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Abstract. Medical Ultrasound is a diagnostic imaging technique based on the application of ul-

trasound in various branches of medical sciences. It can facilitate the observation of structures of

internal body, such as tendons, muscles, vessels and internal organs such as male and female re-

productive system. However, these images usually degrade by a special kind of multiplicative noise

called speckle. The main effects of speckle noise in the ultrasound images appear in the edges and

fine details which lead to reduce their resolution and consequently make difficulties in medical diag-

nosing. Therefore, reducing of speckle noise seriously plays an important role in image diagnosing.

Among the various methods that have been proposed to reduce the speckle noise, there exists a class

of approaches that firstly convert multiplicative speckle noise into additive noise via log-transform

and secondly perform the despeckling process via a directional filter. Usually, the additive noises

are mutually uncorrelated and obey a Gaussian distribution. On the other hand, non-subsampled

shearlet transform (NSST), as a multi scale method, is one of the effective methods in image pro-

cessing, specially, denoising. Since NSST is shift invariant, it diminishes the effect of pseudo-Gibbs

phenomena in the denoising. In this paper, we describe a simple image despeckling algorithm which

combines the log-transform as a pre-processing step with the non-subsampled shearlet transform for

strong numerical and visual performance on a broad class of images. To illustrate the efficiency of

the proposed approach, it is applied on a sample image and two real ultrasound images. Numerical

results illustrate that the proposed approach can obtain better performance in term of peak signal

to noise ratio (PSNR) and structural similarity (SSIM) index rather than existing state-of-the-art

methods.

Key words: ultrasound image, discrete shearlet transform, non-subsampling, log-transform, speckle

noise.

1. Introduction

The invention of the computational tools, especially computers, in the recent decades has

led to produce many new medical imaging techniques, such as computed tomography scan
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(CT scan), ultrasound imaging, magnetic resonance imaging (MRI) and etc., for medical

diagnosing. Among these imaging techniques, the ultrasound imaging technique is popu-

larly used in medical diagnosing, mainly in obstetrics, gastrointestinal and cardiovascular

fields. The main reasons for the popularity of ultrasound imaging technique are related to

other more sophisticated imaging techniques, such as CT, MRI or Positron Emission To-

mography (PET), and are its low cost, non-ionizingproperties and its portability to provide

real time interactive visualization of anatomical structures (Abbott and Thurstone, 1979).

Ultrasound images are created by ultrasonic waves, which are produced by dispatching

special sound waves through body tissues and receiving their reflex by a transducer and

they are processed and transformed into a digital image (Ragesh et al., 2011). Usually, the

inappropriate contact or being air gap between the transducer and body lead to create an

interference pattern called speckle (Abbott and Thurstone, 1979). Speckle is a particular

type of noise that is characterized by a granular pattern of bright and dark spots which

tend to degrade the fine details and edges of ultrasound images and consequently lead to

complication in clinical diagnosing.

Generally, two families of approaches have been proposed for reducing of speckle

noise of ultrasound images:

A) The first family are those filters that perform on ultrasound images directly. In

Abazari and Lakestani (2018a) the authors applied the Fourier based discrete shearlet

transform to despeckle medical ultrasound images. Ritenour et al. (1984) applied the me-

dian filter to suppress speckle noise from the digital radiographic images. The adaptive

weighted form of median filter is also suggested by Loupas et al. (1989) to denoise ul-

trasonic images. The wavelet transform and its complex form are also applied directly for

ultrasound images in Deka and Bora (2013), Khare et al. (2010). Elyasi and Pourmina

(2016) have employed the TV regularization with modified bayes shrink for reducing of

speckle noise from ultrasound images. In Zong et al. (1998) it is shown that the linear

filtering cannot be an optimal method for reducing the speckle noises. In Elmoniem et al.

(2002) a denoising method based on nonlinear coherent diffusion (NCD) is utilized. Yu

and Acton (2002) proposed a despeckle method based on anisotropic diffusion method

(SRAD) to cast the spatial adaptive filers into diffusion model (Yu and Acton, 2002).

Oriented version of SRAD (OSRAD) filter (Krissian et al., 2007), which is one of the ex-

tension of SRAD, was proposed with appraising the properties of the numerical scheme

associated with SRAD filter. In Vese and Osher (2003) modified the TV minimization al-

gorithm to reduce speckle noise from ultrasound images. Zhang et al. (2001) proposed an

algorithm based on wavelet frame for denoising of Doppler ultrasound signals. Wang et

al. (2014) also introduced a new denoising approach based on framelet regularization. An

automated approach for segmentation of intravascular ultrasound images is also studied

in Vard et al. (2012).

B) The second family are those that firstly convert the speckle noise to an additive

noise via log-transform method and then a special filtering is applied to denoise the ad-

ditive noise. The fundamental properties of speckle noises (Goodman, 1976), the log-

transform speckle noise is studied in Hiremath et al. (2013) and their properties in the

Contourlet Transform Domain are clearly explained in Kabir and Bhuiyan (2015). The

discrete wavelet denoising approaches via log-transform method (Rajeshwar, 2018) are
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utilized for reducing the speckle noises of medical ultrasound images. In Hazarika et al.

(2015), the enhanced Lee filter in lapped orthogonal transform (LOT) domain is applied

to despeckle the log-transformed SAR images. Some other approaches to reduce speckle

noise in medical ultrasound images are also proposed in Huang et al. (2016), Gupta et al.

(2004), Bhuiyan et al. (2009) and the references given there.

As mentioned above, several methods have been proposed for reducing speckle noises,

however, each method has its assumptions, advantages, and disadvantages. Among them,

the methods based on wavelet transform have good efficiency in noise reduction. However,

wavelets fail to capture the geometric regularity along the singularities of curves, because

of their isotropic support. To exploit the anisotropic regularity of a curve along edges, the

basis must include elongated functions that are nearly parallel to the edges. Several image

representations have been proposed to capture the geometric regularity of a given image.

Some of these representations are ridgelet (Candes, 1998), brushlet (Meyer and Ronald,

1997), curvelet (Candes and Donoho, 2000), beamlet (Donoho and Huo, 2001), contourlet

(Do and Vetterli, 2005) and recently proposed shearlet (Labate et al., 2005).

The sheartlet transform as an alternative anisotropic multi-resolution system has been

introduced by Labate et al. (2005) which yields nearly optimal approximation properties

(Guo and Labate, 2007). Furthermore, the definition of shearlet transform is such that

includes various scales, location and orientation in order to optimally represent an im-

age. This new representation is based on a simple and rigorous mathematical framework

which not only provides a more flexible theoretical tool for the geometric representation of

multidimensional data, but is more natural for implementation. As a result, the shearlet ap-

proach can be associated to a multiresolution analysis (MRA) and this leads to a unified

treatment of both the continuous and discrete world (Labate et al., 2005). Also, unlike

the wavelets, they are optimal in sparse representation of multi-dimensional data (Guo

and Labate, 2012) and, unlike curvelets, their directionality is achieved by shear matri-

ces instead of rotation matrices (Guo and Labate, 2013). The shearlet transform has been

applied in diverse areas of engineering and medical sciences, including inverse problems

(Colonna et al., 2010), image separation (Kutyniok and Lim, 2011), image restoration

(Patel et al., 2009), image denoising (Lakestani et al., 2016) and medical image analy-

sis (Abazari and Lakestani, 2018a). However, due to shift variant nature of the shearlet,

this method produces artifacts in the most of their process more in image denoising and

image fusion (Vishwakarma et al., 2018). Some improved methods proposed to rectify

the mentioned artifacts. Recently, the author proposed a hybrid denoising method based

on shearlet transform and yaroslavsky’s method (Abazari and Lakestani, 2018b) to sup-

press the effect of the pseudo-Gibbs phenomena and shearlet-like artifacts in denoising.

The non-subsampled shearlet transform (NSST) is also proposed to capture edges and line

discontinuities for image fusion (Vishwakarma et al., 2018). Since the NSST is shift in-

variant, it diminishes the effect of pseudo-Gibbs phenomena and shearlet-like artifacts in

the related processing.

In this paper, by focusing on the non-subsampled form of “discrete shearlet trans-

form” (Hou et al., 2012), we have proposed a despeckling approach via log-transform for

speckle noisy ultrasound images. To illustrate the efficiency of the proposed approach, it
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is applied on a sample image and two real ultrasound images. Numerical results illustrate

that the proposed approach can obtain better performance in terms of peak signal to noise

ratio (PSNR) and structural similarity (SSIM) index rather than existing state-of-the-art

methods.

2. Speckle Noise

Speckle noise is characterizedby a peculiar granular pattern of bright and dark spots which

lead to degrade the resolution of ultrasound images. This typical pattern is also observed

in other kind of images involving coherent radiation, such as Laser and Synthetic Aperture

Radar (SAR).

Generally, the speckle noise is described as a multiplicative phenomenon. Suppose

that the observed image fn be degraded of noise free image f by the speckle noise ns and

an additive noise (such as thermal noise) na as follows from Kabir and Bhuiyan (2015):

fn = f ns + na . (1)

Since the effect of additive noise in comparison to speckle noise is very little, so equa-

tion (1) can be written as

fn = f ns . (2)

By applying the log-transformation on (2), we obtain

Fn = F +Ns , (3)

where Fn = log(fn),F = log(f ) and Ns = log(ns). The probability density function

(pdf) of ns is given by a Rayleigh pdf as follow:

pdf (ns)=
ns

α2
e
− n2

s

2α2 , (4)

where α is the shape parameter and the expected value of ns will be E(ns)= α
√
π
2

. From

(3) and (4), it follows that

pdf (Ns)=
eNs

α2
e
− e2Ns

2α2 , (5)

where pdf (Ns) is the pdf of Ns . By applying multi-resolution transform, such as shearlet

transform, on (3), we obtain

y = x + ε, (6)

where y , x and ε represents the coefficients corresponding to Fn,F and Ns , respectively.

In Goodman (1976), Goodman studied some fundamental properties of speckle noise.
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Also, he shows that the statistics of log-transformed speckle noise is given by a double-

exponential probability density function which is known as Fisher–Tippett probability

density function. For more informationabout properties of speckle noise, please see Good-

man (1976), Kabir and Bhuiyan (2015) and the references mentioned there.

3. Shearlet Transform

In this section, the shearlet and its transform both in continuous and discrete form will

be briefly explained. The shearlet representation is a directional representation system

that provides more geometrical information and shearlets are frame elements used in this

representation scheme.

Definition 1. For any ψ ∈L2(R2), the continuous shearlet system is defined as follows

SH(ψ)=
{
ψa,s,t(x)= a− 3

4ψ
(
A−1
a S−1

s (x − t)
)
, a > 0, s ∈R, t ∈ R2

}
, (7)

whereAa =
(
a 0

0
√
a

)
is anisotropic dilation matrix as a mean to change the resolution and

Ss =
(

1 s

0 1

)
is shear transformation matrix as a means to change the orientation.

The dilation matrixAa resembles the parabolic scaling, which has an elongated history

in the literature of harmonic analysis and can be outlined back to the second dyadic decom-

position from the theory of oscillatory integrals. Briefly, from the dilation matrixAa it can

be concluded that the scaling in the x-direction is square of the scaling in the y-direction.

The general form of dilation matrix Aa is Aa = diag(a, aα) with the parameter α ∈ (0,1)
that controls the degree of anisotropy, however, the value α = 1

2
plays a special role in the

discrete setting. In fact, parabolic scaling is required in order to obtain optimally sparse

approximations of cartoon-like images (see Definition 2), since it is best adapted to the

C2-regularity of the curves of discontinuity in the cartoon-like images class (Guo and La-

bate, 2007). The shearing matrix Ss also parameterizes the orientations using the variables

associated with the slopes rather than the angles, and has the advantage of leaving the in-

teger lattice invariant, provided s is an integer. The geometric effects of parabolic scaling

and shearing with fixed parameter a and several parameter s are illustrated in Fig. 1. The

associated continuous shearlet transform of any f ∈L2(R2) is given by

SHψf (a, s, t)= 〈f,ψa,s,t 〉.

In other words, SHψ maps the function f to the coefficients SHψf (a, s, t) associated

with the scale variable a > 0, the orientation variable s ∈ R, and the location variable

t ∈ R2.

Now, our main aim is to achieve a continuous shearlet transform, which becomes an

isometry, since this is automatically associated with a reconstruction formula. To do it,
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(a) s = 0 (b) s = 1
4

(c) s = 1
2

Fig. 1. The geometric effects of parabolic scaling and shearing with fixed parameter a and several parameter s .

(a) s = 0, (b) s = 1
4

and (c) s = 1
2

.

the generating function ψ must be a well localized function and be compatible with ad-

missibility condition as follows from Labate et al., 2005,

∫

R2

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ2dξ1 6 ∞.

So that, each f ∈ L2(R2) has the representation

f =
∫

Rn

∫ ∞

−∞

∫ ∞

0

〈f,ψa,s,t 〉ψa,s,t
da

a3
dsdt. (8)

Consequently, it can be easily construct examples of shearlets, including examples of ad-

missible shearlets which are well localized. Essentially any function ψ such that ψ̂ is

compactly supported away from the origin is an admissible shearlet. A particular example

of these representation is classical shearlet, wherein for any ξ = (ξ1, ξ2) ∈ R̂2, ξ1 6= 0, the

generating function ψ is setting such that

ψ̂(ξ1, ξ2)= ψ̂1(ξ1)ψ̂2

(ξ2

ξ1

)
, (9)

whereψ1 ∈ L2(R) is a wavelet which satisfies in the Calderon condition (Guo and Labate,

2007), given by

∑

j∈Z

∣∣ψ̂1(2
−j ξ)

∣∣2 = 1, ∀ a.e. ξ ∈R

with supp ψ̂1 ⊂ [−2,− 1
2
] ∪ [ 1

2
,2] and ψ2 ∈ L2(R) is a bump function with supp ψ̂2 ⊂

[−1,1] and

1∑

k=−1

∣∣ψ̂2(ξ + k)
∣∣2 = 1, ∀ a. e. ξ ∈ [−1,1].

Thus, a classical shearlet ψ is a function which is wavelet-like along one axis and bump-

like along another one. Each element ψa,s,t of classic shearlet has frequency support on a
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Fig. 2. Support of the classical shearlets ψ̂a,s,t (in the frequency domain) for different values of a and s .

pair of trapezoids, at various scales a, symmetric with respect to the origin and oriented

along a line of slope s (see Fig. 2). Let ψ ∈L2(R2) be an admissible shearlet. Define

C+
ψ =

∫ ∞

0

∫

R

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ2dξ1, C−
ψ =

∫ 0

−∞

∫

R

|ψ̂(ξ1, ξ2)|2

ξ2
1

dξ2dξ1.

If C+
ψ = C−

ψ = 1, then SHψ is an isometry.

To obtain the discrete form of the continuous shearlet system and related transform,

it is easy to discrete by properly sampling the scale, shear and translation parameters.

A (regular) discrete shearlet system, associated with ψ ∈ L2(R2) and denoted by SH(ψ),

is defined by

SH(ψ)=
{
ψj,k,m = 2

3
4 jψ(SkA2j .−m), j, k ∈Z, m ∈ Z2

}
, (10)

which can be easily obtained by setting (a, s, t)= (2−j ,−k2−j/2, S−k2−j/2A2−jm). Sim-

ilarly to the continuous case, the discrete shearlet transform of f ∈ L2(R2) is defined as

the following map

f → SHψf (j, k,m)= 〈f,ψj,k,m〉,

where j, k ∈ Z, m ∈ Z2. The main goal of utilizing shearlet systems is analysis and

synthesis of 2-D data, therefore, we need to provide a discrete shearlet system SH(ψ)

which forms a basis or, more generally, a frame. Similar on continuous form, for each

f ∈ L2(R2), we have the reproducing formula:

f =
∑

j,k∈Z,m∈Z2

〈f,ψj,k,m〉ψj,k,m, (11)

with convergence in theL2 sense. Also, in Labate et al. (2005), Guo and Labate (2007) it is

illustrated that the classical shearlet is a well-localized function, i.e. it has rapid decay both

in the spatial and in frequency domain. The well localization property of classical shear-

let implies that discrete shearlet system SH(ψ) forms a frame. This property is needed



8 A. Abazari and M. Lakestani

Fig. 3. Tiling of the frequency plane induced by discrete shearlets ψ̂j,k,m. The horizontal region Dh is illustrated

in solid line and the vertical region Dv is in dashed line.

for obtaining optimally sparse approximations. Tiling of the frequency plane induced by

discrete shearlets ψ̂j,k,m is shown in Fig. 3.

Definition 2. The class E2(R2) of cartoon-like images is the set of functions f :R2 →C

of the form

f = f0 + f11B,

where B ⊂ [0,1]2 is a set with ∂B being a closed C2-curve with bounded curva-

ture, 1B(x) =
{

1, x ∈ B
0, x /∈ B is indicator function and fi ∈ C2(R2) are functions with

supp fi ∈ [0,1]2 and ‖fi‖C2 = 1 for each i = 0,1.

The property of optimally sparse approximations of multivariate functions is one of

the main motivations to propose the shearlet framework. Before stating the main results,

we briefly describe how shearlet expansions are able to achieve optimally sparse approxi-

mations. Consider a cartoon-like function f and let SHψ be a discrete shearlet system of

(10). For j ∈Z, the elements of SHψ are approximately inside a box of size 2−j/2 ×2−j ,
it follows that at scale 2−j there exists about O(2j/2) such waveforms whose support is

tangent to the curve of discontinuity. Consequently, for j sufficiently large, each shearlet

coefficient 〈f,ψj,k,m〉 can be controlled by Guo and Labate (2007, 2012)

∣∣〈f,ψj,k,m〉
∣∣ 6 ‖f ‖∞‖ψj,k,m‖L1 6 C2−3j/4, (12)

where C is a constant. From inequality (12) and the observation that there exists at most

O(2j/2) significant coefficients, it can be concluded that the Mth largest shearlet coeffi-

cient is bounded by O(M3/2). This implies that the following result holds.

Theorem 1. Let f ∈ E2(R2) be a cartoon-like image defined on a bounded domain

�⊂R2, and let fM be the approximationof f obtained by taking theM largest coefficient
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|ψj,k,m| in the shearlets expansion of f given by (11). Then the asymptotic approximation

error is given by

‖f − fM‖2 6CM−2(logM)3, M → ∞.

Proof. To prove see Guo and Labate (2007, 2012) and the references therein. �

Let ψj,k,m be a classical shearlet, according to Fig. 2, to attain the reproducing for-

mula (11), it is enough to compute the inner product of 〈f,ψj,k,m〉 in both horizontal

region Dh and vertical region Dv . In Guo and Labate (2007, 2012), for both region index

d = {h,v}, it can be shown that

〈
f,ψdj,k,m

〉
= 2

3j
2

∫

R2

f̂ (ξ)V (2−2jξ)W d
j,k(ξ)e

2πiξA
−j
d S−k

d mdξ, (13)

where

V (2−2j ξ)= ψ̂1

(
2−2j ξ1

)
χDh

(
2−2jξ

)
+ ψ̂1

(
2−2j ξ2

)
χDv

(
2−2j ξ

)
,

Wh
j,k(ξ)=





ψ̂2

(
2j

ξ2

ξ1
− k

)
χDh

(ξ)+ ψ̂2

(
2j

ξ1

ξ2
− k + 1

)
χDv

(ξ), if k = −2j

ψ̂2

(
2j

ξ2

ξ1
− k

)
χDh

(ξ)+ ψ̂2

(
2j

ξ1

ξ2
− k − 1

)
χDv

(ξ), if k = 2j − 1

ψ̂2

(
2j

ξ2

ξ1
− k

)
, otherwise

W v
j,k(ξ)=





ψ̂2

(
2j

ξ2
ξ1

− k + 1
)
χDh

(ξ)+ ψ̂2

(
2j

ξ1
ξ2

− k
)
χDv

(ξ), if k = −2j

ψ̂2

(
2j

ξ2

ξ1
− k − 1

)
χDh

(ξ)+ ψ̂2

(
2j

ξ1

ξ2
− k

)
χDv

(ξ), if k = 2j − 1

ψ̂2

(
2j

ξ1

ξ2
− k

)
, otherwise

and Ah =
(

4 0

0 2

)
, Sh =

(
1 1

0 1

)
and Av =

(
2 0

0 4

)
, Sv = STh . In (13), it is required to

compute f̂ (ξ) in discrete form, so given an N ×N image f ∈ ℓ2(Z2
N ), the 2D discrete

Fourier transform (DFT) of f will be:

f̂ [k1, k2] = 1

N

N−1∑

n1,n2=0

f [n1, n2]e−2πi(
n1
N
k1+ n2

N
k2),

where −N
2
6 k1, k2 6

N
2

and brackets [., .] denote the indices of f̂ in Fourier domain. To

compute the integrand of (13), in the space domain and at the resolution level j , firstly, the

Laplacian-pyramid (LP) algorithm (Burt and Adelson, 1983) associated with the pseudo-

polar Fourier transform (Averbuch et al., 2008) will be utilized. This will achieve the mul-

tiscale partition illustrated in Fig. 4, by decomposing f
j−1
a [n1, n2], 0 6 n1, n2 6 Nj−1,

into a low pass filtered image f
j
a [n1, n2], a quarter of the size of f

j−1
a [n1, n2], and a

high pass filtered image f
j

d [n1, n2]. Consequently, to compute the shearlet coefficients

〈f,ψdj,k,m〉 given by (13), in the discrete domain, it is enough to compute the inverse
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Fig. 4. The figure illustrates the succession of Laplacian-pyramid and directional filtering.

pseudo-polar DFT and apply the inverse two-dimensional fast Fourier transform (FFT) on

each decomposition level.

We refer to Labate et al. (2005), Guo and Labate (2007, 2012) for additional informa-

tion about shearlet and its applications in various sciences and engineering.

4. Non-Subsampled Shearlet Transform (NSST)

The main idea of shearlet transform is to filter signals in pseudo-polargrid (Averbuch et al.,

2008), and then utilize a bandpass filter in frequency domain directly without sampling

operations. Therefore, the directional filtering is kept away from distortion and lead to

invariance in shearlet transform. Also, as described in the last section, the discrete form

of shearlet transform is achieved by combination of Laplacian-pyramid (Burt and Adelson,

1983) algorithm and directional filter. To improve the computational efficiency and also

to reduce the effect of Gibbs phenomena, usually the directional filter is so designed that

has a small size support.

The non-subsampled form of Laplacian-pyramid filter (NSLP) is proposed by Cunha

et al. (2006). By substituting NSLP for LP and combining it with discrete shearlet trans-

form, non-subsampled shearlet transform (NSST) is designed to improve effectiveness of

discrete shearlet transform (Hou et al., 2012). The NSST is known as the shift-invariant

version of the shearlet transform. Since the NSST is a fully shift-invariant, multi-scale

and multi-directional expansion in comparing to shearlet transform, it can diminish the

effect of pseudo-Gibbs phenomena and shearlet-like artifacts in the related processing.

The analysis of NSLP can be done as the following iterative processing (Hou et al., 2012):

NSLPj+1f =
(
Fh1

j

j−1∏

k=1

Fh0
k

)
f,

where f is an image, NSLPj+1 is the detail coefficients at scale j + 1, and Fh0
k and Fh1

j

are low pass and high pass filters of NSLP at scale j and k, respectively. Therefore, accord-

ing to Fig. 4, given an N ×N image f ∈ ℓ2(Z2
N ), the procedure of the non-subsampled
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Algorithm 1: Non-subsampled shearlet transform

Step 1: Apply the non-subsampled Laplacian-pyramid (NSLP) scheme to decompose

f
j−1
a into a low-pass image f

j
a and a high-pass image f

j
d .

Step 2: Compute f̂
j
d in pseudo polar grid, then get the matrix Pf

j
d .

Step 3: Apply a bandpass filtering to matrix Pf
j
d

to obtain {f̂ j
d,k

}Dj
k=1

.

Step 4: Apply inverse two-dimensional FFT to obtain discrete shearlet transform

coefficients {f jd,k}
Dj
k=1

in pseudo polar grid.

shearlet transform associated with non-subsampled Laplacian-pyramid at a fixed resolu-

tion scale j and in the number of direction Dj can be summarized in Algorithm 1.

5. Proposed Algorithm and Experimental Results

In this section, firstly, we have proposed a denoising algorithm based on non-subsampled

shearlet transform associated with log-transform method and secondly evaluated its per-

formance for reducing the speckle noise of the ultrasound images. The structure of present

method is similar to those described in Abazari and Lakestani (2018a), Hou et al. (2012).

Consider the speckle noisy problem u= vns , where u is observed image, v is noise free

image and ns is the multiplicative speckle noise which is independent of noise free im-

age v. According to relationships (3)–(6), after applying the log-transform, we have

g = f +ϒ,

where g = log(u), f = log(v) and ϒ = log(ns). The additive noise ϒ has properties

similar to additive Gaussian noise. Our goal is to obtain an estimatation of f , namely f̃ ,

from the noisy data g by applying a classical soft thresholding scheme (Labate et al.,

2005; Guo and Labate, 2007) on the shearlet coefficients of g. The threshold levels are

given by τj,k = cjσϒj,k , as in Labate et al. (2005), Guo and Labate (2007, 2012, 2013),

where σϒj,k is the standard deviation of noise at scale j and shear directional band k and

cj is the scaling parameter. Here the standard deviation σϒj,k is estimated by using the

MATLAB function of std. By using Laplacian-pyramid decomposition, we used five

levels of the NSLP decomposition, and we applied a directional decomposition on four

of the five scales. According to Fig. 4, we used eight shear filters of size 32 × 32 for the

first two scales (coarser scales), and sixteen shear filters of size 16 × 16 for the third and

forth levels (fine scales) and so on. Finally, by using the exp-transformation, the estimated

image can be obtained as f̃ = exp(f̃ ). Let f be noise free image of size N ×N and f̃

denotes the estimated image, to test our algorithm and to assess its performance, we used

two measurements from the following:

• PSNR: as peak signal-to-noise ratio, measured in decibels (dB), defined by

PSNR(f, f̃ )= 10 log10

255N

‖f − f̃ ‖F
,

where ‖.‖F is the Frobenius norm.
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Algorithm 2: Proposed method

Step 1: Input a speckled noisy ultrasound image u,

Step 2: Take the logarithmic transform on the speckled noisy image u to obtain f .

Step 3: Computes the discrete shearlet transform of f by applying eight shear filters of

size 32 × 32 for the first two scales (coarser scales), and sixteen shear filters of

size 16 × 16 for the third and forth levels (fine scales) and so on, associated with

5 scale, i.e. j = 1,2, . . . ,5, see Algorithm 1.

Step 4: Compute the standard deviation σϒj,k in each scale j and shear direction k.

Step 5: Applying thresholding τj,k = cj σϒj,k in the scale j and shear direction k.

Step 6: Apply the inverse discrete shearlet transform to obtain image f̃ .

Step 7: Apply the exp-transform, f̃ := exp(f̃ ), to obtain estimate image f̃ .

(a)
(a) (b) (c)

Fig. 5. Sample test images. (a) Cartoon-like image. (b) Real ultrasound image of a tumour. (c) Real ultrasound

image of a fetus.

• SSIM: for calculating the structural similarity (SSIM) index between denoised im-

age f̃ and original image f , defined by Wang et al. (2004),

SSIM(f, f̃ )=
(2µf µf̃ + c1)(2σf f̃ + c2)

(µ2
f +µ2

f̃
+ c1)(σ

2
f + σ 2

f̃
+ c2)

, (14)

where µf ,µf̃ and σ 2
f , σ

2

f̃
are the average and variance of f, f̃ , respectively, σ

f f̃
is

the covarianceof f and f̃ and c1 = (k1L)
2, c2 = (k2L)

2 are two variables to stabilize

the division with weak denominator. Here, we set L= 255 as dynamic range of the

pixel values and k1 = 0.01, k2 = 0.03.

The proposed scheme, which is briefly mentioned in Algorithm 2, is implemented

using MATLAB 2012. The scours of ShearLab (2008) are used to construct a discrete

form of shearlet transform and its non-subsampled form is erected by open source files of

NSCT (2008) proposed by Minh. N. Do which initially applied for contourlet transform.

In the first set, we have considered three images listed in Fig. 5 (one sample cartoon-

like image and two real ultrasound images same as considered in Yu and Acton (2002),

Vese and Osher (2003), Wang et al. (2014), and have compared the results of the proposed

method with some related medical ultrasound despeckling techniques from the recent lit-

erature such as Yu and Acton (2002), Vese and Osher (2003), Wang et al. (2014). Firstly,
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 6. Different methods of noise removal on a synthetic image. (a) Original image. (b) Image polluted by

multiplicative speckle noise with Rayleigh distribution (variance is υ = 0.8) (PSNR = 18.41, SSIM = 0.2372).

(c) The denoising result using SRAD (Yu and Acton, 2002) (PSNR = 24.35, SSIM = 0.8551). (d) The result us-

ing VO method (Vese and Osher, 2003) (PSNR = 23.04, SSIM = 0.8044). (e) The denoised result using framelet

regularization method without backward diffusion (Wang et al., 2014) (PSNR = 23.95, SSIM = 0.8164). (f) The

denoised result using framelet regularization method and backward diffusion (Wang et al., 2014) (PSNR =
24.23, SSIM = 0.8314). (g) The result of proposed method (PSNR = 27.24, SSIM = 0.9258).

we degraded a noise free sample cartoon-like image, (Fig. 5(a)), by multiplicative speckle

noise with Rayleigh distribution by variance of υ = 0.8 and then applied the proposed

method on this image. To evaluate the efficiency of the proposed method, we used peak

signal to noise ratio (PSNR) as a quantity to measure the quality of reconstruction of

noisy images and SSIM as a structural similarity index between denoised image and orig-

inal image. The despeckled image of our proposed method, (Fig. 6(g)), is compared with

related techniques of Yu and Acton (2002), Vese and Osher (2003), Wang et al. (2014)

with respect to PSNR and SSIM and are shown in Figs. 6(b)–6(f). The measurements of

PSNR and SSIM of the proposed method in comparison to those methods mentioned in

Yu and Acton (2002), Vese and Osher (2003), Wang et al. (2014) show that the proposed



14 A. Abazari and M. Lakestani

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Visual comparison of various speckle suppressing methods on a ultrasound image of a tumour. (a) Origi-

nal image. (b) The denoising result using SRAD (Yu and Acton, 2002). (c) The result using VO method (Vese and

Osher, 2003). (d) The denoised result using framelet regularization method without backward diffusion (Wang

et al., 2014). (e) The denoised result using framelet regularization method and backward diffusion (Wang et al.,

2014). (f) The result of the proposed method.

approach is better than those methods, in addition, the proposed method preserves the

texture and edges of images while the methods of Yu and Acton (2002), Vese and Osher

(2003), Wang et al. (2014) lead to smooth edges of images. Also, to evaluate the visual

quality of the proposed approach, similarly to the methods mentioned in Yu and Acton

(2002), Vese and Osher (2003), Wang et al. (2014), we employed the proposed method

to two real noisy medical ultrasound images (see Figs. 5(b) and 5(c) same as in Yu and

Acton (2002), Vese and Osher (2003), Wang et al. (2014)). The results of our proposed

method in comparison with the results of state-of-the-art methods mentioned in Yu and

Acton (2002), Vese and Osher (2003), Wang et al. (2014) are listed in Figs. 7 and 8.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Visual comparison of various speckle suppressing methods on a ultrasound image of a fetus. (a) Original

image. (b) The denoising result using SRAD (Yu and Acton, 2002). (c) The result using VO method (Vese and

Osher, 2003). (d) The denoised result using framelet regularization method without backward diffusion (Wang

et al., 2014). (e) The denoised result using framelet regularization method and backward diffusion (Wang et al.,

2014). (f) The result of the proposed method.

In the second set, two other real ultrasound images, Fig. 9(a) and 9(b), from Siemens

Healthcare (Siemens Healthcare GmbH, 2019), are considered and the proposed method

is applied to reduce their speckle noise. The despeckled result of these images are shown

in Fig. 9(c) and 9(d), respectively, which show that our proposed method can effectively

suppress the speckle noises.

Generally, experimental results of the first and the second set of selected images il-

lustrate that the proposed approach can obtain better performance in terms of PSNR and
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(a) (b)

(c) (d)

Fig. 9. Visual comparison of various speckle suppressing methods on two real ultrasound images. (a) and (b)

Real ultrasound images. (c) and (d) The result of the proposed method.

SSIM for ultrasound image denoising. From visual comparison, it is easy to see that our

proposed method gets smooth effect while preserving the edges of images, which lead to

maintain the useful texture information of test images.

6. Conclusions

In this paper, we have proposed a denoising method based on discrete shearlet transform

and log-transform methods for speckle suppression in ultrasound images. Our numerical

tests are done in MATLAB experiments. The experimental results on a sample cartoon-

like image and two real ultrasound images polluted by multiplicative speckle noise illus-

trate the efficiency of the proposed method in terms of qualitative visual evaluation. Ex-

perimental results illustrate that the proposed approach can obtain better performance in

terms of peak signal to noise ratio (PSNR) and structural similarity index (SSIM) between

despeckled images and original images. This approach can be helpful to assist radiologists

in their quest and diagnostics.
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