
INFORMATICA, 2019, Vol. 30, No. 2, 293–325 293
 2019 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2019.207

Application of Interval Neutrosophic Power Hamy

Mean Operators in MAGDM

Peide LIU1∗, Qaisar KHAN2, Tahir MAHMOOD2

1School of Management Science and Engineering,

Shandong University of Finance and Economics, Jinan Shandong 250014, China
2Department of Mathematics and Statistic, International Islamic University, Islamabad, Pakistan

e-mail: peide.liu@gmail.com, qaisarkhan421@gmail.com, tahirbakhat@iiu.edu.pk

Received: August 2018; accepted: January 2019

Abstract. The Hamy mean (HM) operator, as a convenient mathematical aggregation tool, can deal

with the interrelationship among multiple input parameters, and the power average (PA) operator

can relieve the influence of awkward assessment values in the decision consequences. The interval

neutrosophic sets (INSs) are a more powerful mathematical tool to handle insufficient, indeterminate

and vague information that exists in real life problems. Yet, in some complicated decision-making

situations, we require to consider the correlation between multi-input arguments and remove the

influence of awkward data at the same time. To deal with such situations, in this paper, we combine

the conventional HM operator to the traditional PA operator in interval neutrosophic settings and

present two novel interval neutrosophic aggregation operators, that is, the interval neutrosophic

power Hamy mean (INPHM) operator and the weighted interval neutrosophic power Hamy mean

(WINPHM) operators. Then, some preferable properties of the developed aggregation operators are

discussed. Moreover, based on these developed aggregation operators, we propose a new method

for multiple attribute group decision making (MAGDM) under the INSs. Lastly, some examples

are given to show the effectiveness of the developed method by comparing it with other existing

methods.

Key words: interval neutrosophic sets, Hamy mean operators, power average operators, MAGDM.

1. Introduction

In our day-to-day life, MAGDM or multi-attribute decision making (MADM) problems

are very usual, and they have attracted many researchers’ concentrations. MAGDM is

a procedure of ranking alternatives and selecting the most preferable alternative from a

possible set of alternatives supervised by a group of decision makers (DMs) based on the

evaluations of prominent and discarding attributes, quantitative and qualitative (Cabrerizo

et al., 2017). In conventional MAGDM, all decision data are known exactly or given in

crisp values. Because of the complication of decision making, it is hard for decision mak-

ers (DMs) to define information in exact numbers. In MADM or MAGDM problems, in

order to define the fuzzy properties of distinct attributes in a better way, Zadeh (1965) de-

veloped the concept of fuzzy sets (FSs). In FSs there was only truth-membership degree
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(TMD) and the falsity-membership degree (FMD) couldn’t be defined. FSs were further

extended by Atanassov (1986), and the concept of intuitionistic FSs (IFSs) was devel-

oped, which could solve this flaw very effectively. Because IFSs contained both TMD

and FMD, they were extensively used to manifest the attribute values of the MADM

and MAGDM problems since they were developed. However, FS and IFS can only deal

with incomplete information, but cannot deal with vague and inconsistent information

which occurs frequently in belief system. Therefore, in order to deal with such situation,

Smarandache (1998, 1999) initially developed the concept of neutrosophic set (NS) by

including an unconventional indeterminacy-membership degree (IMD) on the basis of

IFS which means that the DMs explained their perception on an object by the use of

TMD, IMD and FMD. However, because the concept of NSs was based on philosophical

point of view and it contained the subsets of non-standard unit interval, it was compli-

cated to use in real life and engineering problems. So in order to use NSs more easily,

some researchers proposed various subclasses of NSs such as single valued neutrosophic

sets (SVNSs) (Wang et al., 2010), interval neutrosophic sets (INSs) (Wang et al., 2005;

Zhang et al., 2014), simplified neutrosophic sets (SNSs) (Peng et al., 2016; Ye, 2014), and

so on. Further, Garg (2016) developed improved score function for NSs. Peng et al. (2014),

Zhang et al. (2016), respectively, developed some improved operational laws, outrank-

ing relations for SNSs, INS and applied them to MADM. Bausys et al. (2015) extended

conventional COPRAS method to deal with SVN information. Some other traditional

methods such as MULTIMOORA (Stanujkic et al., 2017), WASPAS (Nie et al., 2017;

Zavadskas et al., 2015), MAMVA (Zavadskas et al., 2017) and TODIM (Ji et al., 2018a)

were extended to neutrosophic environment and applied in various areas. Recently, Feng

et al. (2018) developed DEMATEL and ELECTRE III to deal with IN information. Huang

et al. (2017) proposed VIKOR method for INSs and applied them to MAGDM problem.

Several studies have been conducted for MAGDM problems and developed different mod-

els: Dong et al. (2016, 2018) proposed self management mechanism for non-cooperative

behaviour in large scale group consensus reaching process to decrease the assessments

values of decision makers with non-cooperative behaviour and investigated how to rec-

ognize and handle a series of non-cooperative behaviours in GDM consensus reaching

procedures from different perspectives. Capuano et al. (2018) introduced a model which

indicates the impact navigated between the development of experts’ opinions and its con-

vergence properties. Urena et al. (2019) proposed a mechanism to generate and propagate

trust and reputation in social networks. Morente-Molinera et al. (2019) proposed a novel

method which is capable of extracting collective knowledge of users’ opinions and to

express it in fuzzy ontology.

As one of the necessary tools for MAGDM or MADM, the information aggrega-

tion operators (AOs) have gained much more concentration from researchers and a lot of

research achievements were made. The main goal of the AOs is to aggregate a sequence

of input arguments into one (Xu, 2007; Xu and Yager, 2006). In general, AOs can include

some particular functions. For example, PA operator, initially proposed by Yager (2001),

which can eliminate the effect of awkward assessment values given by DMs by their own

personal preferences. PA operators were further extended by many authors such as Xu
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(2011) who extended the PA operator to handle the information of IFS (IFPA), He et al.

(2013) proposed the generalized PA operators for interval-valued IFS and applied them

to MAGDM, Zhang et al. (2015) proposed Frank IFPA operators, Liu and Liu (2014),

Liu and Tang (2016) proposed intuitionistic trapezoidal fuzzy power generalized AOs

and power generalized AOs for INSs and applied them to MADM. Some AOs can only

consider interrelationship between the input arguments such as Bonferroni mean (BM),

Heronian mean, Maclaurin symmetric mean (MSM) operators. All these AOs were further

extended by many researchers, such as Xu and Yager (2011) who proposed BM operator

for IFS (IFBM), Yu (2015) introduced triangular Atanassov IFBM operator and applied

it to supplier selection, Liu and Wang (2014) presented the concept of SVN normalized

weighted BM operators, Ji et al. (2018b) proposed BM operator for INNs. Similar to BM,

Heronian mean was also extended to deal with various types of information (Li et al., 2016;

Liu and Chen, 2017; Yu and Wu, 2012). To take combined advantage of PA, BM and

Heronian mean operators, some hybrid structure such as combining PA operator with BM

operator, and PA operator with HM operator is also proposed (He et al., 2015a; Liu, 2017;

He et al., 2015b; Liu and Li, 2017). All the above AOs can only reflect the influence of

awkward data or consider the interrelationship between two input arguments or both at

the same time but cannot consider the interrelationship among multi-input arguments. The

MSM proposed by Maclaurin (1729) has the property that it can consider the interrelation-

ship among the multi-input arguments. In recent years some researchers extended MSM

operator to deal with various environment (Liu and Gao, 2018; Liu and Zhang, 2018;

Qin and Liu, 2014; Wei and Lu, 2018; Wu et al., 2018). Liu and You (2017) extended

Muirhead operators, which can also consider the interrelationship among the multi-input

argument, to INS information and applied them to solve MADM problems. Recently, Liu

et al. (2018) proposed the concept of power MSM for interval-valued IFSs and applied it

in MAGDM, which can relieve the influence of the awkward data and can consider the

interrelationship among multiple arguments at the same time. Obviously, they can only

deal with interval-valued IFSs.

Hamy mean (HM) operator was first proposed by Hara et al. (1998), which has the

property that it can consider the interrelation among multiple parameters by modifying

the parameters values and it is a generalization of MSM and Muirhead operators. After

that, HM operator was further extended by Qin (2017) to deal with interval type-2 fuzzy

information. Liu and You (2018), Wu et al. (2018) further extended HM operators to

deal with linguistic neutrosophic and 2-tuple linguistic neutrosophic information respec-

tively. From the existing literature, there is no such AO to deal with the information of

INSs, which has the capacity that it can diminish the influence of the awkward data and

can consider the interrelationship among multiple arguments at the same time. Therefore,

it is necessary to develop some new AOs by combining the ordinary PA operator with

HM operator to deal with the information of INSs. These new AOs have four advantages.

Firstly, they are better to deal with uncertain information by defining TMD, IMD and FMD

from interval neutrosophic numbers (INNs). Secondly, they can relieve the influence of

the awkward data given by biased DMs. Thirdly, they can consider the interrelationship

among multiple arguments. Lastly, they are more flexible than the other AOs by modifying

the parameter values. Hence, in this article, we will attain the following aims:
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1. Develop interval neutrosophic power HM (INPHM) operators and weighted

INPHM operator.

2. Discuss properties and specific cases of these proposed AOs.

3. Propose an MAGDM approach based on the proposed AOs.

4. Express the effectiveness and practicality of the proposed approach.

To do so, the rest of this article is organized as follows. In Section 2, we initiated some

basic ideas of INSs, PA operators, HM operators, consisting definitions, operational rules,

distance measures, properties, score and accuracy functions. In Section 3, we propose

INPHM operators by combining PA operator and HM operator, and also propose it in

weighted form. Further we discuss some properties and special cases of the proposed

AOs. In Section 4, we develop a MAGDM approach based on these AOs. In Section 5,

we solve two numerical examples to show the validity and advantages of the proposed

approach by comparing it with other existing methods.

2. Preliminaries

In this section, we briefly review some basic concepts about INSs, HM operators and PA

operators.

2.1. INSs and their operations

Definition 1. (See Smarandache, 1998, 1999.) Let2 be a space of points (objects), with

a non-specific component in 2 expressed by κ . A NS ÑE in 2 is expressed by

ÑE =
{〈
κ, ξÑE(κ),ψÑE(κ), ζÑE(κ)

〉 ∣∣κ ∈2
}
, (1)

where ξÑE(κ), ψÑE(κ) and ζÑE(κ), respectively, express the TMD, IMD and FMD of the

element κ ∈2 to the set ÑE. For every point κ ∈2, we have ξÑE(κ),ψÑE(κ), ζÑE(κ) ∈

]0−,1+[, and 0
− 6 ξÑE(κ)+ψÑE(κ)+ ζÑE(κ)6 3

+.

The NS was predominantly presented from a philosophical point of view, and is diffi-

cult to apply in real life or engineeringproblems due to the containment of non-standard in-

tervals. Then, Wang et al. (2010) presented a subclass of NS by changing the non-standard

unit interval to standard unit interval, and named it SVNS. The definition of SVNS is given

below:

Definition 2. (See Wang et al., 2010.) Let2 be a space of points (objects), with a com-

mon component in 2 denoted by η. A SVNS S̃N in 2 is expressed by,

S̃N =
{〈
η, ξS̃N (η),ψS̃N(η), ζS̃N(η)

〉 ∣∣η ∈2
}
, (2)

where ξS̃N (η),ψS̃N (η) and ζS̃N(η), respectively, denote the TMD, IMD and FMD of the

element η ∈ 2 to the set S̃N . For each point η ∈ 2, we have ξS̃N (η),ψS̃N(η), ζS̃N(η) ∈

[0,1], and 0 6 ξS̃N (η)+ψS̃N (η)+ ζS̃N(η)6 3.
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In order to define more complex information, Wang et al. (2005) further presented the

concept of INS, shown as follows:

Definition 3. (See Wang et al., 2005.) Let 2 be a space of points (objects), with a com-

mon component in 2 denoted by u. A INS ℜ in 2 is expressed by,

M̄ =
{〈
u,
[
ξL
M̄
(u), ξU

M̄
(u)
]
,
[
ψL
M̄
(u),ψU

M̄
(u)
]
,
[
ζL
M̄
(u), ζU

M̄
(u)
]〉 ∣∣u ∈2

}
, (3)

where [ξL
M̄
(u), ξU

M̄
(u)], [ψL

M̄
(u),ψU

M̄
(u)] and [ζL

M̄
(u), ζU

M̄
(u)], respectively, express the in-

terval TMD (ITMD), interval IMD (IIMD) and interval FMD (IFMD) of the element

u ∈ 2 to the set M̄ . For every point u ∈ 2, we have [ξL
M̄
(u), ξU

M̄
(u)], [ψL

M̄
(u),ψU

M̄
(u)],

[ζL
M̄
(u), ζU

M̄
(u)] ⊆ [0,1] and 0 6 ξUℜ (u)+ψUℜ (u)+ ζUℜ (u)6 3.

For computational simplicity, to express an element u in an INS, we can use ℜ =

〈[ξL, ξU ], [ψL,ψU ], [ζL, ζU ]〉, and the element u is called an interval neutrosophic

number (INN). Where [ξL, ξU ] ⊆ [0,1], [ψL,ψU ] ⊆ [0,1], [ζL, ζU ] ⊆ [0,1] and 0 6

ξU +ψU + ζU 6 3.

Definition 4. (See Zhang et al., 2014.) Let ℜ1 = 〈[ξL
1
, ξU

1
], [ψL

1
,ψU

1
], [ζL

1
, ζU

1
]〉 and

ℜ2 = 〈[ξL
2
, ξU

2
], [ψL

2
,ψU

2
], [ζL

2
, ζU

2
]〉 be any two INNs, and δ > 0. Then, the operational

laws of INNs can be defined as follows:

(1) ℜ1 ⊕ ℜ2 =
〈[
ξL

1
+ ξL

2
− ξL

1
ξL

2
, ξU

1
+ ξU

2
− ξU

1
ξU

2

]
,
[
ψL

1
ψL

2
,ψU

1
ψU

2

]
,

[
ζL

1
ζL

2
, ζU

1
ζU

2

]〉
; (4)

(2) ℜ1 ⊗ ℜ2 =
〈[
ξL

1
ξL

2
, ξU

1
ξU

2

]
,
[
ψL

1
+ψL

2
−ψL

1
ψL

2
,ψU

1
+ψU

2
−ψU

1
ψU

2

]
,

[
ζL

1
+ ζL

2
− ζL

1
ζL

2
, ζU

1
+ ζU

2
− ζU

1
ζU

2

]〉
; (5)

(3) ℜδ
1

=
〈[(
ξL

1

)δ
,
(
ξU

1

)δ]
,
[
1 −

(
1 −ψL

1

)δ
,1 −

(
1 −ψU

1

)δ]
,

[
1 −

(
1 − ζL

1

)δ
,1 −

(
1 − ζU

1

)δ]〉
; (6)

(4) δℜ1 =
〈[

1 −
(
1 − ξL

1

)δ
,1 −

(
1 − ξU

1

)δ]
,
[(
ψL

1

)δ
,
(
ψU

1

)δ]
,
[(
ζL

1

)δ
,
(
ζU

1

)δ]〉
. (7)

Definition 5. (See Liu and You, 2017.) Let ℜ = 〈[ξL, ξU ], [ψL,ψU ], [ζL, ζU ]〉 be an

INN. Then the score function S̃C(ℜ) and accuracy function ÃC(ℜ) can be defined as

follows:

(1) S̃C(ℜ)=
ξL + ξU

2
+ 1 −

ψL +ψU

2
+ 1 −

ζL + ζU

2
; (8)

(2) ÃC(ℜ)=
ξL + ξU

2
+
ζL + ζU

2
. (9)

For comparing two INNs, the comparison rules were defined by Liu and You (2017),

which can be stated as follows.
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Definition 6. (See Liu and You, 2017.) Let ℜ1 = 〈[ξL
1
, ξU

1
], [ψL

1
,ψU

1
], [ζL

1
, ζU

1
]〉 and

ℜ2 = 〈[ξL
2
, ξU

2
], [ψL

2
,ψU

2
], [ζL

2
, ζU

2
]〉 be any two INNs. Then, we have

(1) If S̃C(ℜ1) > S̃C(ℜ2), then ℜ1 is better than ℜ2, and denoted by ℜ1 >ℜ2;

(2) If S̃C(ℜ1) = S̃C(ℜ2), and ÃC(ℜ1) > ÃC(ℜ2), then ℜ1 is better than ℜ2, and

denoted by ℜ1 >ℜ2;

(3) If S̃C(ℜ1) = S̃C(ℜ2), and ÃC(ℜ1) = ÃC(ℜ2), then ℜ1is equal to ℜ2, and de-

noted by ℜ1 = ℜ2.

Definition 7. (See Liu and Tang, 2016.) Let ℜ1 = 〈[ξL
1
, ξU

1
], [ψL

1
,ψU

1
], [ζL

1
, ζU

1
]〉 and

ℜ2 = 〈[ξL
2
, ξU

2
], [ψL

2
,ψU

2
], [ζL

2
, ζU

2
]〉 be any two INNs. Then the normalized Hamming

distance between ℜ1 and ℜ2 is defined as follows:

D̃S(ℜ1,ℜ2) =
1

6

(∣∣ξL
1

− ξL
2

∣∣+
∣∣ξU

1
− ξU

2

∣∣+
∣∣ψL

1
−ψL

2

∣∣+
∣∣ψU

1
−ψU

2

∣∣+
∣∣ζL

1
− ζL

2

∣∣

+
∣∣ζU

1
− ζU

2

∣∣). (10)

2.2. The HM Operator

Definition 8. (See Hara et al., 1998.) The HM operator is described as follows:

HM(k)(ℵ1,ℵ2, . . . ,ℵz)=

∑
16i1<i2<···<ik6z

(
∏z
j=1

ℵij )
1

k

Ckz
, (11)

where k (1,2, . . . , z) is a parameter and i1, i2, . . . , ik are k integer values taken from the

set of {1,2, . . . , z} of z integer values, Ckz expresses the binomial co-efficient and Ckz =
z!

k!(z−k)!
.

The HM operator has the following properties, which are described below:

(1) When ℵi = ℵ (i = 1,2, . . . , z), then HM(k)(ℵ1,ℵ2, . . . ,ℵz)= ℵ;

(2) When ℵi 6 ℑi (i = 1,2, . . . , z), then HM(k)(ℵ1,ℵ2, . . . ,ℵz) 6 HM(k)(ℑ1,ℑ2,

. . . ,ℑz);

(3) mini ℵi 6 HM(k)(ℵ1,ℵ2, . . . ,ℵz)6 maxℵi (i = 1,2, . . . , z).

The HM operator has two specific cases, which are defined below:

(1) When k = 1, HM1(ℵ1,ℵ2, . . . ,ℵz) = 1

k

∑z
i=1

ℵi , the HM operator degenerates

into arithmetic mean operator.

(2) When k = z, HM(z)(ℵ1,ℵ2, . . . ,ℵz)= (
∏z
i=1

ℵi)
1

k , the HM operator degenerates

into geometric mean operator.

2.3. The PA Operator

Definition 9. (See Yager, 2001.) Let {ℵ1,ℵ2, . . . ,ℵz} be a set of positive real numbers.

A PA operator is described as follows:

PA(ℵ1,ℵ2, . . . ,ℵz)=

∑z
i=1
(1 + T (ℵi))ℵi∑z

i=1
(1 + T (ℵi))

, (12)
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where T (ℵi)=
∑z

i=1

j 6=i

Supp(ℵi,ℵj ), and Supp(ℵi,ℵj ) is the support degree for ℵi from

ℵj satisfying the following axioms:

(1) Supp(ℵ1,ℵj ) ∈ [0,1];

(2) Supp(ℵi,ℵj )= Supp(ℵj ,ℵi);

(3) Supp(ℵi,ℵj )> Supp(ℵp,ℵq), if |(ℵi,ℵj )|< |(ℵp,ℵq)|.

3. Interval Neutrosophic Power Hamy Mean Aggregation Operators

Definition 10. Let ℜi = 〈[ξLi , ξ
U
i ], [ψLi ,ψ

U
i ], [ζLi , ζ

U
i ]〉 (i = 1,2, . . . ,m) be a group

of INNs, and the parameter k = 1,2, . . . ,m. Then an interval neutrosophic power HM

aggregation operator is a function INPHM :2m →2 defined as follows.

INPHM(k)(ℜ1,ℜ2, . . . ,ℜm)=

∑
16i1<i2<···<ik6m

(
∏k
j=1

m(1+T (ℜij ))ℜij∑m
z=1

(1+T (ℜz))
)

1

k

(
m
k

) , (13)

where 2 is the set of all INNs, and 4z =
(1+T (ℜz))∑n
z=1

(1+T (ℜz))
, and

∑n
z=1

4k = 1. T (ℜj ) =
∑n

z=1

z 6=j

Supp(ℜz,ℜj )is the support degree for ℜz from ℜj , which satisfies the following

properties:

(1) Supp(ℜz,ℜj ) ∈ [0,1],

(2) Supp(ℜz,ℜj )= Supp(ℜj ,ℜz),

(3) if D̃(ℜz,ℜj )6 D̃(ℜx,ℜy), then Supp(ℜz,ℜj )> Supp(ℜx,ℜy), where d̃(ℜz,ℜj )

represent the distance measure between any two INNs defined in Definition 7.

(i1, i2, . . . , ik) traverse all the k-tuple combinations of (1,2, . . . ,m). The denom-

inator
(
n
k

)
in the above equation (13) represents the binomial coefficient m!

k!(m−k)!

and m is the balancing coefficient.

In order to write equation (13) in a simple form, we can define

4z =
(1 + T (ℜz))∑n
z=1
(1 + T (ℜz))

, (14)

then we call (41,42, . . . ,4n) the power weight vector. Therefore, equation (13) can be

written in a simplified form as follows:

INPHM(k)(ℜ1,ℜ2, . . . ,ℜm)=

∑
16i1<i2<···<ik6m

(
∏k
j=1

m4ijℜij )
1

k

(
m
k

) . (15)

Theorem 1. Let ℜi = 〈[ξLi , ξ
U
i ], [ψLi ,ψ

U
i ], [ζLi , ζ

U
i ]〉 (i = 1,2, . . . ,m) be a group of

INNs, and the parameter k = 1,2, . . . ,m. Then the value aggregated utilizing equation
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(15) is still an INN, and

INPHM(k)(ℜ1,ℜ2, . . . ,ℜm)

=

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k
)) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)
)

1

(nk)

]〉
. (16)

Proof. Based on the operational rules for INNs, we have

m4ijℜij =
〈[

1 −
(
1 − ξLij

)m4ij ,1 −
(
1 − ξUij

)m4ij ],
[(
ψLij

)m4ij ,
(
ψUij

)m4ij ],
[(
ζLij

)m4ij ,
(
ζUij

)m4ij ]〉,

and,

k∏

j=1

m4ijℜij =

〈[
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij ),
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
]
,

[
1 −

k∏

j=1

(
1 −

(
ψLij

)m4ij ),1 −

k∏

j=1

(
1 −

(
ψUij

)m4ij )
]
,

[
1 −

k∏

j=1

(
1 −

(
ζLij

)m4ij ),1 −

k∏

j=1

(
1 −

(
ζUij

)m4ij )
]〉
.
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So,

(
k∏

j=1

m4ijℜij

) 1

k

=

〈[(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k

,

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
]
,

[
1 −

(
k∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

k

,1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
]
,

[
1 − (

k∏

j=1

(
1 −

(
ζLij

)m4ij )) 1

k ,1 −

(
k∏

j=1

(
1 −

(
ζUij

)m4ij )
) 1

k
]〉
.

Then,

∑

16i1<i2<···<ik6m

(
k∏

j=1

m4ijℜij

) 1

k

=

〈[
1 −

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k
)
,

1 −
∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
)]
,

[ ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

k
)
,

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
)]
,

[ ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)
,

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)]〉

.
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Hence,

∑
16i1<i2<···<ik6m

(
∏k
j=1

m4ijℜij )
1

k

(
n
k

)

=

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k
)) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(1 − (

k∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

k )

) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)
]〉
.

Therefore,

INPHM(k)(ℜ1,ℜ2, . . . ,ℜm)

=

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k
)) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
)) 1

(nk)
]
,
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[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)
]〉
. �

Now, we shall discuss some basic properties of INPHM operator, which are stated

below:

Theorem 2 (Idempotency). If all ℜi = ℜ = 〈[ξL, ξU ], [ψL,ψU ], [ζL, ζU ]〉 for (i =

1,2, . . . ,m), then

INPHM(k)(ℜ,ℜ, . . . ,ℜ)= ℜ. (17)

Proof. Since all ℜi = ℜ = 〈[ξL, ξU ], [ψL,ψU ], [ζL, ζU ]〉 for (i = 1,2, . . . ,m), then

m4ij =
m(1+T (ℜij ))∑m
z=1

(1+T (ℜz))
= 1.

So, according to Theorem 1, we have

INPHM(k)(ℜ,ℜ, . . . ,ℜ

=

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

((
ξL
)k) 1

k
)
) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

((
ξU
)k) 1

k
)
) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

((
1 −ψL

)k) 1

k
)
) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

((
1 −ψU

)k) 1

k
)
) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

((
1 − ζL

)k) 1

k
)
) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

((
1 − ζU

)k) 1

k
)
) 1

(nk)
]〉
,
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=
〈[

1 −
((

1 − ξL
) 1

(nk)
) 1

(nk) ,1 −
((

1 − ξU
) 1

(nk)
) 1

(nk)
]
,
[((

1 − (1 −ψL)
) 1

(nk)
) 1

(nk) ,

((
1 − (1 −ψU )

) 1

(nk)
) 1

(nk)
]
,
[((

1 − (1 − ζL)
) 1

(nk)
) 1

(nk) ,
((

1 − (1 − ζU )
) 1

(nk)
) 1

(nk)
]〉

=
〈[

1 −
(
1 − ξL

)
,1 −

(
1 − ξU

)]
,
[(

1 −
(
1 −ψL

))
,
(
1 −

(
1 −ψU

))]
,

[(
1 −

(
1 − ζL

))
,
(
1 −

(
1 − ζU

))]〉
=
〈[
ξL, ξU

]
,
[
ψL,ψU

]
,
[
ζL, ζU

]〉
. �

Theorem 3 (Commutativity). Let ℜi (i = 1,2, . . . , n) be a group of INNs, and ℜ̃i be

any permutation of ℜi . Then

INPHM(k)(ℜ1,ℜ2, . . . ,ℜm)= INPHM(k)(ℜ̃1, ℜ̃2, . . . , ℜ̃m). (18)

Proof. Since (ℜ̃1, ℜ̃2, . . . , ℜ̃m) is any permutation of (ℜ1,ℜ2, . . . ,ℜm), therefore, ac-

cording to Definition 10, it is obvious that

INPHM(k)(ℜ̃1, ℜ̃2, . . . , ℜ̃m) =

∑
16i1<i2<···<ik6m

(∏k
j=1

m(1+T (ℜ̃ij ))ℜ̃ij∑m
z=1

(1+T (ℜ̃z))

) 1

k

(
m
k

)

=

∑
16i1<i2<···<ik6m

(∏k
j=1

m(1+T (ℜij ))ℜij∑m
z=1

(1+T (ℜz))

) 1

k

(
m
k

)

= INPHM(k)(ℜ1,ℜ2, . . . ,ℜm). �

Theorem 4 (Boundedness). Let ℜi (i = 1,2, . . . , n) be a group of INNs, and ℜ− =

min(ℜ1,ℜ2, . . . ,ℜm)= 〈[ξL, ξU ], [ψL,ψU ], [ζL, ζU ]〉,ℜ+ = max(ℜ1,ℜ2, . . . ,ℜm)=

〈[̃ξL, ξ̃U ], [ψ̃L, ψ̃U ], [̃ζL, ζ̃U ]〉. Then, the INPHM operator lies:

ℜ− 6 INPHM(ℜ1,ℜ2, . . . ,ℜm)6 ℜ+. (19)

Proof. Since

m4ijℜij =
〈[

1 −
(
1 − ξLij

)m4ij ,1 −
(
1 − ξUij

)m4ij ],
[(
ψLij

)m4ij ,
(
ψUij

)m4ij ],
[(
ζLij

)m4ij ,
(
ζUij

)m4ij ]〉

>
〈[

1 −
(
1 − ξL

)m4ij ,1 −
(
1 − ξU

)m4ij ],
[(
ψL
)m4ij ,

(
ψU

)m4ij ],
[(
ζL
)m4ij ,

(
ζU
)m4ij ]〉

and
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k∏

j=1

m4ijℜij =

〈[
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij ),
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
]
,

[
1 −

k∏

j=1

(
1 −

(
ψLij

)m4ij ),1 −

k∏

j=1

(
1 −

(
ψUij

)m4ij )
]
,

[
1 −

k∏

j=1

(
1 −

(
ζLij

)m4ij ),1 −

k∏

j=1

(
1 −

(
ζUij

)m4ij )
]〉

>

〈[
k∏

j=1

(
1 −

(
1 − ξL

)m4ij ),
k∏

j=1

(
1 −

(
1 − ξU

)m4ij )
]
,

[
1 −

k∏

j=1

(
1 −

(
ψL
)m4ij ),1 −

k∏

j=1

(
1 −

(
ψU

)m4ij )
]
,

[
1 −

k∏

j=1

(
1 −

(
ζL
)m4ij ),1 −

k∏

j=1

(
1 −

(
ζU
)m4ij )

]〉
.

So,

(
k∏

j=1

m4ijℜij

) 1

k

=

〈[(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k

,

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
]
,

[
1 −

(
k∏

j=1

(1 − (ψLij )
m4ij )

) 1

k

,1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
]
,

[
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k

,1 −

(
k∏

j=1

(
1 −

(
ζUij

)m4ij )
) 1

k
]〉

>

〈[(
k∏

j=1

(
1 −

(
1 − ξL

)m4ij )
) 1

k

,

(
k∏

j=1

(
1 −

(
1 − ξL

)m4ij )
) 1

k
]
,

[
1 −

(
k∏

j=1

(
1 −

(
ψL
)m4ij )

) 1

k

,1 −

(
k∏

j=1

(
1 −

(
ψU

)m4ij )
) 1

k
]
,

[
1 −

(
k∏

j=1

(
1 −

(
ζL
)m4ij )

) 1

k

,1 −

(
k∏

j=1

(
1 −

(
ζU
)m4ij )

) 1

k
]〉
.
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Then

∑

16i1<i2<···<ik6m

(
k∏

j=1

m4ijℜij

) 1

k

=

〈[
1 −

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k
)
,

1 −
∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
)]
,

[ ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

k
)
,

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
)]
,

[ ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)
,

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)]〉

>

〈[
1 −

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξL

)m4ij )
) 1

k
)
,

1 −
∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξU

)m4ij )
) 1

k
)]
,

[ ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψL
)m4ij )

) 1

k
)
,

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψL
)m4ij )

) 1

k
)]
,

[ ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζL
)m4ij )

) 1

k
)
,

∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζU
)m4ij )

) 1

k
)]〉

.
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Hence,

∑
16i1<i2<···<ik6m

(
∏k
j=1

m4ijℜij )
1

k

(
n
k

)

=

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k
)) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)
]
〉

>

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξL

)m4ij )
) 1

k
)) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξU

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψL
)m4ij )

) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψU

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζL
)m4ij )

) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζU
)m4ij )

) 1

k
)) 1

(nk)
]〉
.
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Therefore,

INNPHM(k)(ℜ1,ℜ2, . . . ,ℜm)

=

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

k
)) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

k
)) 1

(nk)
]〉

>

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξL

)m4ij )
) 1

k
)) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξU

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψL
)m4ij )

) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψU

)m4ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζL
)m4ij )

) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζU
)m4ij )

) 1

k
)) 1

(nk)
]〉

= ℜ−.
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Similarly, we can prove that INPHM(ℜ1,ℜ2, . . . ,ℜm)6 ℜ+. Hence ℜ− 6 INPHM(ℜ1,

ℜ2, . . . ,ℜm)6 ℜ+. �

In what follows, we shall discuss some special cases of INPHM operators with respect

to the parameter k, which were stated below.

(1). When k = 1, the INPHM operator in equation (16), will degenerate to the following

form:

INPHM(1)(ℜ1,ℜ2, . . . ,ℜm)

=

∑
16i16m

(∏
1

j=1

m(1+T (ℜij ))ℜij∑m
z=1

(1+T (ℜz))

) 1

1

(
m
1

) ,

=

〈[
1 −

( ∏

16i1<6m

(
1 −

(
1∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

1
)) 1

(n1)

,

1 −

( ∏

16i16m

(
1 −

(
1∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

1
)) 1

(n1)
]
,

[( ∏

16i16m

(
1 −

(
1∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

1
)) 1

(n1)

,

( ∏

16i16m

(
1 −

(
1∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

1
)) 1

(n1)
]
,

[( ∏

16i16m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

1
)) 1

(n1)

,

( ∏

16i1<6m

(
1 −

(
1∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

1
)) 1

(n1)
]〉
,

=

〈[
1 −

(
m∏

i=1

(
1 − ξLi

)m4i
) 1

m

,1 −

(
m∏

i=1

(
1 − ξUi

)m4i
) 1

m
]
,

[(
m∏

i=1

(
ψLi
)m4i

) 1

m

,

(
m∏

i=1

(
ψUi

)m4i
) 1

m
]
,

[(
m∏

i=1

(ζLi )
m4i

) 1

m

,

(
m∏

i=1

(
ζUi
)m4i

) 1

m
]〉

(let i1 = i)
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=
1

m

m∑

i=1

m4iℜi = INPA(ℜ1,ℜ2, . . . ,ℜm), (20)

i.e. when k = 1, the INPHM operator degenerates into power averaging operator proposed

by Liu and Tang (2016).

(2). When k =m, then the INPHM operator degenerates into the following form:

INPHM(m)(ℜ1,ℜ2, . . . ,ℜm)

=

∑
16i1<i2<···<ik6m

(∏m
j=1

m(1+T (ℜij ))ℜij∑m
z=1

(1+T (ℜz))

) 1

m

(
m
m

) ,

=

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
m∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

m
)) 1

(nm)

,

1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
m∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

m
)) 1

(nm)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
m∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

m
)) 1

(nm)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
m∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

m
)) 1

(nm)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
m∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

m
)) 1

(nm)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
m∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

m
)) 1

(nm)
]〉

=

〈[(
m∏

j=1

(
1 −

(
1 − ξLij

)m4ij )
) 1

m

,

(
m∏

j=1

(
1 −

(
1 − ξUij

)m4ij )
) 1

m
]
,

[
1 −

(
m∏

j=1

(
1 −

(
ψLij

)m4ij )
) 1

m

,1 −

(
m∏

j=1

(
1 −

(
ψUij

)m4ij )
) 1

m
]
,

[
1 −

(
m∏

j=1

(
1 −

(
ζLij

)m4ij )
) 1

m

,1 −

(
m∏

j=1

(
1 −

(
ζUij

)m4ij )
) 1

m
]〉
. (21)
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Further, if we suppose that Supp(ℜi,ℜj )= β for all i 6= j , then m4ij =
m(1+T (ℜij ))∑m
z=1

(1+T (ℜz))

= 1, and equation (16) can further degenerate into the following form:

=

〈[(
m∏

j=1

(
ξLij

)
) 1

m

,

(
m∏

j=1

ξUij

) 1

m
]
,

[
1 −

(
m∏

j=1

(
1 −ψLij

)
) 1

m

,1 −

(
m∏

j=1

(
1 −ψUij

)
) 1

m
]
,

[
1 −

(
m∏

j=1

(
1 − ζLij

)
) 1

m

,1 −

(
m∏

j=1

(
1 − ζUij

)
) 1

m
]〉
. (22)

That is, equation (16) degenerates into ING operator.

In the INPHM operator, we can notice that only the interrelation among inputs argu-

ments and the power weight vector are taken into consideration, the weight vector of the

aggregated arguments is ignored. However, in some situations, the importance degree of

the attributes is an important factor in the aggregation process, especially, in MAGDM. So

in order to overcome this deficiency, the weighted form of the INPHM operator is defined

as follows.

Definition 11. Let ℜi = 〈[ξLi , ξ
U
i ], [ψLi ,ψ

U
i ], [ζLi , ζ

U
i ]〉 (i = 1,2, . . . ,m) be a group of

INNs, and the parameter k = 1,2, . . . ,m. Then a weighted interval neutrosophic power

HM operator is a function WINPHM :2m →2 defined as follows:

WINPHM(k)(ℜ1,ℜ2, . . . ,ℜm)=

∑
16i1<i2<···<ik6m

(∏k
j=1

mϒijℜij
) 1

k

(
m
k

) , (23)

where2 is the set of all INNs, andϒi =
̟i(1+T (ℜi ))∑n
z=1

̟i(1+T (ℜz))
, T (ℜj )=

∑n

z=1

z 6=j

Supp(ℜz,ℜj )

is the support degree for ℜz from ℜj , which satisfies the following properties;

(1) Supp(ℜz,ℜj ) ∈ [0,1], (2) Supp(ℜz,ℜj )= Supp(ℜj ,ℜz), (3) D̃(ℜz,ℜj )6 D̃(ℜx,ℜy),

then Supp(ℜz,ℜj ) > Supp(ℜx,ℜy), where d̃(ℜz,ℜj ) represents the distance measure

between any two INNs defined in Definition 7, ̟ = (̟1,̟2, . . . ,̟m)
T is the weight

vector of ℜi (i = 1,2, . . . ,m) such that ̟i ∈ [0,1] and
∑m
i=1

̟i = 1 (i1, i2, . . . , ik) tra-

verse all the k-tuple combinations of (1,2, . . . ,m). The denominator
(
m
k

)
in the above

equation (23) represents the binomial coefficient, m!
k!(m−k)!

and m are the balancing coef-

ficients.

Theorem 5. Let ℜi = 〈[ξLi , ξ
U
i ], [ψLi ,ψ

U
i ], [ζLi , ζ

U
i ]〉(i = 1,2, . . . ,m) be a group of

INNs, and the parameter k = 1,2, . . . ,m. Then, the value aggregated utilizing equa-

tion (23) is still an INN, and

WINPHM(k)(ℜ1,ℜ2, . . . ,ℜm)

=

〈[
1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)m̟ij )
) 1

k
)) 1

(nk)

,
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1 −

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)m̟ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)m̟ij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)m̟ij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m̟ij )
) 1

k

)

) 1

(nk)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)m̟ij )
) 1

k
)) 1

(nk)
]〉
. (24)

Proof. Proof of this theorem is the same as of Theorem 1. �

Theorem 6 (Idempotency). If all ℜi = ℜ = 〈[ξL, ξU ], [ψL,ψU ], [ζL, ζU ]〉 for (i =

1,2, . . . ,m), then

WINPHM(k)(ℜ,ℜ, . . . ,ℜ)= ℜ. (25)

Theorem 7 (Commutativity). Let ℜi (i = 1,2, . . . , n) be a group of INNs, and ℜ̃i be

any permutation of ℜi . Then,

WINPHM(k)(ℜ1,ℜ2, . . . ,ℜm)= WINPHM(k)(ℜ̃1, ℜ̃2, . . . , ℜ̃m). (26)

Theorem 8 (Boundedness). Let ℜi (i = 1,2, . . . , n) be a group of INNs, and ℜ− =

min(ℜ1,ℜ2, . . . ,ℜm)= 〈[ξL, ξU ], [ψL,ψU ], [ζL, ζU ]〉,ℜ+ = max(ℜ1,ℜ2, . . . ,ℜm)=

〈[̃ξL, ξ̃U ], [ψ̃L, ψ̃U ], [̃ζL, ζ̃U ]〉. Then, the INPHM operator lies:

ℜ−
6 WINPHM(ℜ1,ℜ2, . . . ,ℜm)6 ℜ+. (27)

The proofs of the above Theorems are same as the proofs of the Theorems for INPHM

operator, therefore, omitted here.

4. MAGDM Approach Based on Developed WINPHM Operator

In this part, we will utilize the developed WINPHM operator to deal with MAGDM

problem with the data presented in the form of INNs. Let the set of m alternatives

be denoted by M = {M1,M2, . . . ,Mm} and the group of n attributes be denoted by 4 =
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{41,42, . . . ,4n}, the importance degree of n attributes beϒ = (ϒ1,ϒ2, . . . ,ϒn)
T , such

that ϒj ∈ [0,1], j = 1,2, . . . , n,
∑n
j=1

ϒj = 1. There is a set of z experts expressed

by 9 = {91,92, . . . ,9z} who are asked to provide the assessment information, and

the importance degree of the experts is expressed by � = (�1,�2, . . . ,�z)
T , such that

�a ∈ [0,1], (a = 1,2, . . . , z),
∑z
a=1

�a = 1. The expert 9a assesses every attribute 4j
of every alternative Mi by the form of INN ℜaij = 〈[ξaij

L, ξaij
U ], [ψaij

L,ψaij
U ], [ζ aij

L, ζ aij
U ]〉

(i = 1,2, . . . ,m; 1,2, . . . , n), then the decision matrices D̃Ma = (ℜaij ) (a = 1,2, . . . , z)

are established. The subsequent purpose is to execute a ranking of all alternatives.

Then, in order to solve this problem, we will execute the following steps:

Step 1. Firstly, the given decision matrices D̃Ma = (ℜaij )m×n should be transformed into

standardized decision matrices S̃DMa = (ℜaij )m×n. We change the cost-type attribute into

benefit-type attribute using the following formula.

ℜaij =





ℜaij = 〈[ξaij
L, ξaij

U ], [ψaij
L,ψaij

U ], [ζ aij
L, ζ aij

U ]〉

for benefit-type attribute 4j ,

(ℜaij )
c = 〈[ζ aij

L, ζ aij
U ], [1 −ψaij

U ,1 −ψaij
L], [ξaij

L, ξaij
U ]〉

for cost-type attribute 4j .

(28)

i = 1,2, . . . ,m, j = 1,2, . . . , n.

Step 2. Determine the supports

Supp
(
ℜcij ,ℜ

d
ij

)
= 1 − D̃S

(
ℜcij ,ℜ

d
ij

)
, c, d = 1,2, . . . , z, (29)

which fulfills the required axioms given in Definition 10, and D̃S(ℜcij ,ℜ
d
ij ) represents the

distance measure given in Definition 7.

Step 3. Determine the supports T (ℜcij ) of the INN ℜcij by other ℜdij (d = 1,2, . . . , z and

c 6= d).

T
(
ℜcij

)
=

z∑

d=1;c 6=d

�dSupp(ℜcij ,ℜ
d
ij ); (30)

c, d = 1,2, . . . , z; i = 1,2, . . . ,m, j = 1,2, . . . , n.

Then use the importance degrees�c (c= 1,2, . . . , z) of the DMs 9a (a = 1,2, . . . , z) to

calculate the importance degrees

̟
(c)
ij =

�c(1 + T (ℜcij ))∑z
d �d(1 + T (ℜdij ))

; c= 1,2, . . . , z; i = 1,2, . . . ,m, j = 1,2, . . . , n,

(31)

where ̟ij > 0 and
∑z
c=1

̟ij = 1.
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Step 4. Utilize the WINPHM operator expressed by equation (24)

ℜij = WSVNPHM(k)
(
ℜ
(1)
ij ,ℜ

(2)
ij , . . . ,ℜ

(z)
ij

)

=

〈[
1 −

( ∏

16i1<i2<···<ik6z

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξLij

)z̟ij )
) 1

k
)) 1

(zk)

,

1 −

( ∏

16i1<i2<···<ik6z

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)z̟ij )
) 1

k
)) 1

(
z
k)
]
,

[( ∏

16i1<i2<···<ik6z

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)z̟ij )
) 1

k
)) 1

(
z
k)

,

( ∏

16i1<i2<···<ik6z

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)z̟ij )
) 1

k
)) 1

(
z
k)

],

[( ∏

16i1<i2<···<ik6z

(
1 −

(
k∏

j=1

(1 − (ζLij )
z̟ij )

) 1

k
)) 1

(
z
k)

,

( ∏

16i1<i2<···<ik6m

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)z̟ij )
) 1

k
)) 1

(
z
k)
]〉

(32)

to aggregate all the decision matrices D̃Ma = (ℜaij )m×n (a = 1,2, . . . , z) given by the

DMs into the comprehensive decision matrix C̃DM = (ℜij )m×n.

Step 5. Determine the supports:

Supp(ℜij ,ℜiq )= 1 − D̃S(ℜij ,ℜiq), i = 1,2, . . . ,m; q = 1,2, . . . , n. (33)

which fulfils the required axioms given in Definition 10, and D̃S(ℜij ,ℜiq) represents the

distance measure given in Definition 7.

Step 6. Determine the supports T (ℜij ) of the INN ℜij (i = 1,2, . . . ,m; j = 1,2, . . . , n)

by the importance degrees ϒj of the attributes 4j and the importance degrees φij that

are associated with the INN ℜij by the importance degree ϒj of the attributes 4j .

T (ℜij )=

z∑

q=1;q 6=j

ϒjSupp(ℜij ,ℜiq), i = 1,2, . . . ,m, j, q = 1,2, . . . , n, (34)

φij =
ϒc(1 + T (ℜij ))∑n
j=1

ϒj (1 + T (ℜij ))
; i = 1,2, . . . ,m, j = 1,2, . . . , n, (35)

where φij > 0 and
∑z
c=1

φij = 1.
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Step 7. Utilize the WINPHM operator equation (24).

ℜi = WSVNPHM(k)(ℜi1,ℜi2, . . . ,ℜin)

=

〈[
1 −

( ∏

16i1<i2<···<ik6n

(
1 −

(
k∏

j=1

(1 − (1 − ξLij )
nφij )

) 1

k

)

) 1

(nk)

,

1 −

( ∏

16i1<i2<···<ik6n

(
1 −

(
k∏

j=1

(
1 −

(
1 − ξUij

)nφij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6n

(
1 −

(
k∏

j=1

(
1 −

(
ψLij

)nφij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6n

(
1 −

(
k∏

j=1

(
1 −

(
ψUij

)nφij )
) 1

k
)) 1

(nk)
]
,

[( ∏

16i1<i2<···<ik6n

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)nφij )
) 1

k
)) 1

(nk)

,

( ∏

16i1<i2<···<ik6n

(
1 −

(
k∏

j=1

(
1 −

(
ζLij

)nφij )
) 1

k
)) 1

(nk)
]〉

(36)

to get the comprehensive evaluation value.

Step 8. Determine the score and accuracy value of each INN ℜi (i = 1,2, . . . , n) using

Definition 5.

Step 9. Rank all the alternatives and select the best one using Definition 6.

5. Numerical Examples

In this part, two numerical examples will be provided to show the application and advan-

tages of proposed approach. The first example is about the selection of emerging technol-

ogy enterprises (ETEs), see Huang et al. (2017).

5.1. An Illustrative Example

Let us assume that there are five ETEs represented by 2i (i = 1,2,3,4,5), which are

selected. These five ETEs are evaluated with respect to the following four attributes ℘j

(1,2,3,4), which are (1) ℘1: the employment formation, (2) ℘2: the progress of science

and technology, (3)℘3: technical improvement, (4)℘4: the industrialization configuration.
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Table 1

The decision matrix D̃M1.

℘1 ℘2 ℘3 ℘4

21 〈[0.3,0.4], [0.6,0.7], [0.30.5]〉 〈[0.4,0.5], [0.2,0.3], [0.1,0.2]〉 〈[0.1,0.2], [0.4,0.5], [0.1,0.2]〉 〈[0.3,0.4], [0.5,0.6], [0.2,0.3]〉

22 〈[0.5,0.7], [0.6,0.8], [0.2,0.4]〉 〈[0.5,0.6], [0.3,0.5], [0.2,0.3]〉 〈[0.5,0.7], [0.4,0.6], [0.2,0.3]〉 〈[0.6,0.7], [0.3,0.4], [0.2,0.3]〉

23 〈[0.4,0.5], [0.5,0.6], [0.2,0.3]〉 〈[0.3,0.4], [0.5,0.6], [0.1,0.2]〉 〈[0.3,0.4], [0.1,0.2], [0.2,0.3]〉 〈[0.4,0.5], [0.1,0.2], [0.3,0.4]〉

24 〈[0.6,0.7], [0.2,0.3], [0.1,0.2]〉 〈[0.4,0.5], [0.1,0.2], [0.2,0.3]〉 〈[0.4,0.5], [0.2,0.3], [0.1,0.2]〉 〈[0.3,0.4], [0.4,0.5], [0.2,0.3]〉

25 〈[0.40.5], [0.2,0.3], [0.2,0.3]〉 〈[0.2,0.3], [0.6,0.7], [0.2,0.3]〉 〈[0.5,0.6], [0.4,0.5], [0.2,0.3]〉 〈[0.3,0.4], [0.6,0.7], [0.3,0.4]〉

Table 2

The decision matrix D̃M2.

℘1 ℘2 ℘3 ℘4

21 〈[0.4,0.6], [0.5,0.7], [0.3,0.4]〉 〈[0.6,0.7], [0.5,0.6], [0.5,0.6]〉 〈[0.5,0.6], [0.4,0.5], [0.3,0.4]〉 〈[0.6,0.7], [0.4,0.5], [0.3,0.4]〉

23 〈[0.6,0.9], [0.4,0.5], [0.3,0.4]〉 〈[0.7,0.8], [0.6,0.7], [0.4,0.5]〉 〈[0.7,0.8], [0.3,0.4], [0.3,0.4]〉 〈[0.8,0.9], [0.4,0.5], [0.3,0.4]〉

23 〈[0.8,0.9], [0.8,0.9], [0.4,0.5]〉 〈[0.7,0.8], [0.5,0.6], [0.5,0.6]〉 〈[0.7,0.8], [0.1,0.2], [0.3,0.4]〉 〈[0.8,0.9], [0.5,0.6], [0.2,0.3]〉

24 〈[0.6,0.7], [0.3,0.4], [0.5,0.6]〉 〈[0.8,0.9], [0.5,0.6], [0.6,0.7]〉 〈[0.5,0.6], [0.2,0.3], [0.4,0.5]〉 〈[0.5,0.6], [0.7,0.9], [0.3,0.4]〉

25 〈[0.4,0.5], [0.6,0.7], [0.6,0.7]〉 〈[0.6,0.7], [0.3,0.4], [0.3,0.4]〉 〈[0.9,1], [0.4,0.5], [0.3,0.4]〉 〈[0.7,0.8], [0.8,0.9], [0.1,0.2]〉

Table 3

The decision matrix D̃M3.

℘1 ℘2 ℘3 ℘4

21 〈[0.7,0.8], [0.4,0.5], [0.4,0.5]〉 〈[0.7,0.8], [0.3,0.4], [0.6,0.7]〉 〈[0.6,0.7], [0.3,0.4], [0.4,0.5]〉 〈[0.5,0.6], [0.4,0.5], [0.4,0.5]〉

23 〈[0.6,0.7], [0.5,0.6], [0.4,0.5]〉 〈[0.7,0.8], [0.6,0.7], [0.5,0.6]〉 〈[0.8,0.9], [0.2,0.3], [0.7,0.8]〉 〈[0.6,0.7], [0.3,0.4], [0.4,0.6]〉

23 〈[0.7,0.8], [0.3,0.4], [0.5,0.6]〉 〈[0.8,0.9], [0.2,0.4], [0.6,0.7]〉 〈[0.8,0.9], [0.2,0.4], [0.4,0.5]〉 〈[0.9,1], [0.1,0.2], [0.5,0.6]〉

24 〈[0.7,0.8], [0.4,0.5], [0.6,0.7]〉 〈[0.6,0.9], [0.1,0.2], [0.7,0.8]〉 〈[0.6,0.7], [0.1,0.2], [0.5,0.6]〉 〈[0.6,0.7], [0.3,0.4], [0.4,0.5]〉

25 〈[0.6,0.7], [0.7,0.8], [0.2,0.3]〉 〈[0.7,0.8], [0.3,0.5], [0.4,0.5]〉 〈[0.7,0.9], [0.3,0.4], [0.4,0.5]〉 〈[0.8,0.9], [0.5,0.6], [0.5,0.6]〉

There are three experts D̃Ma (a = 1,2,3) with importance degrees (0.25,0.4,0.35)T ,

who evaluate the five ETEs with respect to the four attributes with importance degree

(0.15,0.2,0.25,0.4)T , and provide their information in the form of INNs, which are listed

in Tables 1–3.

In the following, we need to select the best alternatives. The precised steps are illus-

trated as follows:

Step 1. Normalize the decision matrices using equation (28). Since all the attributes are

of benefit type so there is no need to normalize it.

Step 2. Determine the supports Supp(ℜcij ,ℜ
d
ij ) (i = 1,2, . . . ,5, j = 1,2,3,4, c, d =

1,2,3, c 6= d) using equation (29). In order to define the supports between ℜcij and ℜdij ,

we denote (Supp(ℜcij ,ℜ
d
ij ))5×4 as Supp(cd), which are given as follows:

Supp12 = Supp21 =




0.9167 0.7 0.8 0.8333

0.85 0.7833 0.867 0.8667

0.7 0.7333 0.8333 0.7

0.8333 0.6 0.867 0.7833

0.7333 0.7333 0.8333 0.7333



,
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Supp13 = Supp31 =




0.7833 0.7 0.7 0.8333

0.8833 0.75 0.6667 0.9167

0.7333 0.5833 0.7167 0.7667

0.7333 0.7333 0.7667 0.8

0.7667 0.6833 0.8167 0.7333



,

Supp23 = Supp3
2 =




0.8333 0.8667 0.9 0.9333

0.9 0.9667 0.8 0.85

0.7667 0.85 0.8833 0.7333

0.9 0.8 0.9 0.7833

0.7667 0.9167 0.8833 0.7333



.

Step 3. Determine the weighted supports T (ℜcij ) of INN ℜcij by other INNs ℜdij (d =

1,2,3 and c 6= d) by utilizing equation (30), and determine the weight ̟
(c)
ij (i =

1,2,3,4,5, j = 1,2,3,4, c = 1,2,3) of INN ℜcij (i = 1,2,3,4,5, j = 1,2,3,4, c =

1,2,3) by utilizing equation (31). In order to represent (T (ℜcij ))5×4 as T̃c (c = 1,2,3)

and (̟
(c)
ij )5×4 as Uc (c= 1,2,3), which are given as follows:

T̃1 =




0.6408 0.525 0.565 0.625

0.6492 0.5758 0.58 0.6675

0.5367 0.4975 0.5842 0.5483

0.59 0.4967 0.615 0.5933

0.5617 0.5325 0.6192 0.55




;

T̃2 =




0.5208 0.4783 0.515 0.535

0.5275 0.5342 0.4967 0.5142

0.4433 0.4808 0.5175 0.4317

0.5233 0.43 0.5317 0.47

0.4517 0.5042 0.5175 0.44




;

T̃3 =




0.5292 0.5217 0.535 0.5817

0.5808 0.5742 0.4867 0.5692

0.49 0.4858 0.5325 0.485

0.5433 0.5033 0.5517 0.5133

0.4983 0.5375 0.5575 0.4767




;

U1 =




0.2640 0.2533 0.2550 0.2581

0.26151 0.2528 0.2609 0.2652

0.2591 0.2518 0.2573 0.2616

0.2570 0.2541 0.2589 0.2628

0.2611 0.2516 0.2600 0.2618




;
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Table 4

The overall decision matrix C̃DM .

℘1 ℘2

21 〈[0.4482,0.5903], [0.5066,0.6434], [0.3399,0.4733]〉 〈[0.5577,0.6593], [0.3391,0.4442], [0.4088,0.5230]〉

22 〈[0.5608,0.7529], [0.5077,0.6470], [0.3039,0.4397]〉 〈[0.6251,0.7255], [0.5132,0.6455],6 f t[0.3726,0.4773]〉

23 〈[0.6234,0.7285], [0.5705,0.6868], [0.3717,0.4765]〉 〈[0.5913,0.7040], [0.4143,0.5437], [0.4088,0.5231]〉

24 〈[0.6264,0.7261], [0.3048,0.4071], [0.4087,0.5227]〉 〈[0.5848,0.7756], [0.2294,0.3443], [0.5230,0.6361]〉

25 〈[0.4574,0.5579], [0.5225,0.6354], [0.3428,0.4531]〉 〈[0.4810,0.5912], [0.4091,0.5453], [0.3055,0.4078]〉

U2 =




0.3915 0.3929 0.3949 0.3901

0.3875 0.3937 0.3954 0.3853

0.3893 0.3984 0.3943 0.3871

0.3939 0.3885 0.3928 0.3879

0.3883 0.3951 0.3898 0.3891




;

U3 =




0.3445 0.3538 0.3501 0.3517

0.3509 0.3535 0.3437 0.3494

0.3517 0.3498 0.3484 0.3513

0.3492 0.3574 0.3482 0.3494

0.3507 0.3534 0.3501 0.3491



.

Step 4. Utilize the WINPHM operator (equation (32)) to get the overall decision matrix

(and assume that k = 2), which are given in Table 4.

Step 5. Determine the supports Supp(ℜij ,ℜiq) (i = 1,2, . . . ,5, j = 1,2, . . . ,4; q =

1,2, . . . ,4) by using equation (33). For simplicity, Supp(ℜij ,ℜiq)5×1 is denoted by

Suppjq to define the supports among the j th and q th column of C̃DM .

Supp12 = Supp12 =




0.8894

0.9659

0.9267

0.9239

0.9428



, Supp13 = Supp31 =




0.8883

0.8752

0.8273

0.8857

0.8487



,

Supp14 = Supp41 =




0.9475

0.9206

0.8456

0.8352

0.9013



, Supp23 = Supp32 =




0.8909

0.8969

0.8862

0.8582

0.9016



,

Supp24 = Supp42 =




0.8965

0.9093

0.8720

0.7729

0.8811



, Supp34 = Supp43 =




0.9384

0.9534

0.9200

0.8611

0.8614



.
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Step 6. Determine the weighted supports T (ℜij ) of INN ℜij by utilizing equation (34)

and determine the weights φij (j = 1,2,3,4) of the INNs ℜij by utilizing equation (35).

For computational clarity, we denote (T (ℜij ))5×4 as T̃ and (φij )5×4 as Ũ , which are given

as follows:

T̃ =




0.7790 0.7147 0.6868 0.5560

0.7802 0.7328 0.6920 0.5583

0.7304 0.7094 0.6693 0.5312

0.7403 0.6623 0.6489 0.4951

0.7613 0.7193 0.6522 0.5268



,

Ũ =




0.1613 0.2074 0.2550 0.3763

0.1609 0.2088 0.2548 0.3755

0.1591 0.2096 0.2558 0.3755

0.1628 0.2073 0.2570 0.3729

0.1619 0.2107 0.2531 0.3743



.

Step 7. Using the WINPHM operator in equation (36), to aggregate all the execution

values ℜij (j = 1,2,3,4) in the ith line of C̃DM and get the comprehensive execution

values 2i (i = 1,2, . . . ,5) (assume that k = 2).

21 =
〈
[0.4401,0.5531], [0.4305,0.5385], [0.3498,0.4614]

〉
;

22 =
〈
[0.6068,0.7359], [0.4345,0.5587], [0.3712,0.4904]

〉
;

23 =
〈
[0.6045,0.7137], [0.3484,0.4767], [0.3774,0.4805]

〉
;

24 =
〈
[0.5221,0.6468], [0.3153,0.4443], [0.4129,0.5198]

〉
;

25 =
〈
[0.5221,0.6468], [0.5101,0.6262], [0.3373,0.4390]

〉
.

Step 8. Determine the score values of2i (i = 1,2,3,4,5) by using Definition 5, we have

S̃C(21)= 1.6065, S̃C(22)= 1.7439, S̃C(23)= 1.8176,

S̃C(24)= 1.7383, S̃C(25)= 1.6281.

Then the alternatives can be arranged in decreasing order according to their score values:

23 >22 >24 >25 >21.

Step 9. Based on Definition 6, and the best ETEs is 23 while the worst one is 21.

5.2. Effect of the Parameter k

In this subsection, we take different values of the parameter k in the WINPHM operator

to observe the ranking results, hence we can determine the score values produced for

different values of the parameter k, and the ranking results are given in Table 5.



320 P. Liu et al.

Table 5

The overall decision matrix C̃DM .

℘3 ℘4

21 〈[0.3662,0.4810], [0.3740,0.4734], [0.2646,0.3724]〉 〈[0.4553,0.5563], [0.4397,0.5387], [0.3044,0.4067]〉

22 〈[0.6603,0.7947], [0.3067,0.4417], [0.4156,0.5294]〉 〈[0.6553,0.7538], [0.3382,0.4386], [0.3034,0.4425]〉

23 〈[0.5914,0.7042], [0.1392,0.2745], [0.3048,0.4070]〉 〈[0.7040,0.8332], [0.2277,0.3427], [0.3462,0.4475]〉

24 〈[0.4928,0.5928], [0.1731,0.2735], [0.3336,0.4440]〉 〈[0.4567,0.5586], [0.4874,0.6544], [0.3038,0.4061]〉

25 〈[0.6863,0.8395], [0.3731,0.4727], [0.3042,0.4065]〉 〈[0.5914,0.7041], [0.6535,0.7623], [0.3205,0.4214]〉

Table 6

Scores and ranking of the alternatives for different parameter values.

k Score values Ranking order

k = 1 S̃C(21)= 1.7512, S̃C(22)= 1.9127, S̃C(23)= 2.1819,

S̃C(24)= 1.9061, S̃C(25)= 1.9670.

23 >25 >22 >24 >21

k = 2 S̃C(21)= 1.6065, S̃C(22)= 1.7439, S̃C(23)= 1.8176,

S̃C(24)= 1.7383, S̃C(25)= 1.6281.

23 >22 >24 >25 >21

k = 3 S̃C(21)= 2.9781, S̃C(22)= 2.9816, S̃C(23)= 2.9869,

S̃C(24)= 2.9854, S̃C(25)= 2.9773.

23 >24 >22 >21 >25

From Table 5, we can see that when the value of the parameter k = 1, the ranking

order is slightly different, but the best and the worst alternative remain the same as for the

parameter value k = 2. When the value of the parameter k = 3, then the ranking order is

different from the ones obtained for the parameter value k = 1,2. The best choice remains

the same, but the worst alternative is changed. That is, for k = 1,2 the worst alternative

is 21, while for k = 3 the worst alternative is 25. These results are reasonable, as we

can consider the interrelationship for different number of attributes; when k = 1, we don’t

consider the interrelationship of the attributes; when k = 2, we can take into account the

interrelationship between any two attributes; and when k = 3, we consider the interre-

lationship among any three attributes. These results show that the proposed AO is more

flexible and practical.

5.3. Comparison with Other Approaches

In the following, we will utilize the other two approaches to solve the same example, and

compare and examine the decision results obtained by these methods. The first approach

is based on INBM operator proposed by Ji et al. (2018a), and the second approach is based

on INPWA operator proposed by Liu and Tang (2016). The score values and ranking order

on these different approaches are shown in Table 6.

From Table 6, we can observe that when the value of the parameter gets k = 1, there

are the same ranking results of our method in this paper with the method in Liu and Tang

(2016), while when the value of the parameter gets k = 2, we get the same ranking results

of our method in this paper with the method defined by Ji et al. (2018a). However, they

are different in ranking result from the method Liu and Tang. We think these results are

reasonable and can explain them as follows.

1. When k = 1, the method proposed in this paper can reduce into PA operator for

INNs, and it is similar to method in Liu and Tang (2016), so these two methods
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Table 7

Score values and ranking order of different approaches.

Approach Score values of Ranking order

Based on INWBM

operator p = q = 1 by

Ji et al. (2018a)

S̃C(21)= 0.2004, S̃C(22)= 0.2326,

S̃C(23)= 0.2633, S̃C(24)= 0.2250,

S̃C(25)= 0.2205

23 >22 >24 >25 >21

Based on INWPA

operator λ= 1 by Liu

and Tang (2016)

S̃C(21)= 1.7623, S̃C(22)= 1.9254,

S̃C(23)= 2.1943, S̃C(24)= 1.8964,

S̃C(25)= 1.9794

23 >25 >22 >24 >21

Based on the

proposed operator in

this article (k = 2)

S̃C(21)= 1.6065, S̃C(22)= 1.7439,

S̃C(23)= 1.8176, S̃C(24)= 1.7383,

S̃C(25)= 1.6281

23 >22 >24 >25 >21

Based on the

proposed operator in

this article (k = 1)

S̃C(21)= 1.7512, S̃C(22)= 1.9127,

S̃C(23)= 2.1819, S̃C(24)= 1.9061,

S̃C(25)= 1.9670

23 >25 >22 >24 >21

produced the same ranking results. Obviously, this can explain the validity of our

proposed method.

2. When k = 2, the method proposed in this paper can reduce into BM operator for

INNs, and it is similar to method in Ji et al. (2018b), so these two methods pro-

duced the same ranking results. Obviously, this can further explain the validity of

our proposed method.

3. There are different ranking results of our method when k = 1 and of the method in

Liu and Tang (2016) compared to our method when k = 2 and the method in Ji et

al. (2018a), and the reason is that our method when k = 1 and the method in Liu

and Tang (2016) cannot consider the interrelationship of the attributes, while our

method when k = 2 and the method in Ji et al. (2018b) can do it.

Further, we can compare the existing two methods Ji et al. (2018a) and Liu and Tang

(2016) with our method in this paper as follows.

(1) Ji et al. (2018a) developed the method based on INWBM operator, and the de-

veloped aggregation operators only consider the interrelationship between two

attributes and cannot eliminate the effect of awkward data. While the proposed

aggregation operator has the properties that it can consider the interrelationship

among more than two attributes (k > 2) or doesn’t consider the interrelationship

of the attributes (when k = 1), and also remove the effect of awkward data. Obvi-

ously, our method is more flexible and practical than the method in Ji et al. (2018b).

(2) Liu and Tang (2016) developed the method based on INPWA operator. The devel-

oped operator can only eliminate the effect of awkward data given by the DMs and

cannot consider the correlation among attributes. Obviously, our method is also

more flexible and practical then the method in Liu and Tang (2016).

In practical MAGDM or MADM problems, our proposed approach is superior to the ex-

isting two approaches. The developed aggregation operators in this article have some ad-

vantages over the existing aggregation operators which are listed as follows:
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(1) INS is a better mathematical tool to deal with uncertain and vague information

than IFS, IVIFS, SVNS.

(2) The developed aggregation operators have the capacity of removing influence of

awkward data by PA operator and considering the interrelationship between any

number of input arguments at the same time, while some existing aggregation op-

erator can consider interrelationship among two input arguments or remove the

effect of awkward data.

(3) The other advantage of the developed aggregation operators is that some existing

aggregation operators are special cases of these aggregation operators.

Conclusion

The HM operator is an aggregation tool that can consider the interrelationship between

multiple input parameters, and the PA operator has the property that it can reduce the po-

tency of awkward assessment values in the decision consequences. The INSs are a more

powerful tool to handle uncertain information that exists in real life problems. There-

fore, for some complex decision-making situations in this article, we combine the con-

ventional HM operator to the traditional PA operator in interval neutrosophic settings and

present the two novel interval neutrosophic aggregation operators, that is, the interval neu-

trosophic power Hamy mean (INPHM) operator and the weighted interval neutrosophic

power Hamy mean (WINPHM) operators. Then, some preferable properties and special

cases of the developed aggregation operators are discussed. Moreover, based on these

developed aggregation operators, we propose a new method to MAGDM. Lastly, the de-

veloped approach is applied to some practical problems and shows that the proposed ag-

gregation operators are better and more flexible then some existing aggregation operators.

The other feature of the developed aggregation operator is generalization of some existing

aggregation operators.

In future, we shall extend the proposed aggregation operator to some other fuzzy in-

formation such as Pythagorean fuzzy sets, picture fuzzy sets, linguistic neutrosophic sets,

uncertain linguistic sets, unbalance fuzzy linguistic information and apply them to social

networking, large-scale group decision making.
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