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Abstract. We propose a fast MATLAB implementation of the mini-element (i.e.P1-Bubble/P1) for

the finite element approximation of the generalized Stokes equation in 2D and 3D. We use cell arrays

to derive vectorized assembling functions. We also propose a Uzawa conjugate gradient method as

an iterative solver for the global Stokes system. Numerical experiments show that our implementa-

tion has an (almost) optimal time-scaling. For 3D problems, the proposed Uzawa conjugate gradient

algorithm outperforms MATLAB built-in linear solvers.
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1. Introduction

MATLAB is a popular problem solving environment, widely used for general scientific

computation in education, engineering and research. MATLAB is nowadays a standard

tools in many areas. Thanks to its collection of direct (e.g. LU , LDL⊤, Cholesky) and it-

erative (e.g. conjugate gradient, GMRES, bi-conjugate gradient) solvers, it is tempting to

use MATLAB for the numerical approximation of partial differential equations (PDEs).

For the finite element method (FEM), the main obstacle for using MATLAB is the assem-

bly of the global matrix and vector. Since MATLAB built-in solvers are optimized, the

assembly operations can take up to 99% of whole CPU time, as shown in Koko (2007), us-

ing an implementation with standard loop over triangles (Alberty et al., 1999, 2002; Kwon

and Bang, 2000) directly derived from compiled languages (FORTRAN and C/C++). Un-

fortunately, some vectorized FEM codes are less flexible and require a huge amount of

memory due to the allocation of auxiliary arrays and the corresponding matrix opera-

tions (Koko, 2007; Rahman and Valdman, 2013, 2015). Recently, Koko (2016) proposed

a MATLAB implementation close to the standard form by using cell-arrays to store the

gradient of the basis functions, for the Poisson equation and linear elasticity in 2D and

3D.

In this paper, we propose a fast MATLAB implementation of the P1-Bubble/P1 fi-

nite element (Mini element, Arnold et al., 1984; Ern and Guermond, 2002; Glowinski,

2003) for the generalized Stokes problem in 2D and 3D. The mini element for spa-

tial discretization of the Stokes problem is easy to use in engineering practice since it
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allows for the use of equal-order interpolation (the same mesh for velocity and pres-

sure). Equal-order interpolation is very useful in large-scale multi-physics codes. In-

deed, a code dealing with several independent variables (e.g. chemical species, veloc-

ity components, etc.) requires the transfer of information between its different com-

ponents at each time-step. Fast implementation means that our code operates on ar-

ray and does not use for-loops over elements (triangles of tetrahedrons) for the as-

sembling operations. Instead, we use cell-arrays to store element matrices as in Koko

(2016). We also propose a solution strategy for the final linear system. Indeed, we pro-

pose an efficient (preconditioned) Uzawa conjugate gradient method derived from the one

used with P2/P1 (or P1-iso-P2/P1) finite element pair (Cahouet and Chabard, 1988;

Glowinski, 2003). The proposed conjugate gradient method operates on the dual (pres-

sure) space and, at each iteration, d independent linear systems are solved (d = 2,3).

Our implementation needs only MATLAB basic distribution functions and can be easily

modified and refined.

The paper is organized as follows. The model problem is described in Section 2, fol-

lowed by a finite element discretization in Section 3. The element matrices in 2D/3D are

described in Section 4. In Section 5, we propose our Uzawa conjugate gradient method

for solving the Stokes system. MATLAB implementation details are given in Section 6.

Numerical experiments are carried out in Section 7. Readers can download and edit the

codes from http://www.isima.fr/~jkoko/Codes/KSTOK.tar.gz.

2. The Model Problem

Let � be a bounded domain in R
d (d = 2,3) with a Lipschitz-continuous boundary Ŵ.

Consider in � the Stokes problem

αu − ν1u + ∇p = f , in �, (2.1)

∇ · u = 0, in �, (2.2)

u = uD, on Ŵ, (2.3)

where u = (u1, . . . , ud) ∈ R
d is the velocity vector, p, the pressure, and f =

(f1, . . . , fd ) ∈ R
d , the field of external forces. In equation (2.1), α > 0 is an arbitrary

constant. If α = 0, then equations (2.1)–(2.3) turn to be the classic Stokes problem. If

α > 0, then equations (2.1)–(2.3) turn to be a generalized Stokes problem encountered in

time discretization of Navier-Stokes equations (see e.g. Glowinski (2003)). The constant

ν > 0 is the kinematic viscosity.

We need the functional spaces V =H 1

0
(�)d ,

VD =
{

v ∈H 1(�)d : v = uD on Ŵ
}

, P =

{

q ∈L2(�) :

∫

�

q dx = 0

}

,

and bilinear forms

ai(ui , vi)= α(ui , vi)� + ν(∇ui,∇vi)�, i = 1, . . . , d,
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a(u,v)=

d
∑

i=1

ai(ui, vi),

where (· , ·)� stands for the standard L2(�) scalar product. The variational formulation

of the Stokes problem (2.1)–(2.3) is as follows:

Find (u,p) ∈ VD × P such that:

a(u,v)− (p,∇ · v)� = (f ,v)�, ∀v ∈ V , (2.4)

−(q,∇ · u)� = 0, ∀q ∈ P. (2.5)

3. Finite Element Discretization with P1-Bubble-P1

For the finite element discretization of (2.4)–(2.5), we have to chose a finite element pair

for the velocity field and the pressure. This choice cannot be arbitrary but must satisfy the

inf-sup condition (Babuska, 1971; Brezzi, 1974).

3.1. Mini Element

In this paper we study the discretization of the Stokes problem (2.1)–(2.3) by the finite ele-

ment pair P1-bubble/P1 (the so-called mini-element), introduced by Arnold et al. (1984).

This element leads to a relatively low number of degrees of freedom with a good approx-

imate solution.

Let Th be a triangulation of � and T a triangle of Th. We define the space associated

with the bubble by

Bh =
{

vh ∈ C
0(�̄); ∀T ∈ Th, vh|T = xb(T )

}

.

We also defined the discrete function spaces

Vih =
{

vh ∈ C
0(�̄); vh|T ∈ P 1, ∀T ∈ Th; vh|Ŵ = 0

}

, i = 1, . . . , d,

Ph =

{

qh ∈ C
0(�̄); qh|T ∈ P 1, ∀T ∈ Th; :

∫

�

qh dx = 0

}

,

and we set Xih = Vih ⊕Bh and Xh =X1h × · · · ×Xdh. With the above preparations, the

discrete variational problem reads as follows.

Find (uh,ph) ∈ Xh × Ph such that

a(uh,vh)− (ph,∇ · vh)� = (f ,vh)� ∀vh ∈ Xh, (3.1)

−(qh,∇ · uh)� = 0 ∀qh ∈ Ph. (3.2)
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For a given triangle T , the velocity field uh and the pressure ph are approximated by

linear combinations of the basis functions in the form

uh(x)=

d+1
∑

i=1

φi(x)ui + ubφb(x), ph(x)=

d+1
∑

i=1

φi(x)pi,

where ui and pi are nodal values of uh and ph while ub is the bubble value. The basis

functions are defined by

φ1(x)= 1 − x − y, φ2(x)= x, φ3(x)= y, φb(x)= 27

3
∏

i=1

φi(x)

in 2D, and

φ1(x)= 1 − x − y − z, φ2(x)= x, φ3(x)= y,

φ4(x)= z, φb(x)= 256

4
∏

i=1

φi(x)

in 3D.

To construct the coefficient matrices, a number of integrals involving powers of the

basis functions will be computed. Integrals over a triangle T can be evaluated directly by

the following formulas

∫

T

φ
α1

1
φ
α2

2
φ
α3

3
dx = 2|T |

α1!α2!α3!

(α1 + α2 + α3 + 2)!
, (3.3)

∫

T

φ
α1

1
φ
α2

2
φ
α3

3
φ
α4

4
dx = 6|T |

α1!α2!α3!α4

(α1 + α2 + α3 + α4 + 3)!
, (3.4)

where |T | stands for the triangle area (in 2D), or the tetrahedron volume (in 3D). A useful

property for the basis functions is

d+1
∑

i=1

∇φi = 0. (3.5)

3.2. Algebraic Formulation

We use the following notations for the discrete velocity/pressure nodal values

ūi =

[

ui

uib

]

, f̄i =

[

fi

fib

]

, i = 1, . . . , d. (3.6)
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Systems (3.1)–(3.2) lead to the following algebraic form, using notations (3.6)







Ā 0 −B̄⊤
1

0 Ā −B̄⊤
2

−B̄1 −B̄2 0











ū1

ū2

p



 =





f̄1

f̄2

0



 (3.7)

in 2D, or











Ā 0 0 −B̄⊤
1

0 Ā 0 −B̄⊤
2

0 0 Ā −B̄⊤
3

−B̄1 −B̄2 −B̄3 0



















ū1

ū2

ū3

p









=









f̄1

f̄2

f̄3

0









(3.8)

in 3D. In (3.7) and (3.8) Ā= M̄ + R̄, with M̄ as the mass matrix and R̄ as the stiffness

matrix. B̄i is the divergence submatrix associated with the i-th partial derivative, i.e.

B̄i ≡ (qh, ∂iuih)�, i = 1, . . . , d.

To create the algebraic system (3.7) or (3.8), the discrete system (3.1)–(3.2) is evaluated

over each triangle T to obtain the element matrices and vectors

M̄
(T )
ij =

∫

T

αφiφjdx, R̄
(T )
ij =

∫

T

ν∇φi · ∇φjdx,

B̄
(T )
ij =

∫

T

∂1φiφjdx +

∫

T

∂2φiφjdx, f̄
(T )
i =

∫

T

fφidx.

Then assembling operations consist of direct-summing the element matrices over the trian-

gulation Th to obtain the global matrices M̄ = (M̄ij ), R̄ = (R̄ij ), B̄ = (B̄ij ) and f̄ = (f̄i)

M̄ij =
∑

T ∈Th

M̄
(T )
ij , R̄ij =

∑

T ∈Th

R̄
(T )
ij ,

B̄ij =
∑

T ∈Th

B̄
(T )
ij , f̄i =

∑

T ∈Th

f̄
(T )
i .

In the next sections we detail the element matrices M̄ , R̄, B̄i and the right-hand side f̄ .

4. Element Matrices

For P1 finite element, we need only the element area and the gradient of the basis func-

tions for the element matrices and vectors. To derive vectorized MATLAB codes, we need

analytical expressions for all element matrices and vectors. This section is devoted to this

task. For the sake of the presentation we drop the (T )-superscript introduced in the pre-

vious section to distinguish element matrices from global ones.
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4.1. Two-Dimensional Case

For a triangle T , let {(xi, yi)}i=1,2,3 be the vertices and {φ}i=1,2,3 the corresponding basis

functions. The gradient of φi is given by







∇φt
1

∇φt
2

∇φt
3






=





1 1 1

x1 x2 x3

y1 y2 y3





−1 



0 0

1 0

0 1



 =
1

2|T |





y2 − y3 x3 − x2

y3 − y1 x1 − x3

y1 − y2 x2 − x1



 , (4.1)

where |T | is the area of T given by

2|T | = det

[

x2 − x1 x3 − x1

y2 − y1 y3 − y1

]

= (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1).

A nonbubble entry of the element stiffness matrix R̄ is given by

R̄ij =

∫

T

ν∇φi · ∇φjdx = |T |ν∇φi · ∇φj , i, j = 1,2,3. (4.2)

For the bubble entries R̄bj , for j = 1,2,3. A straightforward calculation yields to (using

(3.5))

R̄bj =
9

4
|T |

3
∑

i=1

∇φi = 0, j = 1,2,3.

For the diagonal entry corresponding to the bubble (i.e. i = j = b) we have

R̄bb = ν

∫

T

27
2∇(φ1φ2φ3) · ∇(φ1φ2φ3)dx

=
81

10
ν|T |

(

|∇φ1|
2 + |∇φ2|

2 + |∇φ3|
2 + ∇φ1∇φ2 + ∇φ1∇φ3 + ∇φ2∇φ3

)

=
81

10
ν|T |

(

|∇φ1|
2 + |∇φ2|

2 + ∇φ1 · ∇φ2

)

=: ωR, (4.3)

using (3.5).

With the above results, the element stiffness matrix is therefore

R̄ =

(

R 0

0 ωR

)

.

As for the stiffness matrix, we set M = (M̄ij )i,j=1,...,3 as the nonbubble part of the

mass matrix. A direct calculation yields

Mij =

{

α
6
|T | if i = j,

α
12

|T | elsewhere.
(4.4)
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The bubble part of the mass matrix is given by

M̄bj =
3α

20
|T |, j = 1,2,3,

M̄bb =
81α

280
|T | =: ωM . (4.5)

The element mass matrix is therefore

M̄ =

(

M z

z⊤ ωM

)

,

where

z⊤ =
3

20
α|T | (1 1 1) .

Finally, the element stiffness/mass matrix Ā is

Ā=

(

A z

z⊤ ω

)

,

where we have set A=R +M and ω = ωR +ωM .

A direct integration yields the element divergence matrix −B̄ = [−B̄1 − B̄2], where

B̄i = [Bi −Bib] with

Bi =
|T |

3







∂iφ1 ∂iφ2 ∂iφ3

∂iφ1 ∂iφ2 ∂iφ3

∂iφ1 ∂iφ2 ∂iφ3






, i = 1,2, (4.6)

and

Bib =
9|T |

20







∂iφ1

∂iφ2

∂iφ3






, i = 1,2. (4.7)

The contribution of the right-hand side component fi , in nonbubble terms, is given by

f
(T )
i =

|T |

3
fiT , i = 1,2,3, (4.8)

where fiT is a mean value of fi on T . The bubble terms of the right-hand side are

f
(T )
ib =

∫

T

fiφbdx =
9

20
|T |fiT , i = 1,2. (4.9)



250 J. Koko

With the above element matrices and vectors the 11 × 11 element system correspond-

ing to (3.7) is

















A z 0 0 −B⊤
1

z⊤ ω 0 0 B⊤
1b

0 0 A z −B⊤
2

0 0 z⊤ ω B⊤
2b

−B1 B1b −B2 B2b 0

































u1

u1b

u2

u2b

p

















=

















f1

f1b

f2

f2b

0

















.

To reveal diagonal blocks, the system above can be rearranged as follows

















A 0 z 0 −B⊤
1

0 A 0 z −B⊤
2

z⊤ 0 ω 0 B⊤
1b

0 z⊤ 0 ω B⊤
2b

−B1 −B2 B1b B2b 0



































u1

u2

u1b

u2b

p



















=



















f1

f2

f1b

f2b

0



















. (4.10)

We can now eliminate the bubble unknownsu1b and u2b since they correspond to diagonal

blocks (the ω blocks). From (4.10)3 and (4.10)4, we deduce that

uib = (fib −B⊤
ibp− z⊤ui)/ω, i = 1,2. (4.11)

Substituting (4.11) into (4.10)1, (4.10)2 and (4.10)5 we obtain a linear system in

(u1 u2 p)
⊤ whose matrix is









A−ω−1zz⊤ 0 −B⊤
1

−ω−1zB⊤
1b

0 A−ω−1zz⊤ −B⊤
2

−ω−1zB⊤
2b

−B1 −ω−1B1bz
⊤ −B2 −ω−1B2bz

⊤ −ω−1(B1bB
⊤
1b +B2bB

⊤
2b)









(4.12)

and the right-hand side









f1 −ω−1zf1b

f2 −ω−1zf2b

−ω−1(B1bf1b +B2bf2b)









. (4.13)
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4.2. Three-Dimensional Case

Let {xi = (xi, yi, zi)}i=1,...,4 be the vertices of a tetrahedron T and {φi}i=1,...,4 the corres-

ponding basis functions. The gradient ∇xφi over T are given by













∇φ⊤
1

∇φ⊤
2

∇φ⊤
3

∇φ⊤
4













=













1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4













−1 











0 0 0

1 0 0

0 1 0

0 0 1













.

An alternative formula for computing ∇φi is

∇xφi = J−1∇ξφi(ξ ),

where J is the Jacobean matrix of the mapping ξ 7→ x(ξ ), that is,

J =





x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

x4 − x1 y4 − y1 z4 − z1



 . (4.14)

The volume of tetrahedron T is given, from (4.14), by |T | = det(J )/6.

As for 2D case, the nonbubble entries of the element stiffness matrix are given by

R̄bj =
9

4
|T |

3
∑

i=1

∇φi = 0, j = 1,2,3,4, (4.15)

while R̄bj = 0, for all j = 1, . . . ,4. For the diagonal entry, using (3.4)–(3.5), we obtain

R̄bb = ν

∫

T

256
2∇(φ1φ2φ3φ4) · ∇(φ1φ2φ3φ4)dx

=
8192

845
ν|T |

[

3
∑

ℓ=1

|∇φℓ|
2 + ∇φ1 · ∇φ2 + ∇φ1 · ∇φ3 + ∇φ2 · ∇φ3

]

=: ωR . (4.16)

For the 3D mass matrix, a straightforward calculation with a linear tetrahedron shows

that (for nonbubble entries)

M̄ij =

{

αT
|T |
10

if i = j,

αT
|T |
20

if i 6= j,
(4.17)

where αT is a mean value of α on T . The bubble part of the mass matrix is given by

M̄bj =
8α

105
|T |, j = 1,2,3,
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M̄bb =
8192α

51975
|T | =:ωM . (4.18)

The element mass matrix is therefore

M̄ =

(

M z

z⊤ ωM

)

,

where

z⊤ =
8α

105
|T |

(

1 1 1 1
)

.

If we set −B̄ = [−B̄1 − B̄2 − B̄3] and B̄i = [Bi −Bib], a straightforward calculation

yields to

Bi =
|T |

4









∂iφ1 ∂iφ2 ∂iφ3 ∂iφ4

∂iφ1 ∂iφ2 ∂iφ3 ∂iφ4

∂iφ1 ∂iφ2 ∂iφ3 ∂iφ4

∂iφ1 ∂iφ2 ∂iφ3 ∂iφ4









, i = 1, . . . ,4, (4.19)

and

Bib =
32

105
|T |









∂iφ1,

∂iφ2

∂iφ3

∂iφ4









. (4.20)

The contribution of the right-hand side component fi , in nonbubble terms, is given by

f
(T )
i =

|T |

4
fiT , i = 1,2,3,4, (4.21)

where fiT is a mean value of fi on T . The bubble terms of the right-hand side are

f
(T )
ib =

∫

T

fiφbdx =
32

105
|T |fiT , i = 1,2,3. (4.22)

As in 2D, we rearrange the Stokes system and we get

uib =
(

fib −B⊤
ibp− z⊤ui

)/

ω, i = 1, . . . ,4. (4.23)

Substituting (4.23) into the rest of the system, we obtain a linear system whose matrix is











A− ω−1zz⊤ 0 0 −B⊤
1

−ω−1zB⊤
1b

0 A− ω−1zz⊤ 0 −B⊤
2

−ω−1zB⊤
2b

0 0 A− ω−1zz⊤ −B⊤
3

−ω−1zB⊤
3b

−B1 − ω−1B1bz
⊤ −B2 − ω−1B2bz

⊤ −B3 −ω−1B3bz
⊤ −ω−1

∑

3

i=1
BibB

⊤
ib











(4.24)
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and the right-hand side







f1 −ω−1zf1b

f2 −ω−1zf2b

−ω−1
∑

3

i=1
BibB

⊤
ib






. (4.25)

5. Uzawa Conjugate Gradient Algorithm

We propose in this section a preconditioned conjugate gradient method for solving the

Stokes system after the assembly of the element systems (4.12)–(4.13) and (4.24)–(4.25).

For a finite element pair of the formPk+1/Pk (e.g. P2/P1 or P1-iso-P2/P1), the precon-

ditioner advocated by Cahouet and Chabard (1988) (see also Fortin and Glowinski, 1983;

Glowinski, 2003; Glowinski and Le Tallec, 1989) is efficient and widely used. In the au-

thor’s knowledge, there is no equivalent preconditioner for the pair P1-Bubble/P1 (or

P1/P1 with stabilization). The algorithm presented in his section is therefore an original

contribution.

The Stokes system can be rewritten in a compact form

[

A −B⊤

−B −C

][

u

p

]

=

[

f

fp

]

, (5.1)

where A is (symmetric) positive definite block diagonal matrix, C is positive semi-definite

matrix.

Let us introduce the generalized Lagrangian function

L(u,p)=
1

2
u⊤Au − f⊤u − p⊤Bu −

1

2
p⊤Cp − f⊤

p p. (5.2)

Due to the properties of A and C, the saddle-point for (5.2) exists. Then it follows that

(5.1) is the saddle-point equation for (5.2), that is, (5.1) characterizes the solution of the

saddle-point problem

min
u

max
p

L(u,p)= max
p

min
u

L(u,p). (5.3)

5.1. Uzawa Conjuage Gradient Algoritm

To derive a dual (Uzawa) algorithm for (5.1), we assume that u = u(p) is the solution of

Poisson equation

Au = f + B⊤p, (5.4)

that is, in the decomposed useful form

Aiui = fi + B⊤
i p, i = 1, . . . , d.
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Then multiplying (5.4) by u and substituting the result in (5.2), we obtain

L(u(p),p)= −
1

2
u⊤Au −

1

2
p⊤Cp − f⊤

p p. (5.5)

If we introduce the dual functional

J ∗(p)= − min
u

L(u(p),p)

with u(p) solution of (5.4), the saddle-point problem (5.3) becomes.

Find p such that

J ∗(p)6 J ∗(q), ∀q. (5.6)

From (5.5), J ∗ is quadratic and coercive. From (5.4), we deduce that the mapping p 7→

u(p) is linear and u(p+ td)= u(p)+ tw where w is the solution of the sensitivity problem

Aw = B⊤d, (5.7)

or

Aiwi = B⊤
i d, i = 1, . . . , d.

It follows that the derivative of J ∗ is

r := ∇J ∗(p)= Bu + Cp + fp. (5.8)

With a search direction d, we compute an optimal stepsize ρ by solving

∇J ∗(p + ρd)⊤d = 0,

that is,

ρ = −d⊤(Bw + Cd)/(r⊤d),

where w is the solution of the sensitivity equation (5.7).

Since J ∗ is a quadratic function, the best search direction is a conjugate gradient di-

rection. As a consequence, the best algorithm for (5.6) is a conjugate gradient algorithm.

At each iteration k, the Fletcher–Reeves conjugate gradient direction is given by

dk = rk+1 + βkdk,

βk = ‖rk+1‖
2 ‖rk‖

−2 .

A dual (Uzawa) conjugate gradient algorithm for solving the saddle-point problem

(5.1) is outlined in Algorithm 1. Theoretically, Algorithm 1 converges in at most nB =

rank(B) iterations. Obviously, for large scale problems,nB is very large and it is preferable

that convergence should be obtained in a number of iterations considerably less than nB .
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Algorithm 1 Uzawa conjugate gradient algorithm for (5.1).

k = 0. p0 is given

0.1 Initial solution

Aiu
0

i
= fi − B⊤

i
p0, i = 1, . . . , d

r0 = Bu0 + Cp0 + fp
0.2 Initial gradient and direction

r0 = Bu0 + Cp0 + fp

d0 = r0.

k > 0. While g⊤
k gk > ε(g

⊤
0

g0)

k.1 Sensitivity and stepsize

Aiw
k
i

= B⊤
i
dk , i = 1, . . . , d

r̃k = Bwk + Cdk

ρk = (r⊤
k

dk)
/

(d⊤
k

r̃k)

k.2 Update

pk+1 = pk − ρkdk, uk+1 = uk − ρkw
k

k.3 New gradient

rk+1 = rk − ρk r̃k,

k.4 Conjugate gradient direction

βk = (r⊤
k+1

rk+1)(r
⊤
k

rk)
−1

dk+1 = rk+1 + βkdk .

5.2. Preconditioned Uzawa Conjugate Gradient Algorithm

A practical implementation of a conjugate gradient method for solving (5.1) requires a

preconditioner, that is, a suitable scalar product for computing ∇J ∗(p) instead of the stan-

dard one used in (5.8). The convergence properties of the conjugate gradient method for

the generalized Stokes problem are deteriorated for large values of the ratio α/ν, see e.g.

(Glowinski, 2003; Glowinski and Le Tallec, 1989).

To derive a preconditioner for (5.1) following the idea of Cahouet and Chabard (1988),

Glowinski and Guidoboni (2009), we need to simplify the continuous problem. We first

notice that the equivalence betweenP1-Bubble/P1 element and the stabilized formulation

has been proved (Pierre, 1987, 1989, 1995; Matsumoto, 2005; Baiocchi et al., 1993).Then,

if we neglect the bubble contribution in the stiffness and divergence matrices, (5.1) can be

expressed in the strong form as

αu − ν1u + ∇p = f, (5.9)

∇ · u − ∇ · (νh∇u)= 0, (5.10)

where νh is an element dependent constant.
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As in Glowinski and Guidoboni (2009) we define the linear operator from L2(�) into

L2(�) (neglecting the constant term in (5.8))

φ :=Aq = ∇ · uq − ∇ · (νh∇q), (5.11)

where uq is the solution of

αuq − ν1uq = −∇q. (5.12)

Note that (5.12) is the (strong) sensitivity system. The idea behind preconditioning is to

find a linear operator B such that BAq = q . Applying the divergence operator in (5.12),

we obtain

α∇ · uq − ν∇ ·1uq = −1q

or

α∇ · uq − ν1(∇ · uq)= −1q. (5.13)

Using (5.11) in (5.13), we obtain

−1q − α∇ · (νh∇q)+ ν1
(

∇ · (νh∇q)
)

= αφ − ν1φ. (5.14)

Then, in practice, at each step of the preconditioned conjugate gradient algorithm, the

gradient of J ∗ is computed as an approximate solution of the linear system

(K + αC + νKM−1C)g = (αM + νK)r, (5.15)

whereK andM are the stiffness and the mass matrices, respectively. Let us introduce the

mesh Reynolds number

Reh =
α

ν
h2,

where h is the mesh size. Taking into account the CPU time and the storage requirement

for computing the last term of the matrix involved in (5.15), we consider the following

preconditioning system instead

(K + αC)g = Hr, (5.16)

where

H =

{

νK + αdiag(M) if Reh 6 1,

νK + αI if Reh > 1.
(5.17)
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Algorithm 2 Preconditioned Uzawa conjugate gradient algorithm for (5.1).

k = 0. p0 is given: Set P =K + αC, H given by (5.17).

0.1 Initial solution and residual

Aiu
0

i
= fi − B⊤

i
p0, i = 1, . . . , d

r0 = Bu0 + Cp0 + fp
0.2 Initial gradient and direction

Pg0 = Hr0

d0 = g0.

k > 0. While g⊤
k rk > ε(g

⊤
0

r0)

k.1 Sensitivity and stepsize

Aiw
k
i

= B⊤
i
dk , i = 1, . . . , d

r̃k = Bwk + Cdk

ρk = (r⊤k dk)
/

(d⊤
k r̃k)

k.2 Update

pk+1 = pk − ρkdk, rk+1 = rk − ρk r̃k,

uk+1 = uk − ρkw
k

k.3 New gradient

Pg̃k = Hr̃k,

gk+1 = gk − ρk g̃k

k.4 Conjugate gradient direction

βk = (g⊤
k+1

rk+1)(g
⊤
k

rk)
−1

dk+1 = gk+1 + βkdk .

In (5.16) and (5.17),K and M are P1 stiffness and mass matrix, respectively, and C, the

bubble matrix from Functions 6.1–6.3.

From the theory of preconditioned conjugate gradient methods for the Stokes problem

(see e.g. Glowinski, 2003), if Dirichlet conditions are imposed for the velocity, then for g

in (5.14) we must impose ∂g/∂n= 0 (homogeneous Neumann boundary conditions). On

the other hand, where a stress condition is prescribed for the fluid, we must impose g = 0

in (5.14).

Remark 1. The preconditioning system (5.15), that is,

(αM + νK)−1(K + αC + νKC)g = r,

induces (over the discrete pressure space) the norm |g|P = g⊤r.

Remark 2. If C = 0 in (5.15), we recover the preconditioning system of Cahouet and

Chabard (1988) widely used for P2/P1 or P1-iso-P2/P1 finite elements.

With the preparation given in the previous section, the preconditioned Uzawa conju-

gate gradient algorithm for solving the Stokes system (5.1) is detailed in Algorithm 2.
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Algorithm 2 inherits the main properties from the conjugate gradient algorithm of Ca-

houet and Chabard (1988):

• At each step, we solve d independent linear systems for the velocity field. The ma-

trices involved are sparse and can be factorized or preconditioned once and for all.

• The same algorithm is able to deal with 2D or 3D systems without any complication.

6. MATLAB Implementation

We know in detail the assembly of the Stokes systems (4.12)–(4.13) and (4.24)–(4.25).

For the computational efficiency, the MATLAB codes must be vectorized (i.e. without

long for-loops). We then use arrays, cell-arrays, and MATLAB vectorized operators and

functions

.*, ./, .^, sum, sparse

6.1. Mesh Representation and KPDE Package

We assume that the triangulation of � consists of np nodes and nt elements (tri-

angles or tetrahedrons). We adopt the mesh representation by arrays used in Koko

(2007, 2016), Persson and Strang (2004). The nodes coordinates are stored in an array

p(1:np,1:2) (in 2D) or p(1:np,1:3) (in 3D). The element nodes are stores in an

array t(1:nt,1:3) (in 2D) or t(1:nt,1:4) (in 3D). Dirichlet boundary conditions

are provided by a list of nodes and the corresponding prescribed values.

As shown in Koko (2016), using cell-array in FEM allows to have implementation

close to the standard form used in classical languages (C/C++, FORTRAN) FEM codes,

while being efficient. The idea is to compute and store, for all triangles, the element ma-

trix entry A
(T )
ij in the cell-array At{i,j}. Then we use MATLAB function sparse to

assemble A with finite small for loops

for i=1:nd

for j=1:nd

A=A+sparse(t(:,i),t(:,j),At{i,j},np,np);

end

end

where nd=3 (in 2D) or nd=4 (in 3D). This approach is used in KPDE package (Koko,

2016) for assembling matrices and vectors from Poisson and linear elasticity equations in

2D and 3D.

We need two key functions from KPDE package, kpde2dgphi and kpde3dgphi,

which compute the gradient of the basis functions and the elements volume as follows

[ar,g]=kpde2dgphi(p,t); %2D

[vol,g]=kpde3dgphi(p,t); %3D

g is 3-by-1 or 4-by-1 cell-array such that g{i}(:,k) is ∂kφi(x) for all elements.
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6.2. 2D Case

Using the cell array g and the array ar, the nonbubble entry R̄ij , (4.2), of the element
stiffness matrix is then given (for all triangles) by

Rij=nu*ar.*sum(g{i}.*g{j},2).

The bubble diagonal entry ωR , (4.3), is computed as follows for all triangles

omega_r=(81/10)*nu.*ar.*(sum(g1.^2,2)+sum(g2.^2,2)

+sum(g1.*g2,2)).

The nonbubble entry Mij , (4.4), of the element mass matrix is,

Mii=alpha.*ar/6 ; % diagonal

Mij=alpha.*ar/12; % off-diagonal.

The bubble entries (4.5) of the element mass matrix are given by

omega_m=(81/280)*alpha.*ar; % diagonal

Mbj=(3/20)*alpha.*ar}; % off-diagonal.

The entries (i, j) of the element divergence matrix (4.6) are vectorized as follows

B1ij=ar.*g{i}(:,1)/3; B2ij=ar.*g{i}(:,2)/3;

while the bubble entries (4.7) are

B1ib=(9/10)*ar.*g{i}(:,1); B2ib=(9/10)*ar.*g{i}(:,2).

The vectorized element contribution of the right-hand side (4.8) is

f1=(1/3)*ar.*f1t; f2=(1/3)*ar.*f2t;

while the bubble entries (4.9) are

f1b=(9/20)*ar.*f1t; f2b=(9/20)*ar.*f2t.

MATLAB Functions 6.1–6.2 assemble the Stokes system. To make the assembling

functions self-contained, all calculations are integrated except elements area and the gra-

dient of basis functions which can be computed outside and passed as argument. Note that

in 2D, the time for computing the triangles area and the gradient of the basis functions is

not significant. Functions 6.1–6.2 can be called without the last two arguments without a

significant computational overcost.

Instead of matrix (4.12) and vector (4.13), Functions 6.1–6.2 can return submatrices

and subvectors of (4.12)–(4.13) if called with more than one output arguments. The state-

ment

[A,B,C]=kstok2dp1bmat(p,t,nu,alpha)

returns the velocity stiffness matrix A, the divergence matrix B=[B1 B2] and the pres-

sure (stiffness) matrix C. Similarly,

[b,bp]=kstok2dp1brhs(p,t,nu,alpha)

returns the velocity right-hand side b=[b1; b2] and the pressure right-hand side bp.

These submatrices are used in the preconditioned Uzawa conjugate gradient method pre-

sented in Section 5.
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Function 6.1 Assembly of the 2D Stokes matrix (4.12).
function [A,B,C]=kstok2dp1bmat(p,t,nu,alpha,ar,g)

% A=kstok2dp1bmat(p,t,nu,alpha) or [A,B,C]=kstok2dp1bmat(p,t,nu,alpha)

% A=kstok2dp1bmat(p,t,nu,alpha,ar,g) or [A,B,C]=kstok2dp1bmat(p,t,nu,alpha,ar,g)

%------------------------------------------------------------------------------

np=size(p,1); Z=sparse(np,np);

% Triangles area and gradient of basis functions

if (nargin == 4) [ar,g]=kpde2dgphi(p,t); end

% Bubble coefficients (z and omega)

zt=(3/20)*alpha.*ar;

omega=(81/10)*nu.*ar.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{1}.*g{2},2))...

+(81/280)*alpha.*ar;

c=(9/10)*ar;

% Matrices assembly

Ah=Z; Bh=cell(1,2); [Bh{:}]=deal(Z); Ch=sparse(np,np);

for i=1:3

for j=1:3

Ah=Ah+sparse(t(:,i),t(:,j),nu.*ar.*sum(g{i}.*g{j},2),np,np)...

+sparse(t(:,i),t(:,j),alpha.*ar/12,np,np)...

-sparse(t(:,i),t(:,j),zt.*zt./omega,np,np);

Ch=Ch-sparse(t(:,i),t(:,j),c.*c.*sum(g{i}.*g{j},2)./omega,np,np);

for k=1:2

Bh{k}=Bh{k}-sparse(t(:,i),t(:,j),ar.*g{j}(:,k)/3,np,np)

-sparse(t(:,i),t(:,j),c.*g{i}(:,k).*zt./omega,np,np);

end

end

Ah=Ah+sparse(t(:,i),t(:,i),alpha.*ar/12,np,np);

end

% Output

if (nargout == 1) A=[Ah Z Bh{1}’; Z Ah Bh{2}’; Bh{1} Bh{2} Ch];

elseif (nargout > 1) A=Ah; B=[-Bh{1} -Bh{2}]; C=-Ch; end

Function 6.2 Assembly of the Stokes right-hand side (4.13).
function [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha,ar,g)

% b=kstok2dp1brhs(p,t,f1,f2,nu,alpha) or [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha)

% b=kstok2dp1brhs(p,t,f1,f2,nu,alpha,ar,g) or

% [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha,ar,g)

%------------------------------------------------------------------------------

np=size(p,1);

% (f1,f2) at the center of triangles

if (length(f1)==np), f1t=sum(f1(t),2)/3; else f1t=f1; end

if (length(f2)==np), f2t=sum(f2(t),2)/3; else f2t=f2; end

% Triangles area and gradient of basis functions

if (nargin == 6) [ar,g]=kpde2dgphi(p,t); end

% Bubble coefficients (z and omega)

zt=(3/20)*alpha.*ar;

omega=(81/10)*nu.*ar.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{1}.*g{2},2))...

+(81/280)*alpha.*ar;

c=(9/10)*ar; ft={f1t f2t};

% Assembly of the right-hand side

bb=sparse(np,1); bh=cell(2,1); [bh{:}]=deal(sparse(np,1));

for i=1:3

for k=1:2

bh{k}=bh{k}+sparse(t(:,i),1,(1/3)*ft{k}.*ar-c.*ft{k}.*zt./omega,np,1);

bb=bb-sparse(t(:,i),1,c.*c.*g{i}(:,k).*ft{k}./omega,np,1);

end

end

% Right-hand side

if (nargout == 1) b=[full(cell2mat(bh)); full(bb)];

elseif (nargout == 2) b=full(cell2mat(bh)); bp=full(bb); end
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6.3. 3D Case

Using the cell-array g and the element volume vol, computed by the KPDE function

kpde3dgphi, the element stiffness matrices are computed simultaneously on all ele-

ments by

Rij=nu*vol.*sum(g{i}.*g{j},2);

while bubble diagonal entry (4.16) is given by

omega_R=(8192/945)*nu.*vol.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)

+sum(g{3}.^2,2)...+sum(g{1}.*g{2},2)

+sum(g{1}.*g{3},2)+sum(g{2}.*g{3},2)).

The nonbubble entries of element mass matrix (4.17) are computed by

Mii=alpha.*vol/10; % diagonal

Mij=alpha.*vol/20; % off diagonal.

The bubble part of the mass matrix (4.18) is given by

omega_m=(8192/51975)*alpha.*vol; % diagonal

Mbj=(8/105)*alpha.*vol; % off-diagonal.

The entries (i, j) of the element divergence matrices (4.19) are computed simultane-

ously as follows

B1ij=vol.*g{i}(:,1)/4; B2ij=vol.*g{i}(:,2)/4;

B3ij=vol.*g{i}(:,3)/4;

while the bubble entries are

B1ib=(32/105)*vol.*g{i}(:,1); B2ib=(32/105)*vol.*g{i}(:,2);

B3ib=(32/105)*vol.*g{i}(:,3).

The element contributions of the right-hand side (4.21)–(4.22) are given by

f1=vol.*f1t/4; f2=vol.*f2t/4; f3=vol.*f3t/4;

f1b=(32/105)*vol*f1t; f2b=(32/105)*vol*f2t;

f3b=(32/105)*vol*f3t.

MATLAB Functions 6.3–6.4 assemble the three-dimensional Stokes system. For com-

putational efficiency, the elements volume vol and the gradient of the basis functions g

can be computed once and for all, and passed to Functions 6.3–6.4. For more flexibility,

vol and g can also be computed inside Functions 6.3–6.4 if they do not appear in the list

of input arguments. As in 2D, Functions 6.3–6.4 can return submatrices and subvectors

used in the preconditioned Uzawa conjugate gradient algorithm, if called with more than

one output argument.
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Function 6.3 Assembly of the 3D Stokes matrix (4.24).
function [A,B,C]=kstok3dp1bmat(p,t,nu,alpha,vol,g)

%--------------------------------------------------------------------

% A=kstok3dp1bmat(p,t,nu,alpha) or A=kstok3dp1bmat(p,t,nu,alpha,vol,g)

% [A,B,C]=kstok3dp1bmat(p,t,nu,alpha) or [A,B,C]=kstok3dp1bmat(p,t,nu,alpha,vol,g)

%------------------------------------------------------------------------------

np=size(p,1); Z=sparse(np,np);

% Gradient of basis functions

if (nargin == 4) [vol,g]=kpde3dgphi(p,t); end

% Bubble coefficients ( z and omega )

zt=(8/105)*alpha.*vol;

omega=(8192/945)*nu.*vol.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{3}.^2,2)...

+sum(g{1}.*g{2},2)+sum(g{1}.*g{3},2)+sum(g{2}.*g{3},2))+(8192/51975)*alpha.*vol;

c=(32/105)*vol;

% Stiffness, mass and divergence matrices

Ah=sparse(np,np); Bh=cell(1,3); [Bh{:}]=deal(Z); Ch=sparse(np,np);

for i=1:4

for j=1:4

Ah=Ah+sparse(t(:,i),t(:,j),nu*vol.*sum(g{i}.*g{j},2),np,np)...

+sparse(t(:,i),t(:,j),alpha*vol/20,np,np)...

-sparse(t(:,i),t(:,j),zt.*zt./omega,np,np);

Ch=Ch-sparse(t(:,i),t(:,j),c.*c.*sum(g{i}.*g{j},2)./omega,np,np);

for k=1:3

Bh{k}=Bh{k}-sparse(t(:,i),t(:,j),vol.*g{j}(:,k)/4,np,np)...

-sparse(t(:,i),t(:,j),c.*g{i}(:,k).*zt./omega,np,np);

end

end

Ah=Ah+sparse(t(:,i),t(:,i),alpha*vol/20,np,np);

end

% Final matrix

if (nargout == 1)

A=[Ah Z Z Bh{1}’; Z Ah Z Bh{2}’; Z Z Ah Bh{3}’; Bh{1} Bh{2} Bh{3} Ch];

elseif (nargout == 3) A=Ah; B=[-Bh{1} -Bh{2} -Bh{3}]; C=-Ch; end

6.4. Preconditioned Uzawa Conjugate Gradient Algorithm

In our MATLAB implementation the same function (i.e. kstokcg) is used for 2D and

3D problems. For this, we use cell-arrays to store the component system informations:

Cholesky factors, permutation vectors, right-hand sides. For instance, for the 3D Stokes

problem we form

R={R1 R2 R3}; % Cholesky factors

s={s1 s2 s3}; % Permutations vectors

b={b(1:np) b(np+1:2*np) b3(2*np+1:3*np)}; %Right-hand sides.

Then in the conjugate gradient function, the velocity systems are solved using the for-loop

for i=1:nd

w{i}(s{i})=R{i}’\(R{i}\b{i}(s{i}));

end

where nd=3. An alternative implementation is to form the block diagonal matrix

R=blkdiag(R1, R2, R3), the permutation vector s=[s1 s2 s3] such that e.g.

in Step k.1, we solve

w(s)=R’\(R\b(s)).
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Function 6.4 Assembly of the 3D Stokes right-hand side (4.25).
function [b,bp]=kstok3dp1brhs(p,t,f1,f2,f3,nu,alpha,vol,g)

% b=kstok3dp1brhs(p,t,f1,f2,f3,nu,alpha) or

% b=kstok3dp1brhs(p,t,f1,f2,f3,nu,alpha,vol,g)

% [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha) or

% [b,bp]=kstok2dp1brhs(p,t,f1,f2,nu,alpha,vol,g)

%------------------------------------------------------------------------------

np=size(p,1);

% (f1,f2) at the center of triangles

if (length(f1)==np), f1t=sum(f1(t),2)/4; else f1t=f1; end

if (length(f2)==np), f2t=sum(f2(t),2)/4; else f2t=f2; end

if (length(f3)==np), f3t=sum(f3(t),2)/4; else f3t=f3; end

% Triangles area

if (nargin == 7) [vol,g]=kpde3dgphi(p,t); end

% Bubble coefficients (z and omega)

zt=(8/105)*alpha.*vol;

omega=(8192/945)*nu.*vol.*(sum(g{1}.^2,2)+sum(g{2}.^2,2)+sum(g{3}.^2,2)

+sum(g{1}.*g{2},2)...+sum(g{1}.*g{3},2)+sum(g{2}.*g{3},2))

+(8192/51975)*alpha.*vol;

c=(32/105)*vol;

% Assembly of the right-hand side

ft={f1t f2t f3t};

bb=sparse(np,1); bh=cell(3,1); [bh{:}]=deal(sparse(np,1));

for i=1:4

for k=1:3

bh{k}=bh{k}+sparse(t(:,i),1,(1/4)*ft{k}.*vol-c.*ft{k}.*zt./omega,np,1);

bb=bb+sparse(t(:,i),1,c.*c.*g{i}(:,k).*ft{k}./omega,np,1);

end

end

% Output

if (nargout == 1) b=[full(cell2mat(bh)); full(bb)];

elseif (nargout == 2) b=full(cell2mat(bh)); bp=full(bb); end

But for large scale 3D problems, computing R’\(R\b(s)) requires a large amount of

memory and can fail.

7. Numerical Experiments

We now propose some numerical experiments to demonstrate the performances of our

implementation. The computations have been carried out on a Dell Precision T3610 work

station equipped with Intel Xeon 3.0GHz processor with 32GB RAM. The MATLAB

version is 9 (R2016a).

7.1. Scalability

We first study the scalability of our MATLAB codes: We consider the discretization of a

unit cube (0, 1)d (d = 2,3) with a uniform mesh of size h, with nt triangles (or tetra-

hedrons) and np nodes. This initial mesh is successively uniformly refined to produce

meshes of size h/2, h/4, h/8, etc. After each refinement the number of triangles is mul-

tiplied by 4 (2D) and the number of tetrahedraons by 8 (3D). Since the assembly process

is essentially based on the number of elements, we expect that the time to assemble the

matrices increases by approximately the same factor, i.e. 5–6 in 2D and 8–10 in 3D as

observed in Koko (2016) for Poisson equation and linear elasticity. Tables 1–2 show the
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Table 1

CPU times (in seconds) for assembling the Stokes matrix system of size N in 2D.

h 1/32 1/64 1/128 1/256 1/512 1/1024

N 3*1089 3*4225 3*16641 3*66049 3*263169 3*1050625

A 0.018 0.071 0.325 1.516 7.242 36.390

b 0.002 0.011 0.050 0.251 1.214 5.995

Table 2

CPU times (in seconds) for assembling the Stokes matrix system of size N in 3D.

h 1/4 1/8 1/16 1/32 1/64 1/128

N 4*125 4*729 4*4913 4*35937 4*274625 4*2146689

A 0.075 0.057 0.397 3.438 34.538 348.249

b 0.027 0.018 0.051 0.465 4.544 46.394

Table 3

Comparative performances of MATLAB direct solvers and Algorithm 2 for the

2D Stokes system, ν = 1/50 and α/ν = 10
3 .

Mesh size h 1/32 1/64 1/128 1/256 1/512

Gaussian elim. CPU 0.02 0.07 0.40 2.11 10.88

LDL⊤ CPU 0.02 0.17 1.22 7.13 46.11

Algorithm 2 CPU 0.02 0.08 0.35 1.94 12.01

assembly CPU times (in Seconds) for the Stokes system in 2D and 3D, respectively. We

can notice an almost linear optimal time-scaling for our implementation.

7.2. Factorization Versus Uzawa Conjugate Gradient

We now consider a Stokes flow in a driven cavity �= (0, 1)d with f = 0 in (2.1) and

2D: Ŵ1 = (0, 1)× {1}, u = (1, 0)⊤ on Ŵ1, and u = 0 on ∂� \ Ŵ1;

3D: Ŵ1 = (0, 1)× (0, 1)× {1}, u = (1, 0, 0)⊤ on Ŵ1, and u = 0 on ∂� \Ŵ1.

� is discretized by uniform meshes of size 1/16, 1/32, 1/64, 1/128, 1/256 and 1/512

in 2D, and 1/4, 1/8, 1/16, 1/32 and 1/64 in 3D. Since there are powerful linear (direct)

solvers in MATLAB, we first compare our conjugate gradient algorithm with

• \ (backslash) the standard MATLAB solver for general matrix based on Gaussian

elimination;

• ldl the block LDL⊤ factorization for symmetric indefinite systems.

Table 3 shows the comparative performances for the 2D Stokes problem with ν = 1/50

and α/ν = 10
3. We can notice that the proposed Uzawa conjugate gradient (Algorithm 2)

and the MATLAB built-in Gaussian elimination are almost equivalent even though, in

Algorithm 2, the component systems are uncoupled and can be solved in parallel. The CPU

times for LDL⊤ include CPU time for the factorization and columns and rows permutation

to reduce fill-in that represents up to 90% of the whole CPU time.



Efficient MATLAB Codes for the 2D/3D Stokes Equation with the Mini-Element 265

Table 4

Comparative CPU times (in sec.) of MATLAB direct solvers and Algorithm 2

for the 3D Stokes system, ν = 1/50 and α/ν = 10
3 , (OoM = Out of Memory).

Mesh size h 1/4 1/8 1/16 1/32 1/64

Gaussian elim. 0.01 0.05 1.73 145.44 OoM

LDL⊤ 0.02 0.08 6.29 128.54 OoM

Algorithm 2 0.04 0.89 1.70 78.08 1894.59

Table 5

Performances of the gmres iterative solver for the 3D Stokes system, ν = 1/50

and α/ν = 10
3 .

Mesh size h 1/4 1/8 1/16 1/32 1/64

CPU Times (sec.) 0.04 0.02 1.66 39.61 8230.59

Table 6

Number of iterations versus α/ν for the 3D driven cavity problem for h= 1/32.

α/ν 10
1

10
2

10
3

10
4

10
5

10
6

10
7

ν = 1/50 44 39 41 28 13 8 7

ν = 1/200 37 34 33 26 13 8 7

ν = 1/1000 31 28 27 24 18 8 7

If the Stokes problem is used in an iterative process (e.g. time stepping or lineariza-

tion), then Algorithm 2 or LDL⊤ factorization are preferable. Indeed, if a LDL⊤ is carried

out (once and for all) in the initialization step, then the solution of linear system reduces

to forward/backward substitutions in the rest of the iterative process. The computational

cost of Algorithm 2 can be reduced by using, as initial solution at the current step, the

solution of the previous step.

For the 3D Stokes problem the proposed Algorithm 2 outperforms the MATLAB di-

rect solvers, Table 4. For the largest problem (4 ∗ 65
3 = 1 098 500 unknowns) the direct

solvers fail because of lack of memory due to fill-in during factorization. Table 5 shows

the performancesof the MATLABgmres iterative solver using incompleteLU factoriza-

tion as preconditioner (MATLAB function ilu with 10
−3 as drop tolerance). The value

of restart parameter is 10. GMRES algorithm outperforms Algorithm 2 up to h= 1/32.

But for the largest problem, Algorithm 2 is more than four times faster. It is clear that for

large scale 3D problems, the proposed Uzawa algorithm is preferable. Table 6 shows the

good convergence properties of the proposed Uzawa conjugate gradient algorithm when

α/ν ≫ 1.

7.3. 2D Visualization

In two-dimensional incompressible fluid problems, it is usual to display the stream-lines.

If the domain� is bounded and simply connected, in order to compute the stream-function
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Fig. 1. Mesh sample of the flow around cylinder problem.

ψ , we have to solve the Poisson–Neumann problem

−1ψ = ω, in �, (7.1)

∂nψ = −u · τ, (7.2)

where ω = ∂1u2 − ∂2u1 is the vorticity and τ the counter-clockwise oriented unit tan-

gent vector at Ŵ. Problem (7.1)–(7.2) has a unique solution in H 1(�)/R. The variational

formulation of (7.1)–(7.2) is

Find ψ ∈H 1(�)

(∇ψ,∇ϕ)� = (u1, ∂2ϕ)� − (u2, ∂1ϕ)�, ∀ϕ ∈H 1(�). (7.3)

This leads to the following algebraic system using P1 finite element

Rψ = B⊤
2

u1 −B⊤
1

u2,

where R is the 2D Laplacian matrix. We impose ψ = 0 at an arbitrary node to ensure the

uniqueness.

We now consider a test problem derived from a benchmark problem described in

Schäfer and Turek (1996). A mesh sample is shown in Fig. 1. The inflow and outflow

conditions (on left/right boundaries) are

u1 =
0.3

0.412
× 4y(0.41 − y), u2 = 0 on Ŵin = {0} × (0,0.41),

u1 =
0.3

0.412
× 4y(0.41 − y), u2 = 0 on Ŵout = {2.2} × (0,0.41).

On the other parts of the boundaryof�, homogeneousboundary conditions are prescribed

(i.e. u = 0). The parameter α in (2.1) is set to 0. The centre of the internal cylinder is

(0.25,0.2) and the diameter is 0.1. The kinematic viscosity is ν = 10
−3. This gives a

Reynolds number of Re= 30 based on the diameter of the cylinder and the maximum of

the inflow velocity. The domain is discretized by a non uniform mesh consisting of 1730

nodes and 3280 triangles, Fig. 1. The velocity field obtained with MATLAB command

quiver(p(:,1),p(:,2),u1,u2)
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Fig. 2. Velocity field of the flow around cylinder problem.

Fig. 3. Isobar lines for the flow around a cylinder problem.

Fig. 4. Streamlines for the flow around a cylinder problem.

is shown in Fig. 2. Isobar lines of Fig. 3 are obtained using the contour plotting function

kpde2dcont from KPDE package (Koko, 2016). The streamlines of Fig. 4 are obtained

by plotting the solution of (7.3) with kpde2dcont.

Unfortunately, for 3D flows, there is no simple tool for graphics output. quiver3

allows for visualization of 3D velocity fields but the result is often unsatisfactory. Plotting

3D functions (or their contours) is a non trivial problem. There is no simple subproblem

like (7.3) for streamlines in 3D.

8. Conclusion

We have proposed a fast MATLAB package for the numerical approximation of the gener-

alized Stokes problem with the mini-element. Numerical experiments show that the pro-

posed assembling functions have an optimal linear time-scaling. The proposed Uzawa

conjugate gradient algorithm outperforms the MATLAB built-in solvers for 3D problems.
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