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Abstract. The aim of this paper is to make a proposal for a new extension of the MULTIMOORA

method extended to deal with bipolar fuzzy sets. Bipolar fuzzy sets are proposed as an extension

of classical fuzzy sets in order to enable solving a particular class of decision-making problems.

Unlike other extensions of the fuzzy set of theory, bipolar fuzzy sets introduce a positive membership

function, which denotes the satisfaction degree of the element x to the property corresponding to

the bipolar-valued fuzzy set, and the negative membership function, which denotes the degree of the

satisfaction of the element x to some implicit counter-property corresponding to the bipolar-valued

fuzzy set. By using single-valued bipolar fuzzy numbers, the MULTIMOORA method can be more

efficient for solving some specific problems whose solving requires assessment and prediction. The

suitability of the proposed approach is presented through an example.

Key words: bipolar fuzzy set, single-valued bipolar fuzzy number, MULTIMOORA, MCDM.

1. Introduction

The management of very complex systems is the most complex, and therefore the most dif-

ficult task of the managers of today’s organizations. The effectiveness of the management

and managers of an organization depends to a large extent on the quality of the decisions

they make on a daily basis.

*Corresponding author.
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Decision-making and decisions are the core of managerial activities. Bearing in mind

the globalization and, therefore, the dynamics of business doing, all of the above-stated

have caused business and the decision-making process to become more demanding. Mak-

ing quality decisions requires an ever more extensive preparation, which also involves the

consideration of the different aspects of a decision, for the reason of which the decision-

making process becomes considerably formalized. Thus, real problems and situations in

real life are characterized by a large number of mostly conflicting criteria, whose strict

optimization is generally impossible.

When it is necessary to make a decision on choosing one of several potential solutions

to a problem, it is desirable to apply one of the models based on multiple-criteria decision-

making methods (MCDM). This most often involves the process of selecting one of several

alternative solutions, for which certain goals are set. When MCDM is concerned, Greco

et al. (2010) point out the fact that it is the study of the methods and procedures aimed

at making a proposal for solutions in terms of multiple, often conflicting criteria. Hwang

and Yoon (1981) states that MCDM is based on the two basic approaches, i.e. on multiple

attribute decision-making (MADM), which implies a choice of courses in the presence

of multiple, and often conflicting criteria, i.e. a selection of the best alternative from a

finite set of possible alternatives. Unlike MADM, in multiple objective decision-making

(MODM), the best alternative is that which is formed with multiple goals, based on the

continuous variables of the decision with additional constraints.

So, all the problems of today are, in general, multi-criterial, primarily because prob-

lems are mainly related to the achievement of the objectives related to a larger num-

ber of, usually conflicting, criteria, which is a great approximation to real tasks in

decision-making processes (Das et al., 2012; Zavadskas et al., 2014). The increasing ap-

plication of the MCDM method to solving various problems has caused an exceptional

growth of multi-criteria decision-making as an important field of operational research,

especially since 1980 (Aouni et al., 2018; Masri, et al., 2018; Wallenius et al., 2008;

Dyer et al., 1992).

Within MADM, some of the methods that have been proposed are: Weighted Sum

Model (WSM) (Fishburn, 1967); Simple Additive Weighting (SAW) method (MacC-

rimon, 1968), Elimination Et Choix Traduisant la REalité (ELECTRE) method (Roy,

1968), DEcision-MAking Trial and Evaluation Laboratory (DEMATEL) method (Gabus

and Fontela, 1972), Compromise Programming (CP) method (Zeleny, 1973), Simple

Multi Attribute Rating Technique (SMART) (Edwards, 1977), Analytic Hierarchy Pro-

cess (AHP) method (Saaty, 1978), Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) method (Hwang and Yoon, 1981), Preference Ranking Organi-

zation Method for Enrichment Evaluations (PROMETHEE) method (Brans, 1982), Mea-

suring Attractiveness by a Categorical Based Evaluation Technique (MACBETH) (Bana e

Costa and Vansnick, 1994), Complex Proportional Assessment of alternatives (COPRAS)

method (Zavadskas et al., 1994), Analytic Network Process (ANP) method (Saaty, 1996),

Vlse Kriterijumska Optimizacija i kompromisno Resenje (VIKOR) (Opricovic, 1998),

Multi-Objective Optimization on basis of Ratio Analysis (MOORA) method (Brauers and

Zavadskas, 2006), Additive Ratio ASsessment (ARAS) method (Zavadskas and Turskis,
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2010), Multi-Objective Optimization by Ratio Analysis plus the Full Multiplicative Form

(MULTIMOORA) method (Brauers and Zavadskas, 2010a), and so on. While within

the MODM methods that have been proposed can be stated: Data envelopment analysis

(DEA) method (Charnes et al., 1978), Linear Programming (LP) and Nonlinear Program-

ming (NP) (Luenberger and Ye, 1984), Multi-Objective Programming (MOP) technique

(Charnes et al., 1989), Multi-Objective Linear Programming (Ecker and Kouada, 1978),

and so on.

The MULTIMOORA method (Brauers and Zavadskas, 2010b) is an important MCDM

method that has been applied so far to solve the most diverse problems in the field of eco-

nomics, management, etc. Basically, the MULTIMOORA method consists of the well-

known MOORA method (Brauers and Zavadskas, 2006) and the method of multi-object

optimization (the Full Multiplicative Form of Multiple Objects method). Thus, Brauers

and Zavadskas (2010a) proposed the updating of the MOORA method by adding a multi-

object optimization method which involves maximizing and minimizing useful multiplica-

tive functions (Lazauskas et al., 2015).

As noted above, the MULTIMOORA method was applied in order to solve a variety of

problems, such as: using MULTIMOORA for ranking and selecting the best performance

appraisal method (Maghsoodiet al., 2018), project critical path selection (Dorfeshan et al.,

2018), the selection of the optimal mining method (Liang et al., 2018), pharmacological

therapy selection (Eghbali-Zarch et al., 2018), ICT hardware selection (Adali and Işik,

2017), industrial robot selection (Karande et al., 2016), a CNC machine tool evaluation

(Sahu et al., 2016), personnel selection (Karabasevic et al., 2015; Baležentis et al., 2012),

the economy (Baležentis and Zeng, 2013; Brauers and Zavadskas, 2011a, 2010b; Brauers

and Ginevičius, 2010), and so on.

However, most decisions made in the real world are made in an environment in which

goals and constraints cannot be precisely expressed due to their complexity; therefore, a

problem cannot be displayed exactly in crisp numbers (Bellman and Zadeh, 1970). For

such problems, characterized by uncertainty and indeterminacy, it is more appropriate to

use values expressed in intervals instead of concrete (crisp) values. In this case, the exist-

ing, ordinary MCDM methods are expanded by using the extensions based on fuzzy sets

(Zadeh, 1965), intuitionistic fuzzy sets (Atanassov, 1986), and neutrosophic sets (Smaran-

dache, 1999). Accordingly, in order to allow a much wider use of the MULTIMOORA

method, some extensions of the MULTIMOORA method have been proposed, some of

which are as follows: Brauers et al. (2011) proposed a fuzzy extension of the MULTI-

MOORA method; Baležentis and Zeng (2013) proposed an IVFN extension of the MUL-

TIMOORA method; Baležentis et al. (2014) also proposed an IFN extension of the MUL-

TIMOORA method; Stanujkic et al. (2015) proposed an extension of the MULTIMOORA

method based on the use of interval-valued triangular fuzzy numbers; Zavadskas et al.

(2015) proposed an IVIF-based extension of the MULTIMOORA method; Hafezalkotob

et al. (2016) proposed an extension of the MULTIMOORA method based on the use of

interval numbers; Stanujkic et al. (2017a) proposed a neutrosophic extension of the MUL-

TIMOORA method, and so on.

In addition to the aforementioned extensions of the fuzzy set theory, Zhang (1994)

introduced the concept of bipolar fuzzy sets and proposed the usage of the two membership
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functions that represent membership to a set and membership to a complementary set, thus

providing an efficient approach to solving a widely larger number of complex decision-

making problems.

Despite an advantage that can be achieved by using bipolar fuzzy logic, they are signif-

icantly less used for solving MCDM problems compared to other fuzzy logic extensions.

The following examples can be mentioned as some of the really rare usages of BFS for

solving MCDM problems: Alghamdi et al. (2018) and Akram and Arshad (2018) pro-

posed bipolar fuzzy extensions of TOPSIS and ELECTRE I methods; while Han et al.

(2018) provide a comprehensive mathematical approach based on the TOPSIS method

for improving the accuracy of bipolar disorder clinical diagnosis.

It is also important to note that these are current researches. In addition, the bipo-

lar logic has been considerably used in the neutrosophic set theory, where Uluçay et al.

(2018), Pramanik et al. (018) and Tian et al. (2016) can be cited as some of the current

researches.

Therefore, in order to enable a wider use of the MULTIMOORA method for solving

even a wider range of problems, a bipolar extension of the MULTIMOORA method is

proposed in this paper. Accordingly, the paper is structured as follows: in Section 1, the

introductory considerations are presented. In Section 2, some basic definitions regard-

ing bipolar fuzzy sets are given. In Section 3, the ordinary MULTIMOORA method is

presented, whereas in Section 4, an extension of the MULTIMOORA method based on

single-valued bipolar fuzzy numbers is proposed. In Section 5, a numerical example is

demonstrated, and finally, the conclusions are given at the end of the paper.

2. The Basic Elements of a Bipolar Fuzzy Set

Definition 1 (Fuzzy set, Zadeh, 1965). Let X be a nonempty set, with a generic element

in X denoted by x . Then, a fuzzy set A in X is a set of ordered pairs:

A =
{〈

x,µA(x)
〉∣

∣x ∈ X
}

, (1)

where the membership function µA(x) denotes the degree of the membership of the ele-

ment x to the set A, and µA(x) ∈ [0,1].

Definition 2 (Bipolar fuzzy set, Lee, 2000). Let X be a nonempty set. Then, a bipolar

fuzzy set (BFS) is defined as:

A =
{〈

x,µ+
A(x), ν−

A (x)
〉∣

∣x ∈ X
}

, (2)

where: the positive membership function µ+
A(x) denotes the satisfaction degree of the

element x to the property corresponding to the bipolar-valued fuzzy set, and the nega-

tive membership function ν−
A (x) denotes the degree of the satisfaction of the element x

to some implicit counter-property corresponding to the bipolar-valued fuzzy set, respec-

tively; µ+
A(x) : X → [0,1] and ν−

A (x) : X → [−1,0].
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Definition 3. A single-valued bipolar fuzzy number (SVBFN) a = 〈a+, a−〉 is a spe-

cial bipolar fuzzy set on the real number set R, whose positive membership and negative

membership function are as follows:

µ+(x) =

{

1 x = a+,

0 otherwise,
(3)

ν−(x) =

{

1 x = a−,

0 otherwise,
(4)

respectively.

Definition 4. Let a1 = 〈a+
1

, a−
1

〉 and a1 = 〈a+
2

, a−
2

〉 be two SVBFNs, and λ > 0. Then,

the basic operations for these numbers are defined as shown below:

a1 + a2 =
〈

a+
1

+ a+
2

− a+
1

a+
2

,−a−
1

a−
2

〉

, (5)

a1 · a2 =
〈

a+
1

a+
2

,−
(

− a−
1

− a−
2

− a−
1

a−
2

)〉

, (6)

λa1 =
〈

1 −
(

1 − a+
1

)λ
,−

(

− a−
1

)λ〉
, (7)

aλ
1

=
〈(

a+
1

)λ
,−

(

1 −
(

1 −
(

− a−
1

))λ)〉
. (8)

Definition 5. Let a = 〈a+, a−〉 be an SVBFN. Then, the score function s(a) is as follows:

sa =
(

1 + a+ + a−
)/

2. (9)

Definition 6. Let a1 and a2 be two SVBFNs. Then, a1 > a2 if sa1
> sa2

.

Definition 7. Let a1 = 〈a+
1

, a−
1

〉 and a1 = 〈a+
2

, a−
2

〉 be two SVBFNs. The Hamming

distance between a1 and a2 is as follows:

dH (a1, a2) =
1

2

(∣

∣a+
1

− a+
2

∣

∣ +
∣

∣a−
1

− a−
2

∣

∣

)

. (10)

Definition 8. Let aj = 〈a+
j , a−

j 〉 be a collection of SVBFNs. The bipolar weighted aver-

age operator (Aw) of the n dimensions is a mapping as follows:

Aw(a1, a2, . . . , an) =

n
∑

j=1

wjaj

=

(

1 −

n
∏

j=1

(

1 − a+
j

)wj ,−

(

1 −

n
∏

j=1

(

1 −
(

− a−
j

))wj

))

, (11)

where: wj is the element j of the weighting vector, wj ∈ [0,1] and
∑n

j=1
wj = 1.
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Definition 9. Let aj = 〈a+
j , a−

j 〉 be a collection of SVBFNs. The bipolar weighted geo-

metric operator (Gw) of the n dimensions is a mapping Gw : Qn → Q as follows:

Gw(a1, a2, . . . , an) =

n
∏

j=1

a
wj

j =

( n
∏

j=1

(

a+
j

)wj ,−

n
∏

j=1

(

− a−
j

)wj

)

. (12)

3. The MULTIMOORA Method

Compared to the other MCDM methods, the MULTIMOORA method is characteristic

because it combines three approaches, namely: the Ratio System (RS) Approach, the Ref-

erence Point (RP) Approach and the Full Multiplicative Form (FMF) Approach, in order

to select the most appropriate alternative.

In addition, this method does not calculate and does not use the overall significance

for ranking alternatives and selecting the most appropriate one. Instead of using an overall

parameter for ranking alternatives, the final ranking order of the considered alternatives,

as well as the selection of the most appropriate alternative, is based on the use of the theory

of dominance.

For an MCDM problem that includes the m alternatives that should be evaluated on

the basis of the n criteria, the computational procedure of the MULTIMOORA can be

expressed as follows:

Step 1. Construct a decision matrix and determine the weights of criteria.

Step 2. Calculate a normalized decision matrix, as follows:

rij =
xij

√

∑n
i=1

x2

ij

, (13)

where: rij denotes the normalized performance of the alternative i with respect to the

criterion j , and xij denotes the performance of the alternative i to the criterion j .

Step 3. Calculate the overall significance of each alternative, as follows:

yi =
∑

j∈�max

wj rij −
∑

j∈�min

wj rij , (14)

where: yi denotes the overall importance of the alternative i , �max and �min denote the

sets of the benefit cost criteria, respectively.

Step 4. Determine the reference point, as follows:

r∗ =
{

r∗
1
, r∗

2
, . . . , r∗

n

}

=

{(

max
i

rij

∣

∣

∣j ∈ �max

)

,
(

min
i

rij

∣

∣

∣j ∈ �min

)}

. (15)
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Step 5. Determine the maximal distance between each alternative and the reference point,

as follows:

dmax

i = max
j

(

wj

∣

∣r∗
j − rij

∣

∣

)

, (16)

where: dmax

i denotes the maximal distance of the alternative i to the reference point.

Step 6. Determine the overall utility of each alternative, as follows:

ui =

∏

j∈�max
wj rij

∏

j∈�min
wj rij

, (17)

where: ui denotes the overall utility of the alternative i .

In particular case, when evaluation is made only on the basis of benefit criteria, Eq. (17)

is as follows:

ui =
∏

j∈�max

wj rij . (18)

Step 7. Determine the final ranking order of the considered alternatives and select the

most appropriate one. In this step, the considered alternatives are ranked based on their:

– overall significance,

– maximal distance to the reference point, and

– overall utility.

As a result of these rankings, the three different ranking lists are formed, representing

the rankings based on the RS approach, the RP approach and the FMF approach of the

MULTIMOORA method.

The final ranking of the alternatives is based on the dominance theory, i.e. the alter-

native with the highest number of appearances in the first positions on all ranking lists is

the best-ranked alternative.

4. An Extension of the MULTIMOORA Method Based on Single-Valued Bipolar

Fuzzy Numbers

For an MCDM problem involving m alternatives and n criteria and K decision-makers,

whereby the performances of the alternatives are expressed by using SVBFNs, the calcu-

lation procedure of the extended MULTIMOORA method can be expressed as follows:

Step 1. Evaluate the alternatives in relation to the evaluation criteria, and do that for each

DM. In this step, each DM evaluates the alternatives and forms an evaluation matrix.

In order to provide an easier evaluation, the following Likert scale, shown in Table 1,

is proposed for evaluating alternatives in relation to the evaluation criteria.
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Table 1

Nine-point Likert scale for expressing degree of satisfaction.

Satisfaction level Numerical value

Neutral/without attitude 0

Extremely low 1

Very low 2

Low 3

Medium low 4

Medium 5

Medium high 6

High 7

Very high 8

Extremely high 9

Absolute 10

However, the respondents should be introduced that the values listed in Table 1 are

only approximative and that they can use any value from the interval [0,10] and [−10,0].

After forming initial decision-making matrix, obtained responses should be divided by

10 in order to transform it into the allowed interval [−1,1]. This approach for evaluating

alternatives is proposed to avoid the use of vector normalization procedure, used in the

ordinary MULTIMOORA method.

Step 2. Determine the importance of the evaluation criteria, and do that for each DM. In

this step, each DM determines the weights of the criteria by using one of several existing

methods for determining the weights of criteria.

Step 3. Determine the group decision matrix. In order to transform individual into group

preferences, individual evaluation matrices are transformed into group one by applying

Eq. (11).

Step 4. Determine the group weights of the criteria. In order to transform individual into

group preferences with respect to the weights of criteria, the group weights of criteria can

be determined as follows:

wj =

K
∑

k=1

wk
j (19)

where: wj denotes the weight of the criterion j , and wk
j denotes the weight of the crite-

rion j obtained from the DM k.

After calculating the group evaluation matrix and the group weights of the criteria,

all the necessary prerequisites for applying all the three approaches integrated in the

MULTIMOORA method are obtained. Based on the approach proposed by Stanujkic et

al. (2017b), the remainder steps of the proposed approach are as follows:

Step 5. Determine the significance of the evaluated alternatives based on the RS approach.

This step can be explained through the following sub-steps:
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Step 5.1. Determine the impact of the benefit and cost criteria to the importance of each

alternative, as follows:

Y+
i =

(

1 −

n
∏

j∈�max

(1 − rij )wj ,−

(

1 −

n
∏

j∈�max

(

1 − (−rij )
)wj

)

, (20)

Y−
i =

(

1 −

n
∏

j∈�min

(1 − rij )
wj ,−

(

1 −

n
∏

j∈�min

(

1 − (−rij )
)wj

)

, (21)

where: Y+
i and Y−

i denote the importance of the alternative i obtained on the basis of the

benefit and cost criteria, respectively; Y+
i and Y−

i are SVBFNs.

It is evident that Aw operator is used to calculate the impact of the benefit and cost

criteria.

Step. 5.2. Transform Y+
i and Y−

i into crisp values by using the Score Function, as follows:

y+
i = s

(

Y+
i

)

, (22)

y−
i = s

(

Y−
i

)

. (23)

Step 5.3. Calculate the overall importance for each alternative, as follows:

yi = y+
i − y−

i . (24)

Step 6. Determine the significance of the evaluated alternatives based on the RP approach.

This step can be explained through the following sub-steps:

Step 6.1. Determine the reference point. The coordinates on the bipolar fuzzy reference

point r∗ = {r∗
1
, r∗

2
, . . . , r∗

n } can be determined as follows:

r∗ =

{(〈

max
i

rij ,min
i

rij

〉∣

∣

∣j ∈ �max

)

,
(〈

min
i

rij ,max
i

rij

〉∣

∣

∣j ∈ �min

)}

(25)

where: r∗
j denotes the coordinate j of the reference point.

Step 6.2. Determine the maximum distance from each alternative to all the coordinates of

the reference point. The maximum distance of each alternative to the reference point can

be determined as follows:

dmax

ij = dmax

(

rij , r∗
j

)

wj , (26)

where dmax

ij denotes the maximum distance of the alternative i to the criterion j deter-

mined by Eq. (10).

Step 6.3. Determine the maximum distance of each alternative, as follows:

dmax

i = max
j

dmax

ij , (27)

where dmax

i denotes the maximum distance of the alternative i .
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Step 7. Determine the significance of the evaluated alternatives based on the FMF.

This step can be explained through the following sub-steps:

Step 7.1. Calculate the utility obtained based on the benefit U+
i and cost U−

i criteria, for

each alternative, as follows:

U+
i =

( n
∏

j∈�max

(rij )
wj ,−

n
∏

j∈�max

(−rij )
wj

)

, (28)

U−
i =

( n
∏

j∈�min

(rij )wj ,−

n
∏

j∈�min

(−rij )
wj

)

, (29)

where U+
i and U−

i are SVBFNs.

Step 7.2. Transform U+
i and U−

i into crisp values by using the Score Function, as follows:

u+
i = s

(

U+
i

)

, (30)

u−
i = s

(

U−
i

)

. (31)

Step 7.3. Determine the overall utility for each alternative, as follows:

ui =
u+

i

u−
i

. (32)

In the case when evaluation is made only on the basis of benefit criteria, Eq. (32) is as

follows:

ui = u+
i . (33)

Step 8. Determine the final ranking order of the alternatives. The final ranking order of

the alternatives can be determined as in the case of the ordinary MULTIMOORA method,

i.e. based on the dominance theory (Brauers and Zavadskas, 2011b).

In this stage, the alternatives are ranked based on their overall importance, maximum

distance to the reference point and overall utility. As a result of that, three ranking lists are

formed.

Based on these ranking lists, the final ranking list of the alternatives is formed on the

basis of the theory of dominance, i.e. the alternative with the largest number of appear-

ances on the first position in the three ranking lists is the most acceptable.

5. A Numerical Example

In this section, a numerical example of purchasing rental space is considered in order to

explain the proposed approach in detail.
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Table 2

The ratings obtained from the first of the three DMs.

C1 C2 C3 C4 C5

a+ a− a+ a− a+ a− a+ a− a+ a−

A1 7 −2 7 −3 5 −1 7 −5 8 −1

A2 4 −1 5 −2 4 −2 4 −6 7 −1

A3 7 −1 3 −1 2 0 2 −1 7 −2

A4 9 −1 4 −1 3 0 3 −1 6 −1

Table 3

The ratings obtained from the first of the three DMs, in the form of SVBFNs.

C1 C2 C3 C4 C5

A1 〈0.70,−0.20〉 〈0.70,−0.30〉 〈0.50,−0.10〉 〈0.70,−0.50〉 〈0.80,−0.10〉

A2 〈0.40,−0.10〉 〈0.50,−0.20〉 〈0.40,−0.20〉 〈0.40,−0.60〉 〈0.70,−0.10〉

A3 〈0.70,−0.10〉 〈0.30,−0.10〉 〈0.20,0.00〉 〈0.20,−0.10〉 〈0.70,−0.20〉

A4 〈0.90,−0.10〉 〈0.40,−0.10〉 〈0.30,0.00〉 〈0.30,−0.10〉 〈0.60,−0.10〉

Table 4

The ratings obtained from the second of the three DMs, in the form of SVBFNs.

C1 C2 C3 C4 C5

A1 〈0.70,−0.20〉 〈0.70,−0.50〉 〈0.40,−0.20〉 〈0.70,−0.50〉 〈0.80,−0.10〉

A2 〈0.60,−0.10〉 〈0.40,−0.60〉 〈0.40,−0.20〉 〈0.40,−0.60〉 〈0.80,−0.10〉

A3 〈0.80,−0.10〉 〈0.20,−0.10〉 〈0.20,−0.10〉 〈0.20,−0.10〉 〈0.70,−0.10〉

A4 〈0.90,−0.10〉 〈0.30,−0.10〉 〈0.30,−0.10〉 〈0.30,−0.10〉 〈0.60,−0.10〉

Suppose that a company is planning to start its sales business in a new location, and

therefore is looking for a new sales building. After the initial consideration of the available

alternatives, four alternatives have been identified as suitable. For this reason, a team of

three decision-makers (DMs) was formed with the aim of evaluating suitable alternatives

based on the following criteria:

– C1 – Rental space quality;

– C2 – Rental space adequacy;

– C3 – Location quality;

– C4 – Location distance from the city centre, and

– C5 – Rental price.

As previously reasoned, in this evaluation the ratings of the alternatives in relation to

the criteria are expressed by using SVBFNs.

The ratings obtained from the first of the three DMs are shown in Table 2, as the points

of the Likert scale, whereas in Table 3, they are shown in the form of SVBFNs.

The ratings obtained from the second and the third of the three DMs are accounted for

in Table 4 and Table 5.

The group decision matrix, calculated by applying Eq. (11), is presented in Table 6.
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Table 5

The ratings obtained from the third of the three DMs, in the form of SVBFNs.

C1 C2 C3 C4 C5

A1 〈0.60,−0.10〉 〈0.90,−0.20〉 〈1.00,0.00〉 〈1.00,0.00〉 〈0.80,−0.10〉

A2 〈0.40,−0.60〉 〈0.40,−0.60〉 〈1.00,−0.40〉 〈1.00,0.00〉 〈0.80,−0.10〉

A3 〈0.20,−0.10〉 〈0.90,−0.40〉 〈0.80,−0.30〉 〈0.70,−0.10〉 〈0.70,−0.10〉

A4 〈0.30,−0.10〉 〈1.00,−0.30〉 〈0.80,−0.20〉 〈0.80,−0.10〉 〈0.60,−0.10〉

Table 6

The group decision-making matrix.

C1 C2 C3 C4 C5

A1 〈0.67,−0.16〉 〈0.79,−0.32〉 〈1.00,0.00〉 〈1.00,0.00〉 〈0.80,−0.10〉

A2 〈0.47,−0.18〉 〈0.43,−0.42〉 〈1.00,−0.26〉 〈1.00,0.00〉 〈0.77,−0.10〉

A3 〈0.64,−0.10〉 〈0.61,−0.16〉 〈0.49,0.00〉 〈0.41,−0.10〉 〈0.70,−0.13〉

A4 〈0.81,−0.10〉 〈1.00,−0.15〉 〈0.53,0.00〉 〈0.53,−0.10〉 〈0.60,−0.10〉

Table 7

The weights of the criteria obtained from the first of the three

DMs.

sj kj qj wj

C1 1 1 0.19

C2 1.2 0.80 1.25 0.23

C3 0.9 1.10 1.14 0.21

C4 0.7 1.30 0.87 0.16

C5 1.2 0.80 1.09 0.20

5.00 5.35 1.00

Table 8

The group criteria weights.

w1

j w2

j w3

j wj

C1 0.19 0.17 0.19 0.18

C2 0.23 0.24 0.23 0.24

C3 0.21 0.22 0.21 0.21

C4 0.16 0.17 0.16 0.16

C5 0.20 0.21 0.20 0.21

1.00

The weights obtained from the first of the three DMs by applying the PIPRECIA

method (Stanujkic et al., 2017b) are accounted for in Table 7, while the group weights

of the criteria, calculated by applying Eq. (19), are shown in Table 8.

On the basis of the ratings from Table 6 and the weights from Table 8, the overall signif-

icance, the maximum distance to the reference point and the overall utility are calculated

for each alternative in the next step.

The overall significances, accounted for in Table 9, are calculated by applying

Eqs. (20)–(24).
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Table 9

The overall significances of the considered alternatives.

Y+
i

Y−
i

y+
i

y−
i

yi Rank

A1 〈1.00,−0.11〉 〈1.00,−0.02〉 0.94 0.99 -0.05 3

A2 〈1.00,−0.20〉 〈1.00,−0.02〉 0.90 0.99 -0.09 4

A3 〈0.42,−0.06〉 〈0.30,−0.05〉 0.68 0.63 0.05 2

A4 〈1.00,−0.06〉 〈0.29,−0.04〉 0.97 0.62 0.35 1

Table 10

The reference points.

�max �min

r+ r− r+ r−

r∗ 1.00 −0.20 0.29 −0.02

Table 11

The ratings of the alternatives obtained based on the reference point approach.

C1 C2 C3 C4 C5 dmax

i Rank

A1 0.08 0.16 0.13 0.29 0.10 0.08 4

A2 0.17 0.28 0.00 0.29 0.09 0.00 1

A3 0.13 0.33 0.38 0.05 0.06 0.05 3

A4 0.04 0.14 0.36 0.11 0.00 0.00 1

Table 12

The overall utility of the considered alternatives.

U+
i

U−
i

u+
i

u−
i

ui Rank

A1 〈1.00,−0.11〉 〈1.00,−0.02〉 0.94 0.99 −0.05 3

A2 〈1.00,−0.20〉 〈1.00,−0.02〉 0.90 0.99 −0.09 4

A3 〈0.42,−0.06〉 〈0.30,−0.05〉 0.68 0.63 0.05 2

A4 〈1.00,−0.06〉 〈0.29,−0.04〉 0.97 0.62 0.35 1

After that, the reference point shown in Table 10 is determined by applying Eq. (25).

The maximum distances to the reference point accounted for in Table 11 are deter-

mined by applying Eq. (26) and Eq. (27).

The overall utility shown in Table 12 is calculated by applying Eqs. (28)–(32).

Finally, on the basis of the ranking orders shown in Tables 9, 11 and 12, the most

appropriate alternative is determined by means of the theory of dominance, as is shown

in Table 13.

As can be seen from Table 12, the most appropriate alternative is the alternative

denoted as A4.
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Table 13

The final ranking order of the considered alternatives.

RS RP FMP Final rank

A1 3 4 3 3

A2 4 1 4 4

A3 2 3 2 2

A4 1 1 1 1

6. Conclusions

The bipolar fuzzy sets introduced two membership functions, namely the membership

function to a set and the membership function to a complementary set.

On the other hand, the MULTIMOORA method is an efficient and already proven

multiple-criteria decision-making method, which has been used for solving a number of

different decision-making problems so far.

Therefore, an extension of the MULTIMOORA method enabling the use of single-

valued bipolar fuzzy numbers is proposed in this article. The usability and efficiency of

the proposed extension is successfully demonstrated on the example of the problem of the

best location selection.

In the literature, numerous extensions of the MULTIMOORA methods have been pro-

posed with the aim to adapt it for the use of grey system theory, fuzzy set theory, as well

as various extensions of fuzzy set theory. Some extensions that enable the use of neutro-

sophic sets are also proposed. The mentioned extensions aim to exploit the specificities

of particular sets for solving certain types of decision-making problems, and thus enable

more efficient decision making.

Because of the specificity that bipolar fuzzy sets provide, the proposed expanded

MULTIMOORA method can be expected to be acceptable for solving a particular class

of complex decision-making problems.
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