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Abstract. This paper introduces two novel algorithms for the 2-bit adaptive delta modulation,

namely 2-bit hybrid adaptive delta modulation and 2-bit optimal adaptive delta modulation. In 2-bit

hybrid adaptive delta modulation, the adaptation is performed both at the frame level and the sam-

ple level, where the estimated variance is used to determine the initial quantization step size. In the

latter algorithm, the estimated variance is used to scale the quantizer codebook optimally designed

assuming Laplace distribution of the input signal. The algorithms are tested using speech signal and

compared to constant factor delta modulation, continuously variable slope delta modulation and in-

stantaneously adaptive 2-bit delta modulation, showing that the proposed algorithms offer higher

performance and significantly wider dynamic range.

Key words: delta modulation, predictive coding, speech coding, signal to noise ratio, Laplacian

source.

1. Introduction

Delta modulation (DM) is a simple analog-to-digital conversion technique widely used

in coding (and compression) of correlated signals, including speech, audio, image, etc. It

can be observed as low-complexity Differential Pulse Code Modulation (DPCM) (Jayant

and Noll, 1984; Hanzo et al., 2007; Uddin et al., 2016; Gibson, 2017; Sarade, 2017),

where the basic configuration includes one-bit quantization and the first-order prediction

(Zrilic, 2005). Given its low-complexity and solid performance, DM is a good candidate

for real time implementations. Both DPCM and DM belong to a group of predictive cod-

ing algorithms (Gibson, 2016, 2017), which are often used in adaptive signal processing,

cognitive signal processing, speech enhancement (Hucha Arce et al., 2017) and artificial

intelligence (Hastie et al., 2008).

DM makes a comparison between the current signal sample and its previous value,

and outputs a single bit indicating the sign of the difference between these two samples.

If the difference is positive, the approximated signal is increased by step +1 (bit 1), oth-

erwise, if it is negative, the approximated signal is decreased by step −1 (bit −1). Since
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the step size is always constant, the maximum or minimum slopes of the approximated

signal tend to occur along the straight lines. Therefore, DM with the fixed step size is also

known as Linear Delta Modulation (LDM). The main advantages of LDM are the simple

implementation of encoder and decoder and the low bit-rate. However, LDM also suffers

from several limitations, such as slope overload and granular noise. Slope overload occurs

when the step size 1 is not large enough; hence the approximated signal cannot follow

the steep changes in the input signal. On the other hand, the granular noise occurs when

the step size 1 is too large for small variations in the input signal.

To overcome the drawbacks of LDM and improve its performance, different modifi-

cations are proposed, such as e.g. Adaptive Delta Modulation (ADM). In ADM the step

size is not constant, but updated according to the specific rule related to the changes in the

input signal. Practical applications of ADM algorithms require appropriate restriction on

minimum and maximum step size, which respectively controls the amount of idle channel

noise and slope overload distortion (Jayant and Noll, 1984). The examples of ADM are

Constant Factor Delta Modulation (CFDM) and Continuously Variable Slope Delta Mod-

ulation (CVSDM). CFDM uses one or two bit memory to determine the appropriate step

size at each sampling instant, whereas in CVSDM the step size of the approximated signal

is progressively increased or decreased, in case the same state has been observed three or

four times in a row. Tombras (1990) has considered the 2-digit ADM that uses memory

and looks ahead estimation of step size, generating at its output binary and ternary digits.

The 2-bit ADM (Prosalentis and Tombras, 2007) is actually the modification of 2-digit

ADM (Tombras, 1990), that eliminates the need for a ternary digit, which is in turn re-

flected in slightly reduced performance. The forward adaptive algorithm in Denic et al.

(2017) is based on three-level delta modulation where the quantizer codebook is adapted

framewise.

Another coding technique based on DM is sigma-delta modulation (SDM), where an

integrator is added in front of the ordinary DM modulator, followed by a differentiator

in front of the DM demodulator (Aldajani and Sayed, 2001; Prosalentis and Tombras,

2008, 2009; Bashir et al., 2016; Gray, 1987). SDM is commonly used in analog-to-digital

(A/D) signal conversion, where the sampling rates are considerably higher, leading to

significantly increased transmission rate defined as the product of the sampling rate and

the number of bits per sample used to represent the input amplitude. This can be a limiting

factor for applications, such as e.g. speech coding, where smaller transmission rates are

required. Hence, in such scenarios, ADM is a better solution.

ADM algorithms are widely used in speech coding, but also in other areas of signal

processing, such as networked controlled systems (Gomez-Estern et al., 2011), fiber optic

based data transmission of signals from sensors (Visan et al., 2016) or transmission over

the noiseless binary channels (Dokuchaev, 2015).

In this paper, we propose two solutions for 2-bit ADM, with a goal to improve the

overall performance of the one presented in Prosalentis and Tombras (2007). Both devel-

oped algorithms perform frame-by-frame processing of the input signal, and estimate the

frame variance to adapt the systems to the input signal variations. Whereas the algorithm

in Prosalentis and Tombras (2007) performs the step size adaptation sample-by-sample,
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the first proposed algorithm, namely 2-bit hybrid ADM, performs adaptation both at the

frame level and at the sample level. In this case, the estimated variance is used to de-

termine the initial quantization step-size for each frame, and eventually, instantaneously

adaptive logic for step size given in Prosalentis and Tombras (2007) is applied within the

particular frame. Note that the ability to track well the time-varying signals (e.g. speech)

and consequently achieve high performance is related to the good choice of the initial

step size value, which in Prosalentis and Tombras (2007) is determined using an external

LDM configuration. In our algorithm, the step size initialization is embedded and avoids

excessive preprocessing. Information about the frame variance is required at the receiving

end; hence, it needs to be quantized and transmitted once per each frame using the finite

number of bits.

The second presented 2-bit ADM algorithm is introduced to improve the one in Pros-

alentis and Tombras (2007) in terms of the employed quantizer. In particular, we have

upgraded the standard DM scheme with the optimal 2-bit scalar quantizer designed for

Laplacian probability density function (pdf), that is applied in forward adaptive scheme

(Denic et al., 2017; Nikolic and Peric, 2008; Peric et al., 2013). The algorithm employs

the adaptive first-order prediction, i.e. the prediction coefficient is adapted to the signal

statistics. The estimated frame variance is used to adapt the codebook of the quantizer to

the input signal variations, once per each frame. In this scenario, the information about

the predictor coefficient needs to be sent to the receiver in addition to the frame variance.

The performance of the proposed 2-bit ADM algorithms is tested for speech signal, as

the long-termstatistics of speech is well modelled by Laplacian pdf (Jayant and Noll, 1984;

Chu, 2003; Gazor and Zhang, 2003) and compared to three baselines, i.e. CFDM, CVSDM

and instantaneously adaptive 2-bit ADM (Prosalentis and Tombras, 2007).

The remaining of this paper is organized as follows: in Section 2 we present the pro-

posed hybrid and optimal 2-bit ADM algorithms. In Section 3 the experimental results

obtained using the real speech signal are presented and discussed. Finally, concluding

remarks are given in Section 4.

2. Two-Bit Hybrid Adaptive Delta Modulation

The proposed 2-bit hybrid ADM algorithm is actually the improvement of the one dis-

cussed in Prosalentis and Tombras (2007). The 2-bit ADM (Prosalentis and Tombras,

2007) is characterized by an exponentially variable rate in step-size changes, where the

employed quantizers generate output codewords L1(n) and L2(n) to represent the sign

and the relative magnitude of step size, respectively. In particular, the implemented adap-

tive logic tries to fit the quantizer step-size to the variations of input signal with unknown

variance, starting from some initial step-size value. To avoid an arbitrary step size initial-

ization which might not be optimal, 2-bit ADM (Prosalentis and Tombras, 2007) requires

employing an external LDM configuration in the preprocessing stage, for choosing the

appropriate initial step size.

In this paper, we developed an algorithm where the step size initialization is embedded

and hence, the excessive preprocessing procedures are avoided. Hence, the modification
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of the algorithm described in Prosalentis and Tombras (2007) consists of dividing the

input signal into frames, estimating frame variance and using this value for determining

the initial step size for each frame. The detailed description of the proposed algorithm is

illustrated in Fig. 1.

The available input signal is divided into frames using a buffer. Each frame contains

certain number of input samples xj (n), n = 1, . . . ,M , where j is the index of the frame

and M is the frame size. The frame variance is calculated in the variance estimation block

as:

σ 2
j = 1

M

M
∑

n=1

x2
j (n), j = 1, . . . ,F. (1)

The next step is the variance quantization using L-levels log-uniform quantizer (QLU)

(Denic et al., 2017; Nikolic and Peric, 2008). It has the decision thresholds and the repre-

sentative levels respectively given by (2) and (3):

tLU
i [dB] = αmin + 1Li, i = 0, . . . ,L, (2)

yLU
i [dB] = αmin + 1L(i − 0.5), i = 1, . . . ,L, (3)

where 1L [dB] = αmax−αmin
L

is the step size, and the dynamic range of the input signal

variance is defined as [αmin [dB], αmax [dB]].
For quantizing the logarithmic variance defined as α [dB] = 10 log10(σ 2

j /σ 2
ref), it uses

the mapping function given as: QLU(α) = yi
LU if α ∈ (tLU

i−1, t
LU
i ). In the linear domain,

the outputs are given as:

V 2
i = σ 2

ref 10
yLU
i
10 , i = 1, . . . ,L. (4)

Information about the employed level of QLU is transferred to the receiver once per

frame as side information (index J in Fig. 1) using RLU = log2 L bits.

Based on the QLU output determined for each frame j , V 2
i,j , we define the initial step

size 1j (0) once per each frame as:

1j (0) = KVi,j , (5)

where K is the real constant determined such that it maximizes SNR. Upon selection of

the initial step size for the current frame, it is used for quantization of the first prediction

error sample, whereas for all other samples in the frame, the step size 1(n), n = 2, . . . ,M

is updated according to the specific rule (Prosalentis and Tombras, 2007). Hence, the

proposed 2-bit hybrid ADM algorithm includes both adaptation at the frame level and

at the sample level, to provide a combination of variance availability and signal-tracking

possibilities.

The prediction error signal ej (n) = xj (n)−yj (n) is formed, where xj (n) is the frame

sample value and yj (n) is its predicted value, and the sign of ej (n) represented by L1(n)
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Next frame processing j=j+1
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quantization
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e(n)

Determination of parameters
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Fig. 1. Block diagram of the proposed 2-bit hybrid ADM algorithm.
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bit (positive +1 or negative −1) is determined as:

L1,j (n) = sgn
(

ej (n)
)

= sgn
(

xj (n) − yj (n)
)

. (6)

This is actually the output codeword of the two-level quantizer. The sign of the prediction

error, i.e. L1,j (n) bit, is then compared to the previous L1,j (n) bit and as the comparison

result the step parameter Nj (n) is determined:

Nj (n) =
{

α if L1,j (n) = L1,j (n − 1),
1
α

if L1,j (n) 6= L1,j (n − 1),
(7)

where α > 1. Further, the magnitude of the prediction error |ej (n)| is compared with

the appropriate threshold set to be in the middle of the distance between two possible step

size values Nj (n)1j (n−1)β and Nj (n)1j (n−1)/β , resulting in the step size multiplier

Mj (n) determination:

Mj (n) =
{

Nj (n)β if |ej (n)|> 1
2
(β + 1

β
)Nj (n)1j (n − 1),

Nj (n)

β
otherwise,

(8)

where β > 1.

The information about the selected multiplier is transferred to the receiver with the

second bit L2,j (n) having two possible values +1 or −1, which actually present the output

of the second employed quantizer. Then, L2,j (n) is compared to the previous L2,j (n− 1)

bit to define the parameter γj (n):

γj (n) =
{

γ if L2,j (n) = L2,j (n − 1) = −1,

1 otherwise.
(9)

It represents an additional memory function, beside Nj (n). Finally, the step size adaptation

rule that applies to a particular frame is given by Prosalentis and Tombras (2007):

1j (n) = Mj (n)γj (n)1j (n − 1), n = 2, . . . ,M, (10)

or equivalently

1j (n) = αL1,j (n)L1,j (n−1)βL2,j (n)1j (n − 1). (11)

The samples of the reconstructed frame (provided at the local decoder as well as in the

receiver) have the form:

yj (n) = yj (n − 1) + L1,j (n)1j (n). (12)

The prediction error signal is formed with frame overlapping of one sample, i.e. the

first sample in each frame xj (1) is predicted using the last sample from the previous recon-

structed frame yj (M), except for the first frame where yj (1) = 0, as there is no previous
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frame in that case. In addition, L2,j (M) bit from the previous frame is taken into account

in processing the next frame.

Regarding the parameters α, β and γ , their selection is explained in detail in Prosalen-

tis and Tombras (2007) and adopted in this paper.

The bits L1,j (n) and L2,j (n) together with the side information that defines the number

of bits per frame needed to represent the quantized variance RLU
M

are transferred to the

receiver, leading to the overall bit rate:

R = RP,T + RLU

M
, (13)

where RP,T = 2 bit/sample is the rate of the algorithm described in Prosalentis and

Tombras (2007).

3. Optimal Two-Bit Adaptive Delta Modulation

In this section, we introduce another variant of 2-bit ADM, designed to improve the one

in Prosalentis and Tombras (2007). In a baseline algorithm, one bit codeword is used

to represent the sign of the prediction error (positive or negative) and one bit is used

to represent the relative magnitude of the prediction error. The parameters of such DM

quantizer, i.e. the representative levels and decision thresholds, are determined with re-

spect to the parameters α and β . In particular, depending on the case whether the current

and the previous sample of the prediction error have the same or different sign, two four-

level quantizers denoted as Q1 and Q2 are employed. If they have the same sign, Q1

is used with the quantization levels (in the positive part) {yQ1

3 = α/β,y
Q1

4 = α · β} and

the decision threshold being exactly at the half distance between the corresponding levels

t
Q1

2 = α · (β + 1/β). Otherwise, Q2 is used with the quantization levels (in the posi-

tive part) {yQ2

3 = 1/(α · β), y
Q2

4 = β/α}, and the decision threshold t
Q2

2 = (β + 1/β)/α.

However, the quantizer designed in this way is not the optimal solution.

In this paper, we develop the algorithm with optimal (in the minimum distortion sense)

fixed rate (R = 2 bit/sample) scalar quantizer. In the following subchapter we will explain

the optimal quantizer design followed by its implementation in the proposed 2-bit ADM.

3.1. Optimal Quantizer Design

An N -level scalar quantizer Q can be regarded as the functional mapping Q : R → Y ,

where R is the set of real numbers and Y = {y1, y2, . . . , yN } ⊂ R is the set of repre-

sentative levels that forms the code book of size N (Na, 2004; Lee and Na, 2017). In

particular, Q partitions the real line into N cells Si = (ti−1, ti], i = 1,2, . . . ,N , where

ti , i = 0,1, . . . ,N are the decision thresholds (t0 = −∞ and tN = ∞) and each cell is

represented by the level yi ∈ Si . For the input value x ∈ Si , the quantizer output is yi , i.e.

it holds Q(x) = yi , if x ∈ Si .
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y3 y4

δ2 δ1 δ1

t4→∞t2=0 t3

 

d d d d d
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Fig. 2. Illustration of the proposed quantizer.

If we assume that the information source is memoryless and Laplacian with zero-

mean and variance σ 2, p(x,σ ) = 1√
2σ

e−
√

2|x|
σ , which is commonly used model for speech

(Gazor and Zhang, 2003), then, for a given source, the mean-squared distortion D is eval-

uated as Jayant and Noll (1984), Chu (2003):

D =
∑

i

∫

Si

(x − yi)
2p(x) dx. (14)

The optimized quantization parameters, i.e. the decision thresholds and the representative

levels, that minimize (14), can be obtained by differentiating D over ti and yi , and equating

with zero, resulting in:

ti =
yi + yi+1

2
, i = 1, . . . ,N − 1, (15)

yi =
∫ ti
ti−1

xp(x)dx

∫ ti
ti−1

p(x)dx
, i = 1, . . . ,N. (16)

The equations (15) and (16) are known as the nearest neighbour and the centroid rule,

respectively (Jayant and Noll, 1984; Hanzo et al., 2007).

The symmetrical N = 4 levels and fixed rate (R = log2 N = 2 bit/sample) scalar quan-

tizer is designed for zero mean and unit variance, with positive part shown in Fig. 2. Due to

the symmetry one can write: t1 = −t2, y1 = −y4 and y2 = −y3. Parameters δ1 = y4 − t3

and δ2 = y3 − t2 in Fig. 2 are the offsets, representing the distance between the correspond-

ing representative level and the lower decision threshold. Note that δi , i = 1,2, completely

defines the proposed quantizer, as its decision thresholds and representative levels can be

specified as:

t3 = δ1 + δ2, y3 = δ2, y4 = 2δ1 + δ2. (17)

Theorem 1. An optimal 2-bit scalar quantizer can be designed using the following iter-

ative rule:

δ
(i+1)
2 = 1√

2
−

√
2 exp

(

−
(

1 +
√

2δ
(i)
2

))

. (18)
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Proof. Substituting Laplacian pdf (for σ = 1) into (16) we arrive at:

y3 = 1√
2

− t3 exp(−
√

2t3)

1 − exp(−
√

2t3)
, (19)

y4 = t3 + 1√
2
. (20)

According to the basic definition of offset δ1 and (20), it is obvious that δ1 = 1/
√

2. Ac-

cording to (17), we have t3 = 1/
√

2+δ2, and substituting in (19), after some mathematical

manipulations, we obtain:

δ2 = 1√
2

−
√

2 exp
(

−
(

1 +
√

2δ2

))

, (21)

which can be solved iteratively; thus, completing the proof. �

Corollary 1. Total distortion of the optimal four-level (2-bit) quantizer is specified as:

D = δ2
2. (22)

Proof. Total distortion given by (14) can be rewritten as:

D = 2

∫ t3

t2=0

x2p(x)dx − 4y3

∫ t3

t2=0

xp(x)dx + 2y2
3

∫ t3

t2=0

p(x)dx

+ 2

∫ ∞

t3

x2p(x)dx − 4y4

∫ ∞

t3

xp(x)dx + 2y2
4

∫ ∞

t3

p(x)dx. (23)

Knowing that σ 2
ref = 2

∫ ∞
0

x2p(x)dx = 1 and using (16) after some mathematical manip-

ulations we arrive at:

D = 1 − y2
3P(y3) − y2

4P(y4), (24)

where P(y3) and P(y4) are the probabilities of occurrence of the levels y3 and y4, respec-

tively:

P(y3) =
∫ t3

0

p(x)dx = 1

2

(

1 − exp(−
√

2t3)
)

, (25)

P(y4) =
∫ ∞

t3

p(x)dx = 1

2
exp(−

√
2t3). (26)

Substituting (17) in (25) and (26) and further applying in (24) results in:

D = 1 − δ2
2 − 2(

√
2δ2 + 1) exp

(

− (1 +
√

2δ2)
)

. (27)
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Table 1

Performance of the proposed 2-bit optimal quantizer

and baselines for the Laplacian source with zero

mean and unit variance.

Q Q1 Q2

D 0.18 0.20 0.19

SQNR [dB] 7.54 7.00 7.24

R [b/s] 2 2 2

Finally, using (21), after some basic mathematical manipulations, (27) becomes (Na, 2004;

Lee and Na, 2017):

D = δ2
2 . (28)

Furthermore, the performance of the developed 2-bit optimal quantizer (denoted as Q)

is compared to the baselines Q1 and Q2 for α = 1.1 and β = 1.8, used in Prosalen-

tis and Tombras (2007), by assuming the memoryless Laplacian source with zero-mean

and unit variance, which is the standard approach in scalar quantizer design (Jayant and

Noll, 1984). The results in terms of distortion D and signal-to-quantization-noise ratio

SQNR = 10 log10(1/D) are provided in Table 1. It is evident that the 2-bit optimal quan-

tizer outperforms baselines Q1 and Q2 by nearly 0.5 dB and 0.3 dB respectively, in terms

of SQNR. �

3.2. Implementation of the Optimal Quantizer in Two-Bit Delta Modulation

The diagram of the proposed adaptive two-bit delta modulation is shown in Fig. 3, where

the optimal two-bit (N = 4 levels) scalar quantizer, with framewise codebook adapta-

tion (Denic et al., 2017; Dincic et al., 2016; Nikolic and Peric, 2008; Peric et al., 2013)

is applied. In addition to the buffering, variance estimation and log-uniform quantiza-

tion steps in the previous algorithm, the additional step for correlation coefficient es-

timation is introduced. Particularly, for the current frame, the prediction error signal

e[n] = x[n] − x̂[n] is fed to the quantizer input, where x[n] denotes the original sam-

ple value, x̂[n] = a · x[n − 1] denotes the predicted sample value and a is the optimal

predictor coefficient determined as in Jayant and Noll (1984):

a = E{x[n]x[n− 1]}
E[x2[n − 1]] = Rx(1)

Rx(0)
= ρ, (29)

where E{·} is the mathematical expectation, Rx(0) and Rx(1) represent the autocorrela-

tion function at lags 0 and 1, respectively, and ρ is the correlation coefficient. Since the

information about the predictor coefficient is required at the receiving end (as well as in

the local decoder), ρ is quantized using the Ng-levels uniform quantizer (Qρ):

ρ ∈ ρl |ρl = ρmin + (2l−1)
1u

2
, l = 1, . . . ,Ng, 1u = ρmax − ρmin

Ng

, (30)
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Frame initialization j=1

Input of speech signal x
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Channel transmission I, J, K
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Fig. 3. Block diagram of the 2-bit optimal ADM algorithm.
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and information about this is transferred once per each frame (i.e. the predictor coefficient

is adjusted once per frame) with Rρ = log2 Ng bits. The adaptation to the variance of

prediction error is performed for each frame, and the codebook of the employed two-bit

quantizer is updated once per frame according to:

ta3 = g · t3(σ = 1), (31)

ya
3 = g · y3(σ = 1), ya

4 = g · y4(σ = 1), (32)

where ‘a’ in the superscript indicates the adapted decision thresholds and representative

levels, and gain g is defined as in Jayant and Noll (1984):

g = Vk,j ·
√

1 − ρ2
l , (33)

where Vk,j is given by (4) and ρl is given by (30).

Reconstructed signal value y(n) within the current frame is determined as:

y(n) = ρl · y(n − 1) + ya
i sgn

(

e(n)
)

, (34)

where ya
i is defined using (32).

The bit rate of the proposed 2-bit optimal ADM is given by:

Ropt = 2 + RLU + Rρ

M
, (35)

where, compared to (13), the side information is increased by Rρ/M bits, transmitting the

information about the predictor coefficient.

4. Experimental Results and Discussion

This section presents and discusses the experimental results obtained in speech coding,

since Laplacian pdf can be considered to be a good model for long-term statistics of speech

(Gazor and Zhang, 2003). Experiments are performed using four different speech signals

recorded in wav format (two male and two female American English speakers), with basic

properties presented in Table 2. The amplitude range of the considered speech signals is

normalized within the range [−1,1]. All speech signals used in experiments contain both

voiced and unvoiced speech.

As an objective measure of quality the segmental SNR (SNRseg) is used, which is

calculated separately over all speech frames and then averaged. SNRseg can be defined as

(Hanzo et al., 2007):

SNRseg = 1

F

F
∑

j=1

10 log10

(

σ 2
j

Dj

)

, (36)
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Table 2

Basic information of the employed speech signals.

Speaker Sampling frequency [Hz] Duration [s] No. of uttered sentences

Male 1 22050 9 2

Male 2 22050 6 1

Female 1 22050 9 2

Female 2 22050 4 1

where F is total number of frames, σ 2
j is the variance of the j -th speech frame given

by (1), and Dj is the distortion of the j -th frame:

Dj = 1

M

M
∑

n=1

(

x(n) − y(n)
)2

, j = 1, . . . ,F, (37)

where M is the frame length.

The performance of the proposed 2-bit ADM algorithms is investigated for frame

lengths of 10 ms, 20 ms and 30 ms. Hence, the total number of frames, denoted as F ,

depends on the duration of the employed speech signal and the frame size.

As the baselines we employ CFDM, CVSDM and 2-bit ADM algorithm (Prosalentis

and Tombras, 2007). To have comparable results, all algorithms should generate the same

bit rate at their output. Hence, different sampling rates have to be employed for different

algorithms. For CFDM and CVSDM signal 22050 Hz sampling rate is used, while the

baseline 2-bit ADM operates at half the sampling rate of CFDM, i.e. 22050/2 = 11025

Hz, to produce the same output baud. The sampling rates of the proposed solutions de-

pend on the frame lengths and they are given by 22050/R kHz for 2-bit hybrid ADM and

22050/Ropt kHz for 2-bit optimal ADM, where R and Ropt are defined in (13) and (35),

respectively.

For the proposed 2-bit hybrid ADM we choose parameters α = 1.1, β = 1.8, γ = 1.2,

same as in 2-bit ADM baseline (Prosalentis and Tombras, 2007). In addition, we use the

log-uniform quantizer with L = 32 levels (RLU = 5 bits) for variance quantization, that is

used to adapt the initial step size for each frame (2-bit hybrid ADM) or to adapt the quan-

tizer codebook (2-bit optimal ADM), and Ng = 32 levels (Rρ = 5 bits) for quantization of

the predictor coefficient. For CFDM we adopt α = 1.1 and for CVSDM we use β = 0.9.

In case of baselines the same initial step-size value, denoted as δ0, is used, i.e. the one

that maximizes SNR of LDM, while the variable step size is limited into upper 1max and

lower 1min value, providing 1max/1min = 1000 (i.e. 60 dB dynamic range).

For the proposed 2-bit hybrid ADM algorithm, the initial step size ∆j (0) is, according

to (5), determined once per each frame and depends on constant K , which should be

chosen such that it maximizes SNR. Fig. 4 shows the selection of optimal K for a given

speech signal (male 1 in Table 2) and frame length of 20 ms, indicating that Kopt = 0.29

fulfils the criterion of maximal SNR. The optimal values of K are chosen in a similar

way for the frame sizes of 10 and 30 ms. Table 3 lists the optimal values of K for all four

speech signals included in the experiment and different frame lengths.
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Fig. 4. Selection of the optimal value of constant K for speech frames of size 20 ms and L = 32-levels QLU

(2-bit hybrid ADM; α = 1.1, β = 1.8, γ = 1.2).

Table 3

The optimal values of K for different speech signals and

different frame length.

Speaker 10 ms 20 ms 30 ms

Male 1 0.33 0.29 0.28

Male 2 0.26 0.24 0.29

Female 1 0.26 0.18 0.19

Female 2 0.16 0.13 0.22

Figure 5 illustrates SNR as a function of the input signal level (in dB) for two proposed

2-bit ADM algorithms for the frame size of 20 ms, as well as three baselines. The results

for male speakers are presented in Fig. 5(a) and Fig. 5(b), whereas the remaining two

subplots refer to the female speakers. It can be seen in Fig. 5 that CFDM offers stable

SNR in a relatively wide dynamic range, while CVSDM provides slightly higher (Fig. 5(a),

(c), (d)) or substantially higher (Fig. 5(b)) maximum SNR at the expense of significantly

smaller dynamic range. Two-bit ADM (Prosalentis and Tombras, 2007) achieves higher

maximum SNR values than CFDM with only slightly smaller dynamic range. On the other

hand, in all scenarios, the proposed 2-bit ADM algorithms offer constant SNR in the entire

dynamic range. It is evident that both proposed algorithms outperform the baselines. For

example, in case of male 1 speaker (Fig. 5(a)), the proposed 2-bit hybrid ADM has nearly

1.4 dB higher SNR than 2-bit ADM baseline and over 3 dB higher than CVSDM and

CFDM. In case of 2-bit optimal ADM, we report the gain in maximal SNR of 3 dB over

2-bit ADM baseline and over 5 dB in case of CVSDM and CFDM.

Table 4 lists the achieved SNRseg values averaged over all frames (dynamic range

[−40 dB, 40 dB]) for all considered speech signals and different frame lengths, for two

proposed algorithms (2-bit hybrid ADM and 2-bit optimal ADM). According to the re-
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Fig. 5. SNR versus different variances of speech signal for CFDM, CVSDM, 2-bit ADM and the proposed 2-bit

hybrid ADM (α = 1.1, β = 1.8, γ = 1.2 and L = 32-levels QLU) and 2-bit optimal ADM (QLU with L = 32

levels and Qρ with Ng = 32 levels) (frame length 20 ms) operating at the same output bit rate for: (a) male 1,

(b) male 2, (c) female 1 and (d) female 2 speaker.

Table 4

The average SNRseg of the proposed 2-bit hybrid ADM (α = 1.1, β = 1.8, γ = 1.2 and L = 32-levels QLU)

and 2-bit optimal ADM (QLU with L = 32 levels and Qρ with Ng = 32 levels), obtained in the dynamic range

(−40 dB–40 dB) for various frame lengths at the output rate of 22050 bps.

Speaker 10 ms 20 ms 30 ms

SNRh SNRo SNRh SNRo SNRh SNRo

Male 1 12.74 14.60 12.73 14.34 12.57 13.81

Male 2 14.88 16.55 14.76 16.03 14.67 15.34

Female 1 13.06 15.35 13.05 15.19 13.02 15.05

Female 2 15.22 16.20 14.99 15.40 14.50 14.94

sults in a given table and the ones in Fig. 5, the attained gain in SNR over the 2-bit ADM

(Prosalentis and Tombras, 2007) is in the range from 0.37 dB to 1.5 dB in case of 2-bit

hybrid ADM and in the range from 1.04 dB to 2.95 dB in case of 2-bit optimal ADM,

considering the frame length of 30 ms. Similarly, we report the gain in SNR with respect
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Fig. 6. The original speech signal and SNR over speech frames of size 20 ms (F = 450) for 2-bit hybrid ADM

(Kopt = 0.29, α = 1.1, β = 1.8, γ = 1.2 and L = 32-levels QLU) and 2-bit optimal ADM (QLU with L = 32

levels and Qρ with Ng = 32).

to the 2-bit baseline within the range from 0.58 to 2.22 dB in case of 2-bit hybrid ADM

and within the range from 2.25 to 3.3 dB in case of 2-bit optimal ADM, when the frames

of 10 ms length are employed. Furthermore, it can be observed that, for both algorithms,

better performance is obtained for shorter frames (10 ms), which is expected since the

initial step size, as well as the quantizer codebook are updated more often. However, this

improvement is obtained at the cost of increased bit rate, as for shorter frames the side in-

formation is transferred more often. Therefore, as the rate-quality compromise solution we

recommend the implementation of the proposed algorithms with the frame size of 20 ms.

SNR across different frames with the length of 20 ms of the original speech signal

(male 1 speaker) for both proposed algorithms is depicted in Fig. 6. Observe that smaller

variations in SNR for both voiced and unvoiced frames are obtained in case of 2-bit opti-

mal ADM, leading to the higher SNRseg value.

5. Conclusion

This paper considers two solutions of the 2-bit adaptive delta modulation, namely 2-bit

hybrid and 2-bit optimal ADM. In 2-bit hybrid ADM, the estimated variance is used to

initialize the step size for each frame, followed by the same step size adaptation procedure

as in the instantaneously 2-bit ADM baseline algorithm. Hence, the step size initializa-

tion is embedded in the algorithm and avoids using external algorithms for determining
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the initial step size. In 2-bit optimal ADM the quantizer is optimally designed assum-

ing Laplacian distribution. Both the quantizer codebook and the predictor coefficient are

adapted framewise. The proposed algorithms have shown to be superior in speech coding,

when compared to baselines, i.e. 2-bit ADM, CFDM and CVSDM, having wider dynamic

range and offering higher performance, measured by SNR. According to the obtained re-

sults, there is a great possibility of implementation of the developed algorithms in practical

processing of signals, which, as speech signal, have statistics modelled by the Laplacian

pdf.
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