]},

{[0.3,0.4]}













{[0.4,0.5], [0.5,0.6]},

{[0.2,0.3]},

{[0.3,0.3], [0.3,0.4]}













{[0.3,0.5]},

{[0.2,0.3]},

{[0.1,0.2], [0.3,0.3]}







A2







{[0.6,0.7]},

{[0.1,0.2]},

{[0.1,0.2], [0.2,0.3]}













{[0.6,0.7]},

{[0.1,0.1]},

{[0.2,0.3]}













{[0.6,0.7]},

{[0.1,0.2]},

{[0.1,0.2]}







A3







{[0.3,0.4], [0.5,0.6]},

{[0.2,0.4]},

{[0.2,0.3]}













{[0.6,0.7]},

{[0.0,0.1]},

{[0.2,0.2]}













{[0.5,0.6]},

{[0.1,0.2], [0.2,0.3]},

{[0.2,0.3]}







A4







{[0.7,0.8]},

{[0.0,0.1]},

{[0.1,0.2]}













{[0.5,0.6]},

{[0.2,0.3]},

{[0.3,0.4]}













{[0.2,0.3]},

{[0.1,0.2]},

{[0.4,0.5], [0.5,0.6]}







The information of the attribute weights is partially known and the known weight in-

formation is given as follows:

3=

{

0.30 6w1 6 0.40,0.206w2 6 0.30, 0.35 6w3 6 0.45,

3
∑

j=1

wj = 1

}

. (68)

We now consider the following steps to the problem.

Step 1. Similar to Example 1, we can determinepositive ideal solution Ã+ and the negative

ideal solution Ã− by Eq. (31) and Eq. (32), respectively:

Ã+ =
[

Ã+
1 , Ã

+
2 , Ã

+
3

]

=





{{[0.7,0.8]}, {[0.0,0.1]}, {[0.1,0.2]}},

{{[0.6,0.7]}, {[0.0,0.1]}, {[0.2,0.2]}},

{{[0.6,0.7]}, {[0.1,0.2]}, {[0.1,0.2]}}



 , (69)

Ã− =
[

Ã−
1 , Ã

−
2 , Ã

−
3

]

=





{{[0.3,0.4], [0.4,0.5]}, {[0.1,0.2]}, {[0.3,0.4]}},

{{[0.4,0.5], [0.5,0.6]}, {[0.2,0.3]}, {[0.3,0.3], [0.3,0.4]}},

{{[0.2,0.3]}, {[0.1,0.2]}, {[0.4,0.5], [0.5,0.6]}}



 . (70)

Step 2. The deviation sequences of alternatives from Ã+ and Ã− are presented Tables 5

and 6, respectively.

Using Eq. (35), we determine grey relational coefficient ξ+
ij (i = 1,2,3,4; j =

1,2,3) of each alternative from Ã+ as
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Table 5

Distance of alternatives from INHFPIS.

C1 C2 C3 minj di (j) maxj di (j)

d1(j) 0.2167 0.1583 0.1417 0.1417 0.2500

d2(j) 0.0833 0.0333 0.0000 0.0000 0.0833

d3(j) 0.2167 0.0000 0.0833 0.0000 0.2167

d4(j) 0.0000 0.1500 0.2500 0.0000 0.1417

minj minj di (j) 0.0000

maxj maxj di (j) 0.2500

Table 6

Distance of alternatives from INHFNIS.

C1 C2 C3 min
j
di (j) max

j
di (j)

d1(j) 0.0000 0.0000 0.1750 0.0000 0.1750

d2(j) 0.1333 0.1250 0.2500 0.1250 0.2500

d3(j) 0.1000 0.1583 0.2000 0.1000 0.2000

d4(j) 0.2167 0.0250 0.0000 0.0000 0.2167

minj minj di (j) 0.0000

maxj maxj di (j) 0.2500

χ+
ij =









0.3611 0.4363 0.4637

0.5952 0.7863 1.0000

0.3611 1.0000 0.5952

1.0000 0.4495 0.3288









. (71)

Similarly, we calculate grey relational coefficient χ+
ij of each alternative from Ã−

by using Eq. (36) as

χ−
ij =









1.0000 1.0000 0.4118

0.4789 0.4949 0.3288

0.1091 0.4362 0.3798

0.3611 0.8305 1.0000









. (72)

Case A. Incompletely known attribute weights.

Step 3A. Following the model M-4, we obtain the single-objective programming model:











































max{χ} =















0.5806w1+0.6936w2+0.7258w3
1.5806w1+1.69365w2+0.7258w3

0.2856w1+0.7144w2+w3

1.0233w1+1.46855w2+1.5080w3

0.2777w1+w2+0.7233w3

1.5905w1+1.65465w2+1.2859w3

w1+0.6250w2+0.3750w3
1.1034w1+1.52165w2+1.3750w3















,

subject to w ∈H,
n
∑

j=1

wj = 1, wj > 0, j = 1,2, . . . , n.

(73)
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Solving Eq. (73), we obtain the optimal weight vectorw = (0.30,0.25,0.45). Using

Eq. (37) and Eq. (38), we get the degree of grey relational coefficient of each alterna-

tive from neutrosophic hesitant fuzzy PIS A+ and neutrosophic hesitant fuzzy NIS

A−, respectively:

χ+
1 = 0.4261, χ+

2 = 0.8251, χ+
3 = 0.6261, χ+

4 = 0.5602; (74)

χ−
1 = 0.7353, χ−

2 = 0.4153, χ−
3 = 0.3127, χ−

4 = 0.7660. (75)

Step 4A. Using Eq. (39), we calculate the relative closeness coefficient χi (i = 1,2,3,4)

for each alternative Ai (i = 1,2,3,4) with respect to INHFPIS as

χ1 = 0.3755, χ2 = 0.6275, χ3 = 0.6669, χ4 = 0.4224. (76)

Step 5A. We obtain the ranking order of alternatives Ai (i = 1,2,3,4) according to the

relative closeness coefficient of χi (i = 1,2,3,4) as

χ3 ≻ χ2 ≻ χ4 ≻ χ1.

The ranking order indicates that A3 is the best alternative.

Case B. Completely unknown attribute weights.

Step 3B. Using Eq. (53) and Eq. (54), we obtain the normalized weight vector of the

attributes as3= {0.2680,0.3791,0.3529}.The degree of grey relational coefficient

of each alternative from A+ and A− are

χ+
1 = 0.4258, χ+

2 = 0.8105, χ+
3 = 0.6859, χ+

4 = 0.5544; (77)

χ−
1 = 0.7924, χ−

2 = 0.4339, χ−
3 = 0.3286, χ−

4 = 0.7645. (78)

Step 4B. We determine the relative closeness coefficient χi (i = 1,2,3,4) for each alter-

native Ai (i = 1,2,3,4) by using Eq. (14) as

χ1 = 0.3495, χ2 = 0.6513, χ3 = 0.6761, χ4 = 0.4203. (79)

Step 5B. According to the relative closeness coefficient of χi (i = 1,2,3,4), the ranking

order of alternatives is χ3 ≻ χ2 ≻ χ4 ≻ χ1. The order indicates that A3 is the best

alternative.

Following Case A and Case B, we compare relative closeness coefficient of each

alternative pairwise in Fig. 3.
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Fig. 3. Pairwise comparison of each alternative.

6.3. Advantages of the Proposed Strategy

We now point out the advantages of our proposed strategy compared with the other ex-

isting strategies. First, we compare our proposed strategy with the Ye’s strategy (Ye,

2015b). We have considered the same MADM problem under SVNHF environment

and obtained similar ranking result. The strategy (Ye, 2015b) considers two aggre-

gation operators to solve MADM problem with known weight information of the at-

tributes. Similarly, the strategies (Liu et al., 2016; Peng et al., 2015; Wang and Li, 2018;

Li and Zhang, 2018) offer aggregation operator to solve MADM under SVNFS environ-

ment. All these strategies are suitable when the weight information of attributes is known

in advance. Then we consider Liu and Shi’s strategy (Liu and Shi, 2015) which deals

with two aggregation operator for solving MAGDM under INHFS environment, where

the weights of attributes are completely known. On the other hand, our proposed strate-

gies are comprehensive: they cover all the three cases, namely completely known, incom-

pletely known, and completely unknown weight information of attributes. Therefore, our

proposed approaches have a clear advantage over the existing strategy.

The main advantages of the paper are presented as follows:

1. The proposed strategy is more convenient as the preference values of the alternatives

are considered by either SVNHFSs or INHFSs.

2. The proposed strategy is flexible because it can give the decision makers more

choices for choosing the importance of attribute weights.

3. The proposed strategy is presented in a logical way to make it simple and under-

standable.

4. The proposed strategy does not consider any complex aggregation operators, it only

considers relative closeness coefficient obtained from GRA to rank the alternatives.

5. There is no information loss occurred in the proposed strategy due to transformation

of neutrosophic hesitant fuzzy set based attribute values into crisp value or interval.
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7. Concluding Remarks

Neutrosophic hesitant fuzzy set is a powerful mathematical tool for dealing with impre-

cise, indeterminate, and incomplete information existing in real MADM process. In this

paper, we have extended grey relational analysis strategy for solving MADM in single-

valued neutrosophic hesitant fuzzy environment. We have developed an optimization

model to determine the weights of attributes, in which the weight information is incom-

pletely known. We have also developed another model for determining attributes’ weights

where the information is completely unknown. Then we have ranked the alternative, based

on the proposed NH-MADM strategy. Further, we have extended the NH-MADM strate-

gies to interval neutrosophic hesitant fuzzy environment. Finally, we have provided two

illustrative examples, one for the case of SVNHFSs and other, for the case of IVNHFSs to

show the validity and effectiveness of the proposed strategies. We hope that the proposed

strategies can be applied in many real applications, where the information is neutrosophic

hesitant in nature.

Acknowledgement. The authors are very grateful to the Editor-in-Chief, Prof. G. Dze-
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