
INFORMATICA, 2019, Vol. 30, No. 1, 33–52 33
 2019 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2019.196

A Heading Maintaining Oriented Compression

Algorithm for GPS Trajectory Data

Pengfei HAO, Chunlong YAO∗, Qingbin MENG, Xiaoqiang YU, Xu LI
School of Information Science and Engineering, Dalian Polytechnic University,

Dalian, China

e-mail: yaocl@dlpu.edu.cn

Received: October 2017; accepted: November 2018

Abstract. The raw trajectories contain large amounts of redundant data that bring challenges to

storage, transmission and processing. Trajectory compression algorithms can reduce the number of

positioning points while minimizing the loss of information. This paper proposes a heading main-

taining oriented trajectory compression algorithm, which takes into account both position informa-

tion and direction information. By setting an angle threshold, the algorithm can achieve a more

accurate approximation of trajectories than traditional position-preserving trajectory compression

algorithms. The experimental results show that the algorithm can ensure certain effect on the direc-

tion information and is more flexible.

Key words: trajectory compression, heading maintaining, flexible.

1. Introduction

In recent years, with the popularization and application of GPS-enabled devices, massive

volumes of GPS trajectory data are recorded. These data hide interesting and valuable

knowledge patterns describing the behaviour of moving objects (Morzy and Rosikiewicz,

2007). Individual trajectories can reflect professional characteristics of the user, trajec-

tories with high degree of spatio-temporal regularities on weekdays imply the user has

a fixed full-time job, trajectories with irregular spatio-temporal characteristics in a week

imply work unit of the user is not fixed (Li et al., 2014). Group trajectories contain a lot

of valuable knowledge patterns. According to these patterns, people can find restaurants

and travel routes that interest them. Urban function units (e.g. residential area, commercial

area and industrial area) also can be distinguished by using these patterns (Li et al., 2014).

Typically, the size of raw trajectory data recorded by GPS-enabled devices is very

large. Consider Beijing with 67,000 taxis, suppose we collect trajectory data in every 2–

3 seconds, the size of the trajectories generated by these taxis for just a single day is as

high as 60TB (Yuan, 2012). Such massive volumes of data will bring some problems

for location-based applications. (1) It will take up a lot of storage spaces. (2) Sending a

large amount of GPS trajectory data will cause network overhead. (3) It will bring a heavy

*Corresponding author.

34 P. Hao et al.

burden for web browsers when rendering these trajectories on the client side. It takes

approximately 1s for rendering 1000 points on the map (Chen et al., 2012). (4) When the

size of trajectory data gets larger, it becomes more difficult to find valuable patterns from

the trajectory data. Reducing the size of trajectory data has the potential to make it more

easily (Giannotti et al., 2007).

1.1. Existing Trajectory Compression Algorithms

To solve the trajectory compression problem various algorithms are proposed, each offers

a different method to compress trajectory data. In this section, we will briefly introduce

the related algorithms of trajectory compression.

Douglas-Peucker (DP) algorithm (Douglas and Peucker, 1973) is widely used in com-

puter aided design (CAD) area, it can be employed to compress trajectory data. Given

a trajectory T and a parameter of spatial error µ, DP algorithm constructs the approx-

imate trajectory T ′ by repeatedly adding points from T until the maximum spatial er-

ror of T ′ becomes smaller than µ. DP algorithm can effectively compress trajectory

data, but it only focuses on spatial information. TD–TR (Meratnia and de By, 2004) is

an improvement algorithm of DP, which uses SED error instead of spatial error. Com-

pared to DP algorithm, TD–TR algorithm has the benefit of taking temporal information

into account. Optimal algorithms (Perez and Vidal, 1994; Salotti, 2000; Salotti, 2001)

aim at minimizing spatial error, by removing positioning points in searching process

they can achieve a minimum spatial error compression. Due to the computational over-

head of the optimal algorithms, near-optimal algorithms are proposed to reduce the time

complexity. Near-optimal algorithms proposed in papers (Kolesnikov and Franti, 2002;

Kolesnikov and Franti, 2003) can achieve a faster search by reducing the search space

and using heuristic search. Paper (Tian and Xu, 2011) proposes a trajectory compres-

sion method based on turning point judgment method, this algorithm uses turning points

to delineate a trajectory, in which the advantages and disadvantages of point-by-point

judgment method and combined judgment method are analysed. Trajectory simplifica-

tion (TS) algorithm is proposed in paper (Chen et al., 2009), which considers both the

shape skeleton and the semantic meanings of a GPS trajectory. TS algorithm uses head-

ing change degree of a point and distance between this point and its most adjacent neigh-

bours to weight importance of the point, the points with high weight will be retained in

final compressed trajectory. Open Window Time Ratio (OPW-TR) (Meratnia and de By,

2004) is a compression algorithm for trajectory data, given a trajectory T and a param-

eter of SED error µ, OPW-TR algorithm starts by defining a segment between the first

point P1 (the anchor point) and the third point P3 (the float point). Then the algorithm

calculates all SED errors of the points between the anchor point and the float point. As

long as all SED values are below µ, an attempt is made to move the float point one point

forward in trajectory T. When the SED threshold µ is going to be exceeded, a new an-

chor point will be chosen out. The process will repeat until the entire trajectory has been

transformed into a piecewise linear approximation. Based on the different anchor point

select strategies, OPW-TR has two modes called Before-OPW-TR and Normal-OPW-TR.

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 35

Threshold-guided algorithm (Potamias et al., 2006) compresses trajectory by construct-

ing a safe area using moving object’s speed and direction, if an incoming positioning

point is in the safe area, then this point contributes little information and hence can be

discarded without significant loss in accuracy. Spatial QUalIty Simplification Heuris-

tic – Extended (SQUISH-E) algorithm (Muckell et al., 2014) is an extended version of

SQUISH algorithm (Muckell et al., 2011). Compared to SQUISH algorithm, SQUISH-E

algorithm has the capability of compressed trajectories while ensuring that SED error

is within a user-specified bound. The main idea of SQUISH-E algorithm is to construct

a priority queue of positioning points, this algorithm compresses trajectory by repeat-

edly removing the positioning point of the lowest priority until the termination condi-

tion is met. And based on parameters setting, SQUISH-E can be divided into SQUISH-

E(µ) and SQUISH-E(λ). A hybrid trajectory compression algorithm based on multiple

spatiotemporal characteristics is proposed in paper (Jiagao et al., 2015), this algorithm

uses characteristic points to delineate a trajectory, and the characteristic points are cho-

sen by using both distance, direction and speed information. Articles (Qian and Lu, 2017;

Sun et al., 2016) are a review of related algorithms and have certain reference value. Docu-

ment (Cao and Li, 2017) proposes DOTS (Directed acyclic graph based Online Trajectory

Simplification) algorithm and constructs a directed acyclic graph on-line simplification.

1.2. The Proposed Algorithm

The positioning points where an object changed moving direction contain rich semantic

meanings, these points imply user’s behaviour, such as, staying, taking photos or watch-

ing something attractive, etc. Without these positioning points, we will know little about

user’s behaviour. In this paper, we propose a heading maintaining oriented trajectory com-

pression algorithm called HMOTC.

The HMOTC algorithm has the benefit of taking into account both the heading change

degree of positioning points and the direction change degree between positioning points

and trajectory segment. So, this algorithm can accurately capture the direction information

of the trajectory. As shown in Fig. 1, a multi transportation mode (walk → bus → walk

→ bus → walk → train) GPS trajectory from north to south is compressed by DP, TD-

TR and our HMOTC. For traditional position-preserving compression algorithms DP and

TD-TR, we could know little about how the trajectory’s user walked on walk segment from

the compressed trajectories, because they lose too much of the moving object’s heading

information. For HMOTC algorithms, because the direction information of the trajectory

is taken into account, we can know more details about user’s walking direction and walking

route from the compressed trajectories.

Another benefit of HMOTC algorithm is that the algorithm has the ability of control-

ling compression with respect to spatial error. Without spatial information control it may

lead to an inaccuracy compression. To illustrate that, let us take DPTS-SP-Prac (Long

et al., 2013) algorithm as an example. DPTS-SP-Prac is a direction-preserving trajectory

compression algorithm which focuses on capturing the direction change degree between

positioning points and trajectory segment, the algorithm has a theoretical bounded posi-

36 P. Hao et al.

Zoom Level = 11 Zoom Level = 18

Zoomed

Raw Trajectory Bus

Walk

Compressed by HMOTC (10 meters, 60°)

Walk

Bus

Compressed by TD-TR (10 meters)

Walk

Bus

Compressed by DP (10 meters)

Walk

Bus

Fig. 1. A multi transportation mode GPS trajectory and it’s compressed representations.

DPTS-SP-Prac (40°)HMOTC (100 meters, 40°)Raw Trajectory

Train Segment

Zoom Level = 11 Zoom Level = 11 Zoom Level = 11

2.2km

Figure 2: The multi transportation mode trajectory after being compressed by DPTS-SP-Prac and
Fig. 2. The multi transportation mode trajectory after being compressed by DPTS-SP-Prac and HMOTC.

tion error, but it is uncontrollable. As shown in Fig. 2, the multi transportation mode trajec-

tory is compressed under a 40◦ angle threshold. The DPTS-SP-Prac algorithm maintains

a good trajectory contour in the walk segment and the bus segment. However, as the train

segment has the characteristics of high speed and small direction change, a lot of spatial

information is lost, the maximum perpendicular distance error of DPTS-SP-Prac in train

segment is as high as 2.2 km (refer to Fig. 2, dashed box area). For the proposed algorithm,

because it has the ability of spatial information control, the algorithm can maintain a good

trajectory contour in walk, bus and train segments.

The HMOTC has the flexibility of controlling compression with respect to both spatial

error and direction error, so the compression process can be precisely controlled accord-

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 37

ing to users’ needs. If only the direction information of the trajectory is taken into account,

the SED threshold of the algorithm can be set to positive infinity. If only the spatial infor-

mation of the trajectory is taken into account, the angle threshold of the algorithm can be

set to 180◦. Because the algorithm can compress trajectory data while retrieving points

from trajectory, it has the advantages of supporting both online and offline applications.

The remainder of this paper is organized as follows. In Section 2, some related defi-

nitions about trajectory compression are reported. After that our HMOTC algorithm is

described in Section 3. An empirical evaluation of trajectory compression algorithms

with different error measurements is given in Section 4. Finally, paper conclusions are

discussed in Section 5.

2. Related Definitions

According to the loss of information, trajectory compression algorithms can be classified

into two categories: lossless and lossy compression. Lossless compression algorithms en-

able reconstruction of the original trajectory data without information loss. Lossy com-

pression will cause information loss, the trajectory data will be changed and can not be

reconstructed. Usually, the compression efficiency of lossless compression algorithms is

not obvious. For example, the compression efficiency of a lossless compression algorithm

proposed in Zheng et al. (2005) is 25%. In contrast, lossy compression can significantly

reduce the data size while maintaining an acceptable error tolerance. Due to the advantage

of lossy compression, this paper focuses on lossy compression of trajectory data.

Generally, a GPS trajectory T is a temporally ordered sequence of positioning points

T = P1,P2,P3, . . . ,Pn−1,Pn, each point Pi consists of three tuples 〈Xi , Yi , ti〉, where Xi ,

Yi represent the coordinate at time stamp ti . The problem of lossy trajectory compression

is to seek a set of temporally ordered points T ′ = Pi1,Pi2,Pi3, . . . ,Pi[m−1],Pim (a subset

of T) as an approximation of T , where 1 = i1 < · · · < im = n. And the definition of

compression ratio CR in this paper is defined as

CR =
n

m
, n > m. (1)

2.1. Error Measures

There are many error measures to evaluate the accuracy of trajectory compression al-

gorithms. In this section, we will introduce four error measures called spatial error, Syn-

chronous Euclidean Distance (SED) (Potamias et al., 2006) error, speed error and heading

error.

Definition 1. Spatial error: Given a trajectory T and its compressed representation T ′,

the spatial error of T ′ with respect to a point Pi in T is defined as the distance between Pi

(xi, yi, ti) and its estimation P ′
i (x ′

i, y
′
i, ti). If T ′ contains Pi , then P ′

i = Pi . Otherwise, the

closest point to Pi is defined as P ′
i which is along the line between predT ′ (Pi) and succT′

38 P. Hao et al.

P1

P2

P3 P4
P5

P6

original

compressed
P’2

P’3 P’5

P1

P2

P3 P4

P5

P6

original

compressedP’2

P’3 P’5

(a) Spatial error (b) Synchronous Euclidean distance

Fig. 3. Spatial and SED errors are illustrated by using T = P1,P2,P3,P4,P5,P6 and T ′ = P1,P4,P6 .

(Pi), where predT′ (Pi) and succT′ (Pi) denote Pi ’s closest predecessor and successor

among the points in T ′ (Muckell et al., 2014).

Definition 2. SED error: Synchronouseuclidean distance is an error measure which con-

siders both spatial and temporal information. The definition of SED error is similar to

spatial error, the SED error of T ′ with respect to a point Pi in T is defined as the distance

between Pi (xi, yi, ti) and its estimation P ′
i (x ′

i, y
′
i, ti). The difference is the coordinate

x ′
i, y

′
i of P ′

i (x ′
i, y

′
i, ti) are defined using formulas (4) and (5), where Ps (xs, ys, ts) =

predT′ (Pi) and Pe (xe, ye, te) = succ T′ (Pi).

1t1 = te − ts, (2)

1t2 = ti − ts, (3)

1x′i = xs +

(

△t2

△t1

)

· (xe − xs), (4)

1y′i = ys +

(

△t2

△t1

)

· (ye − ys). (5)

For instance, in Fig. 3(a), spatial errors of P1, P4, P6 are zero and spatial error of P2

is the perpendicular distance from P2 to line P1P4. In Fig. 3(b), SED errors of P1,P4,P6

are zero and SED error of P2 is the distance between P2 and P ′
2
.

Definition 3. Speed error: Given a trajectory T and its compressed representation T ′,

the speed error of T ′ with respect to a point Pi (xi, yi, ti) in T is defined as the absolute

difference value between Speed (Pi) and AverageSpeed (PsPe), where Ps(xs, ys, ts) =

predT ′(Pi+1), Pe(xe, ye, te) = succT ′(Pi). Pi ’s speed and average speed of segment PsPe

are defined as follows:

Speed(Pi) = Distance(Pi,Pi+1)/(ti+1 − ti),Pi‡Pn, (6)

AverageSpeed(PsPe) = Distance(Ps ,Pe)/(te − ts). (7)

Definition 4. Heading error: given a trajectory T and its compressed representation T ′,

the heading error of T ′ with respect to a point Pi in T is defined as heading change between

Heading (Pi) and Heading (PsPe), where Ps = predT ′(Pi + 1), Pe = succT ′(Pi). Pi ’s

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 39

heading, heading of segment PsPe and HeadingChange (h1, h2) are defined as follows:

Heading(Pi) =
−−−−→
PiPi+1,Pi‡Pn, (8)

Heading(PsPe) =
−−→
PsPe, (9)

HeadingChange(h1, h2) =

{

360◦ − |h1 − h2|, |h1 − h2| > 180◦,

|h1 − h2|, |h1 − h2|6 180◦.
(10)

3. HMOTC Algorithm

A key feature of our HMOTC algorithm is that it takes into account the direction informa-

tion of GPS trajectories, the algorithm controls both the heading change degree of posi-

tioning points and the direction change degree between positioning points and trajectory

segment.

3.1. Algorithm Description

Given a trajectory T , a SED threshold µ and an angle threshold θ , HMOTC algorithm

starts by defining a segment between the first point P1 and the third point P3 in T , where

P1 is called anchor point Pa and P3 is called float point Pf . Then the following steps are

applied in segment (window) PaPf :

(1) Checking whether predT(Pf) is a turning point by calculating heading change

α between points predT(Pf) and predT(predT(Pf)). If α > θ (i.e. predT(Pf) is a turn-

ing point), then predT(Pf) becomes the new anchor point and the second point behind

predT(Pf) becomes the new float point.

(2) It is not enough to capture the heading change of a moving object by calculating

heading change of a single point, this policy is vulnerable to error propagation, as a moving

object could change its heading gradually. In order to address this problem, the heading

change of any two points in segment PaPf (except point Pf) and the heading change

between segment PaPf and each point in segment PaPf (except point Pf) are calculated.

If there is a heading change value greater than the given angle threshold θ , then the point

(between Pa and Pf) of the minimum Accumulated Synchronous Euclidean Distance

(ASED) error becomes the new anchor point and the second point behind it becomes the

new float point.

(3) For maintaining shape skeleton of the trajectory and minimizing the loss of spa-

tiotemporal information, SED errors of the points between Pa and Pf are calculated. If

there is a SED error value greater than the given SED threshold µ, then the point (between

Pa and Pf) of the minimum ASED error becomes the new anchor point and the second

point behind it becomes the new float point.

As long as the anchor point Pa is not changed, an attempt is made to move the float

point Pf one point forward in trajectory T , and then apply the above steps in segment

PaPf . When there is a new anchor point, the above steps can be applied in segment

PaPa+2 (i.e. PaPf), where Pa is the new anchor point and Pa+2 is the new float point.

40 P. Hao et al.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P2

P3

P4

P5
P6

P7

P8

P9
P1

sed1

sed2

se
d3 se

d4

sed6
se

d5

(a) Segment Taf (b) ASED(P4) = sed1 + sed2 + · · · + sed6

P1

P2

P3

P4

P5

P6

P7

P8

P9
se

d1
se

d2

se
d3

se
d4 sed5

sed6

P1

P6

P7

P8

P9

(c) ASED(P6) = sed1 + sed2 + · · · + sed6 (d) P6, P8 become anchor point and float point

Fig. 4. An example of anchor point selecting.

The above process will be repeated until the entire trajectory T has been transformed into

a piecewise linear approximation T ′.

For compressing trajectories more accurate, ASED error measure is used for anchor

point selection. Given anchor point Pa and float point Pf , the ASED of Pi (f > i > a) is

defined as

ASED(Pi) =

f
∑

i=a

SEDError
(

Taf,T ′
af,Pi

)

, (11)

where Taf = Pa,Pa+1, . . . ,Pf and T ′
af = Pa,Pi ,Pf . By using ASED the most ap-

propriate anchor point can be selected. For example, as shown in Fig. 4, Taf =

P1,P2,P3,P4,P5,P6,P7,P8,P9, where P1 is the anchor point and P9 is the float

point. For selecting a new anchor point between Pa and Pf , the ASED errors of

P2,P3,P4,P5,P6,P7,P8 are calculated. Due to P6 has the minimum ASED error, P6

and P8 become new anchor point and new float point. And as seen in Fig. 4, the P6 is the

appropriate anchor point. Given a trajectory T of length n, HMOTC algorithm has O(n2)

worst-case running time.

3.2. Pseudo-Code of HMOTC Algorithm

Figure 5 describes the details of HMOTC algorithm. First P1 and P3 are selected as anchor

point Pa and float point Pf (lines 2 and 3). Then the algorithm will do some checks in

segment PaPf (line 7), as long as the anchor point Pa is not changed (i.e. index = −1),

then move the float point Pf one point forward (line 13). Otherwise, Pindex becomes the

new anchor point and Pindex + 2 becomes the new float point (lines 10 and 11). When

the entire trajectory T has been transformed into a piecewise linear approximation T ′, the

compressed trajectory T ′ will be returned (line 20).

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 41

Algorithm 1: HMOTC(T, μ, θ)

INPUT :

 T = {P1, P2, ... , Pn} // original trajectory

 μ // SED threshold

 θ //angel threshold

OUTPUT : T’ = {Pi1, Pi2, ... , Pim} //compressed trajectory, Pi1=P1,

Pim=Pn ,m≤n

1. T’ = []

2. anchorIndex = 1

3. floatIndex = 3

4. T’ = T’ Append P1

5. while (floatIndex < = n)

6. {

7. index = findNewAnchorIndex(anchorIndex, floatIndex)

8. if (index != -1) { //new anchor point is founded

9. T’ = T’ Append Pindex

10. anchorIndex = index

11. floatIndex = anchorIndex + 2

12. } else { //anchor point not changed, move the float point

one point forward

13. floatIndex += 1

14. }

15. }

16. if (T’ not contain Pn)

17. {

18. T’ = T’ Append Pn

19. }

20. return T’

Fig. 5. HMOTC algorithm.

Figure 6 provides a detailed description of findNewAnchorIndex algorithm. This al-

gorithm is used to find the new anchor point according to SED error and heading error, if

there is no new anchor point found, then the value −1 will be returned (value −1 means

that the segment PaPf can represent the sub-trajectory Tsub = Pa,Pa + 1, . . . ,Pf with-

out too much loss of information). First, this algorithm calculates the heading change

of predT(Pf) (line 3). Then, the algorithm checks whether predT(Pf) is a turning point

(line 4), if predT(Pf) is a turning point then predT(Pf) becomes the new anchor point

(line 5). After that, the algorithm will calculate three errors. (1) calculate each point’s

SED error (line 8). (2) calculate heading changes between segment PaPf and each point

(line 9). (3) calculate heading changes of any two points (line 12). If any errors are greater

than the given parameters (line 13), then findNewAnchorIndexalgorithmseeking the point

which has the minimum ASED error (line 15) and return the point’s index (line 16). When

all points in segment PaPf (expect Pf) are processed, value −1 will be returned (line 19).

42 P. Hao et al.

Algorithm 2: findNewAnchorIndex(anchorIndex, floatIndex)

INPUT :
 anchorIndex // anchor point’s index

 floatIndex // float point’s index

OUTPUT : newAnchorIndex // index of new anchor point

1. newAnchorIndex = -1

2. segmentHeading = GetHeading(PanchorIndexPfloatIndex) //calculate

heading of the segment

3. headingChange1 = HeadingChange(GetHeading(PfloatIndex-1),

GetHeading(PfloatIndex-2))

4. if(headingChange1 > θ){ //Checking whether predT(PfloatIndex) is a

turning point

5. return floatIndex - 1

6. }

7. for (i = anchorIndex until floatIndex) {

8. sed = GetSED(Pi, PanchorIndex, PfloatIndex) //calculate Pi’s SED

9. headingChange2 = HeadingChange(GetHeading(Pi),

segmentHeading)

10. /* this is for calaulate the heading change of any two points in

segment

11. PanchorIndexPfloatIndex (except point PfloatIndex,), as float point

moving forward */

12. headingChange3 = HeadingChange(GetHeading(PfloatIndex - 1),

GetHeading(Pi))

13. if (headingChange2 > θ || headingChange3 > θ || sed > μ){

14. //find the point with the minimum ASED use formula 8, and

return the point’s index

15. newAnchorIndex =

findPointIndexWithMinimumASED(anchorIndex, floatIndex)
16. return newAnchorIndex

17. }

18. }

19. return newAnchorIndex

Fig. 6. findNewAnchorIndex algorithm.

4. Evaluations

In order to verify the performance of the proposed algorithm, we implemented HMOTC

algorithm and other algorithms by using Scala language. And Geolife dataset (Zheng et

al., 2009; Zheng et al., 2008; Zheng et al., 2010) was used for algorithms evaluating.

The Microsoft Geolife dataset was obtained from 182 users over a period of five years

(from April 2007 to August 2012), it contains 17,621 trajectories with a total distance of

1,292,951 kilometers and a total duration of 50,176 hours. 91.5 percent of the trajecto-

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 43

ries are logged in a dense representation, e.g. every 1–5 seconds or every 5–10 meters

per point. This dataset can support transportation mode learning, 73 users have labelled

their trajectories with transportation mode, such as driving, taking a bus, riding a bike

and walking. In our evaluations, three labelled trajectories were used. Trajectory one is a

multi-modal trajectory, it contains three transportation modes (walk, bus, train), 5911 po-

sitioning points, and a total duration of 3 hours 49 minutes (from 2008-06-18, 12:10:33 to

2008-06-18, 15:59:59). Trajectory two is a bus track, it contains 2045 positioning points,

and a total duration of 50 minutes (from 2008-06-18, 12:33:34 to 2008-06-18, 13:23:02).

Trajectory three is a taxi track in motorway, it contains 2167 positioning points, and a total

duration of 37 minutes (from 2008-04-04, 07:16:50 to 2008-04-04, 07:53:00).

Our evaluation did not include algorithms which do not consider temporal informa-

tion, because these algorithms will introduce larger temporal errors. And the direction-

preserving algorithm DPTS-SP-Prac is also not included, because the algorithm lacks

the control ability of the spatial error, the algorithm will introduce a larger spatial error.

And the algorithms which use speed as a parameter are also not included, because it is

hard to find an appropriate speed value as the parameter for a trajectory which contains

multiple transportation modes. Various error metrics including average SED error, aver-

age spatial error, average speed error and average heading error were used in our evalua-

tion. Given a trajectory T = P1,P2,P3, . . . ,Pn−1,Pn and its compressed representation

T ′ = Pi1,Pi2,Pi3, . . . ,Pim−1,Pim, these error metrics are defined as follows:

AverageSpatialError
(

T ,T ′
)

=
1

n

n
∑

i=1

SpatialError
(

T ,T ′,Pi

)

, (12)

AverageSEDError
(

T ,T ′
)

=
1

n

n
∑

i=1

SEDError
(

T ,T ′,Pi

)

, (13)

AverageSpeedError
(

T ,T ′
)

=
1

n

n
∑

i=1

SpeedError
(

T ,T ′,Pi

)

, (14)

AverageHeadingError
(

T ,T ′
)

=
1

n

n
∑

i=1

HeadingError
(

T ,T ′,Pi

)

. (15)

4.1. The Effect of Parameters on Compression Ratio

Since the proposed algorithm is a heading oriented algorithm, this algorithm can accu-

rately capture the direction information of the trajectory, and all turning points whose

moving direction change degree are greater than the given angle threshold will be retained

in compressed trajectory. So the compression rate of this algorithm is greatly influenced

by trajectory’s heading. The places where a user stayed, walked or took photos always

cause a large heading change (because of the GPS positioning error, even if the user is

stationary, it will produce a larger direction change). As shown in Fig. 7, due to the bus

stopping at each bus station, the trajectory two has a lot of points whose direction change

44 P. Hao et al.

10° 20° 30° 40° 50°
60° 70° 80° 90° 180°

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

C
o

m
p

re
ss

io
n

R
a
ti

o

SED T hreshold

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

C
o

m
p

re
ss

io
n

R
a
ti

o

SED T hreshold

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

C
o

m
p

re
ss

io
n

R
a
ti

o

SED T hreshold

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 7. The values of compression ratio under different parameters.

degree is greater than the given angle threshold at bus stations, thus the compression rate

of trajectory two is mainly influenced by angle threshold. Similarly to trajectory two, the

compression rate of trajectory one is also mainly influenced by angle threshold, because

trajectory one contains both walk and bus transportation modes. Trajectory three is a taxi

track in motorway, it contains few points whose direction change degree is greater than

the given angle threshold, so the compression rate of trajectory three is influenced by both

angle threshold and SED threshold.

When the zoom = 19 is shown in Fig. 8, the image effects under different conditions

of the algorithm are used for compression. In order to facilitate the comparison, this pa-

per intercepts a section of track with obvious effect. Fig. 8(a) is the original trajectory.

In Fig. 8(b) the SED threshold value of 30 is taken and the angle threshold is 60◦. It can

be seen that keeping the contour works well and approaches the original trajectory. Fig-

ure 8(c) is a case where no angle threshold is set, and the trajectory compression rate is

improved, but the profile is distorted, and there is a large difference to the original trajec-

tory. In Fig. 8(d), the SED threshold is set to the maximum, which is the case considering

only the angle threshold, and the effect is good. However, if the SED threshold is too

large, trajectory distortion will be caused in other trajectory segments. Figure 8(e) is used

to show that if you want to mention the compression ratio, you must increase the angle

threshold and the effect of keeping the contour decreases.

4.2. The Effect of Parameters on Compression Ratio

The proposed algorithm has the benefit of taking into account heading information of

the trajectory, it can have direction error under control. In the following evaluations, the

angle threshold of the proposed algorithm was set to 60◦ for trajectory one, trajectory two

and trajectory three. And compared to the traditional position-preserving compression

algorithms which cannot control the direction error, from the experimental results, it can

be seen that the proposed algorithms have smaller loss of heading information, while other

algorithms will lose a lot of direction information.

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 45

(a) The raw trajectory (b) sed = 30, θ = 60, CR =12%

8 (c) sed = 30, θ = 180, CR =26% (d) sed = 100, θ = 60, CR = 14% (e) sed = 70, θ = 90, CR = 20%

Fig. 8. Comparison of trajectory compression in various situations.

Figures 9 and 10 contrast the trajectory compression algorithms in terms of average

spatial error and average SED error. The experimental results of the two figures are ba-

sically the same, and they are introduced together. For trajectory one, the proposed al-

gorithm outperforms other algorithms in terms of both average spatial error and average

SED error. For trajectory two and trajectory three, the error of HMOTC is smaller than

Before-OPW-TR and TD-TR, and slightly greater than SQUISH-E (µ).

Figure 11 provides a comparison in terms of average heading error. The result shows

that the proposed algorithm is more accurate than other position-preserving compression

algorithms. This is because HMOTC algorithm can compress trajectories while ensuring

that heading error is within a user-specified bound. In contrast, other algorithms lack the

46 P. Hao et al.

Before -OPW-TR HMOTC Normal -OPW-TR SQUISH-E(µ) TD-TR

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

A
v

er
ag

e
S

p
at

ia
l

E
rr

o
r(

m
et

er
s)

SED T hreshold

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

A
v

er
ag

e
S

p
at

ia
l

E
rr

o
r(

m
et

er
s)

SED T hreshold

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

A
v
e
ra

g
e

S
p

a
ti

al
E

rr
o

r(
m

e
te

rs
)

SED Threshold

-TR

-TR

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 9. Average spatial errors under different SED thresholds.

Before -OPW-TR HMOTC Normal -OPW-TR SQUISH-E(µ) TD-TR

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

A
v

er
ag

e
S

E
D

E
rr

o
r(

m
et

er
s)

SED T hreshold

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

A
v

er
ag

e
S

E
D

E
rr

o
r(

m
et

er
s)

SED T hreshold

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

A
v

e
ra

g
e

S
E

D
E

rr
o

r(
m

e
te

rs
)

SED Threshold

-TR

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 10. Average SED errors under different SED thresholds.

capability of heading error control, so these algorithms will lose a lot of heading informa-

tion.

Due to the proposed algorithm has the capability of heading error control. So, a lot of

turning points are retained in compressed trajectory. Although these points are important

in describing semantic meanings of a trajectory, they will cause a low compression ratio.

As seen in Fig. 12, the compression ratio of HMOTC algorithm is lower than other al-

gorithms. A high compression ratio can be achieved by setting a 180◦ angle threshold, if

these turning points are not taken into account. In the next section, evaluations are given

under the condition of same compression ratio.

4.3. Evaluations Under the Condition of Same Compression Ratio

In this section, we evaluated algorithms under the condition of same compression ratio.

In order to achieve the given compression ratio, the value of HMOTC algorithm’s angle

threshold parameter may be set to obtuse angle or straight angle. In this case, HMOTC

algorithm will lose the advantage of heading maintaining. From the experimental results,

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 47

Before -OPW-TR HMOTC Normal -OPW-TR SQUISH-E(µ) TD-TR

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

A
v

er
ag

e
S

p
ee

d
E

rr
o

r(
m

/s
)

SED T hreshold

10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

A
v

er
ag

e
S

p
ee

d
E

rr
o

r(
m

/s
)

SED T hreshold

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

A
v

er
ag

e
S

p
ee

d
E

rr
or

(m
/s

)

SED Threshold

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 11. Average speed errors under different SED thresholds.

Before -OPW-TR HMOTC Normal -OPW-TR SQUISH-E(µ) TD-TR

10 20 30 40 50 60 70 80 90 100
5

10

15

20

A
v

er
ag

e
H

ea
d

in
g

E
rr

o
r(

in
d

eg
re

es
)

SED T hreshold

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

A
v

er
ag

e
H

ea
d

in
g

E
rr

o
r(

in
d

eg
re

es
)

SED T hreshold

10 20 30 40 50 60 70 80 9 0 100
1

2

3

4

5

6

A
v

er
ag

e
H

ea
d

in
g

E
rr

o
r(

in
d

eg
re

es
)

SE D Thres hold

-TR

(µ)

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 12. Average heading errors under different SED thresholds.

it can be seen that even under the condition of the same compression ratio, information

loss of the proposed algorithm is not too large. And in terms of average SED error, the

proposed algorithm has a better performance than other algorithms.

In Fig. 13, algorithms are evaluated in terms of average spatial error. The average

spatial error of the Normal-OPW-TR algorithm in the three trajectory modes is the largest,

and the HMOTC algorithm is the smallest in the trajectory 1, but is equivalent to other

algorithms in the trajectory 2 and the trajectory 3. The results show that Normal-OPW-

TR algorithm introduced larger spatial error than other algorithms, and the spatial error

of HMOTC algorithm is smaller than most algorithms.

In Fig. 14, average SED errors are shown for each algorithm over various compression

ratios. The track 1 and track 2 can clearly show that the average SED error of the HMOTC

algorithm is smaller than that of other algorithms, and the track 3 is not obvious, but

it is equivalent to other algorithms. Experiments show that HMOTC and TD-TR are the

most accurate algorithms in terms of SED error. Compared to TD-TR algorithm, HMOTC

algorithm has the advantage of supporting both offline and online applications.

48 P. Hao et al.

Before -OPW-TR HMOTC Normal -OPW-TR SQUISH-E(µ) TD-TR

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

C
o

m
p

re
ss

io
n

R
at

io

SED Threshold

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

C
o

m
p

re
ss

io
n

R
at

io

SED T hreshold

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

C
o

m
p

re
ss

io
n

R
at

io

SED Threshold

(µ)

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 13. Compression ratio under different SED thresholds.

Before- OPW-TR

HMOTC

Normal -OPW-TR SQUISH -E () SQUISH -E (µ)

TD -TR

λ

5 10 15 20 25 30
0

1

2

3

4

5

6

A
v

er
ag

e
S

p
at

ia
l

E
rr

o
r(

m
et

er
s)

Compression Ra tio

5 10 15 20 25 30
0

1

2

3

4

A
v

er
ag

e
S

p
at

ia
l

E
rr

o
r(

m
et

er
s)

Compression Ra tio

5 10 15 20 25 30
0

1

2

3

4
A

v
er

ag
e

S
p

at
ia

l
E

rr
o

r(
m

et
er

s)

Compression Ra tio

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 14. Average spatial errors.

Figure 15 provides a comparison in terms of average speed error. The three models in

the figure show that the average speed error of this algorithm is not very obvious, but the

effect is basically the same, no uncontrollable or greater error loss occurs. As shown in

the figure, SQUISH-E(µ), HMOTC and TD-TR are the most accurate algorithms in terms

of speed error. Compared to HMOTC, SQUISH-E(µ) and TD-TR have the limitation that

they only support offline applications.

Figure 16 shows the average heading errors for each algorithm over various compres-

sion ratios. The results show that with the increase of compression ratio, HMOTC algo-

rithm gradually lost its advantage of heading maintaining. The reason behind this is that

in order to achieve the given compression ratio, the value of HMOTC algorithm’s angle

threshold parameter is set to obtuse angle or straight angle. As seen in Fig. 16, the pro-

posed algorithm has better performance in case of low compression ratio (compression

ratio CR > 15).

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 49

Before- OPW-TR

HMOTC

Normal -OPW-TR SQUISH -E () SQUISH -E (µ)

TD -TR

λ

5 10 15 20 25 30
0

5

10

15

A
v

er
ag

e
S

E
D

E
rr

o
r(

m
et

er
s)

Compression Ra tio

5 10 15 20 25 30
0

5

10

15

20

25

A
v

er
ag

e
S

E
D

E
rr

o
r(

m
et

er
s)

Compression Ra tio

5 10 15 20 25 30
0

2

4

6

8

10

A
v

er
ag

e
S

E
D

E
rr

o
r(

m
et

er
s)

Compression Ra tio

(µ)

(µ)

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 15. Average SED errors.

Before- OPW-TR

HMOTC

Normal -OPW-TR SQUISH -E () SQUISH -E (µ)

TD -TR

λ

5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2

A
v

er
ag

e
S

p
ee

d
E

rr
o

r(
m

/s
)

Compression Ratio

5 10 15 20 25 30
0

0.5

1

1.5

2

A
v

er
ag

e
S

p
ee

d
E

rr
o

r(
m

/s
)

Compression Ratio

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

A
v

er
ag

e
S

p
ee

d
E

rr
o

r(
m

/s
)

Compression Ra tio

(µ)

Trajectory one (multi-modal) Trajectory two (bus) Trajectory three (taxi in motorway)

Fig. 16. Average speed errors.

5. Conclusions

In this paper, we proposed a heading maintaining oriented trajectory compression algo-

rithm, called HMOTC. The algorithm can maintain both shape skeleton and semantic

meanings of the trajectory, all turning points whose moving direction change degree is

greater than the given angle threshold will be retained in compressed trajectory. Compared

to traditional position-preserving compression algorithms, the HMOTC algorithm has the

benefit of taking into account heading information of the trajectory, so this algorithm can

support wider range of applications. The HMOTC has the flexibility of controlling com-

pression with respect to both spatial error and direction error, so the compression process

can be precisely controlled according to users’ needs. If only the direction information

of the trajectory is taken into account, the SED threshold of the algorithm can be set to

positive infinity. If only the spatial information of the trajectory is taken into account, the

angle threshold of the algorithm can be set to 180. Because the algorithm can compress

50 P. Hao et al.

trajectory data while retrieving points from trajectory, it has the advantage of supporting

both online and offline applications. The results show that the proposed algorithm can

achieve more accurate approximation than other algorithms under the condition of same

SED threshold, especially in the heading maintaining aspect. And it also has the good

performance under the condition of same compression ratio.

Acknowledgement. This work is partially supported by Scientific Research Fund of

Liaoning Provincial Education Department (No. 2017J049). The authors also gratefully

acknowledge the helpful comments and suggestions of the reviewers, which have improved

the presentation.

References

Cao, W., Li, Y. (2017). Dots: an online and near-optimal trajectory simplification algorithm. Journal of Systems

Software, 126, 34–44.

Chen, Y., Jiang, K., Zheng, Y., Li, C., Yu, N. (2009). Trajectory simplification method for location-based so-

cial networking services. In: Proceedings of the 2009 International Workshop on Location Based Social

Networks, Seattle, USA, pp. 33–40.

Chen, M., Xu, M., Franti, P. (2012). A fast O(N) multiresolution polygonal approximation algorithm for GPS

trajectory simplification. IEEE Transactions on Image Processing, 21(5), 2770–2785.

Douglas, D.H., Peucker, T.K. (1973). Algorithms for the reduction of the number of points required to represent

a line or its caricature. The International Journal for Geographic Information and Geovisualization, 10(2),

112–122.

Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D. (2007). Trajectory pattern mining. In: Proceedings of the 13th

ACM SIGKDD international conference on Knowledge Discovery and Data Mining, San Jose, USA, pp.

330–339.

Jiagao, W.U., Qian, K., Liu, M., Liu, L. (2015). Improvement of perez and vidal algorithm for the decomposition

of digitized curves into line segments. Journal of Computer Applications, 35(5), 1209–1212.

Kolesnikov, A., Franti, P. (2002). A fast near-optimal min-# polygonal approximation of digitized curves. In:

IASTED Internatioal. Conference on Automation, Control and Information Technology (ACIT 2002), Novosi-

birsk, Russia, pp. 418–422.

Kolesnikov, A., Franti, P. (2003). Reduced-search dynamic programming for approximation of polygonal curves.

Pattern Recognition Letters, 24(14), 2243–2254.

Li, T., Pei, T., Yuan, Y., Song C., Wang, W., Yang, G., (2014). A review on the classification, patterns and applied

research of human mobility trajectory. Progress in Geography, 33(7), 938–948.

Long, C., Wong, R.C.-W., Jagadish, H.V. (2013). Direction-preserving trajectory simplification. Proceedings of

the VLDB Endowment, 6(10), 949–960.

Meratnia, N., de By, R. (2004). Spatiotemporal compression techniques for moving point objects. In: Advances

in Database Technology – EDBT 2004, 9th International Conference on Extending Database Technology,

Heraklion, Crete, Greece, pp. 765–782.

Morzy, M., Rosikiewicz, L. (2007). Mining frequent trajectories of moving objects for location prediction. In:

Machine Learning and Data Mining in Pattern Recognition, 5th International Conference, MLDM 2007,

Leipzig, Germany, pp. 667–680.

Muckell, J., Hwang, J.-H., Patil,V., Lawson, C.T., Ping, F., Ravi, S.S. (2011). SQUISH: an online approach

for GPS trajectory compression. In: Proceedings of the 2nd International Conference and Exhibition on

Computing for Geospatial Research & Application, COM.Geo 2011, Washington, DC, USA, May 23–25.

Muckell, J., Olsen, P.W., Hwang, J.H., Lawson, C.T., Ravi, S.S. (2014). Compression of trajectory data: a com-

prehensive evaluation and new approach. GeoInformatica, 18(3), 435–460.

Perez, J.C., Vidal, E. (1994). Optimum polygonal approximation of digitized curves. Pattem Recognition Letters,

15(8), 743–750.

A Heading Maintaining Oriented Compression Algorithm for GPS Trajectory Data 51

Potamias, M., Patroumpas, K., Sellis, T. (2006). Sampling trajectory streams with spatiotemporal criteria. In:

Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SS-

DBM ’06), Vienna, Austria, 3–5 July 2006, pp. 275–284.

Qian, H., Lu, Y. (2017). Simplifying gps trajectory data with enhanced spatial-temporal constraints. Interna-

tional Journal of Geo-Information, 6(11), 329.

Salotti, M. (2000). Improvement of Perez and Vidal algorithm for the decomposition of digitized curves into line

segments. In: Proceedings International Conference on Pattern Recognition ICPR’00, Barcelona, Spain, pp.

882–886.

Salotti, M. (2001). An efficient algorithm for the optimal polygonal approximation of digitized curves. Pattern

Recognition Letters, 22(2), 215–221.

Sun, P., Xia, S., Yuan, G., Li, D. (2016). An overview of moving object trajectory compression algorithms.

Mathematical Problems in Engineering, 2016(3), 1–13.

Tian, S.L., Xu, J. (2011). GPS location data reducing based on turning point judgment method. In: Second

International Conference on Mechanic Automation and Control Engineering (MACE), Hohhot, China, pp.

7395–7398.

Yuan, J. (2012). Querying, Mining with Applications on Large-Scale Trajectory Data. HeFei University of Sci-

ence and Technology of China.

Zheng, Y., Da-Ke, H.E., Zhang, W.F., et al. (2005). An efficient scheme for GPS data compression. China Rail-

way Science, 26(3), 134–138.

Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y. (2008). Understanding mobility based on GPS data. In: Proceed-

ings of the 10th ACM Conference on Ubiquitous Computing (Ubicomp 2008), Seoul, Korea, pp. 312–321.

Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y. (2009). Mining interesting locations and travel sequences from GPS

trajectories. In: Proceedings of International Conference on World Wild Web (WWW 2009), Madrid, Spain.

ACM Press, pp. 791–800.

Zheng, Y., Xie, X., Ma, W.-Y. (2010). GeoLife: a collaborative social networking service among user, location

and trajectory. Bulletin of the Technical Committee on Data Engineering, 33(2), 32–40.

52 P. Hao et al.

P. Hao, born in 1991, MS candidate. His research interests include data mining.

C. Yao, born in 1971, PhD, professor. His research interests include database theory and

application, data mining, intelligent transportation.

Q. Meng, born in 1991, MS, professor. His research interests include data mining.

X. Yu, born in 1974, PhD, associate professor. His research interests include computer

application.

X. LI, born in 1981, PhD, associate professor. Her research interests include machine

learning.

