
INFORMATICA, 2018, Vol. 29, No. 4, 651–673 651
 2018 Vilnius University

DOI: http://dx.doi.org/10.15388/Informatica.2018.186

A Fast Chaos-Based Colour Image Encryption

Algorithm Using a Hash Function

Chong FU1 ∗, Gao-Yuan ZHANG1, Mai ZHU1, Jun-Xin CHEN2,

Wei-Min LEI1

1School of Computer Science and Engineering, Northeastern University

Shenyang 110004, China
2Sino-Dutch Biomedical and Information Engineering School, Northeastern University

Shenyang 110004, China

e-mail: fuchong@mail.neu.edu.cn, zhanggaoyuan@mai.neu.edu.cn, 1610535@stu.neu.edu.cn,

chenjx@bmie.neu.edu.cn, leiweimin@cse.neu.edu.cn

Received: November 2017; accepted: October 2018

Abstract. This paper suggests a new fast colour image cipher to meet the increasing demand for

secure online image communication applications. Unlike most other existing approaches using a

permutation-substitution network, the proposed algorithm consists of only a single substitution part.

The keystream sequence is generated from a 4-D hyperchaotic system, whose initial conditions are

determined by both the secret key and the SHA-224 cryptographic hash value of the plain-image.

Favoured by the avalanche effect of hash functions, totally different keystream sequences will be

generated for different images. Consequently, desired diffusion effect can be achieved after only

a single round of substitution operation, whereas at least two encryption rounds are required by

the state-of-the-art permutation-substitution type image ciphers. We also demonstrate the compu-

tational efficiency of the proposed algorithm by comparing it with the AES encryption algorithm.

A thorough security analysis is carried out in detail, demonstrating the satisfactory security of the

proposed algorithm.

Key words: colour image cipher, hyperchaotic system, hash function, XOR encryption.

1. Introduction

The explosive growth in the amount of image data distributed over the Internet over the

past decade has raised great concern about the protection of image information against

unauthorized eavesdropping. Definitely, the most straightforward way is to use a crypto-

graphic algorithm. Unfortunately, many of the existing studies have indicated that com-

monly used block ciphers, such as DES and AES, are not suitable for practical image en-

cryption. This is because the security of these algorithms depends on the complexity of the

algorithms, making them difficult to meet the demand for online communications when

dealing with digital images characterized by bulk data capacity. Recently, chaos-based

cryptography has suggested a promising way to deal with the intractable problems of fast

*Corresponding author.

652 C. Fu et al.

and highly secure image encryption. Making use of the favourable characteristics such

as extreme sensitivity to initial condition(s), ergodicity and long-term unpredictability,

chaotic systems have demonstrated great potential for information, especially multime-

dia encryption. (Fridrich, 1998) proposed the first chaos-based image encryption scheme

using iterative permutation and substitution operation. In the permutation stage, the pix-

els in the input image are rearranged in a pseudorandom manner, which leads to a great

reduction in the correlation between neighbouring pixels. In the substitution stage, the

pixel values are altered sequentially and the influence of each individual pixel is diffused

to all its succeeding ones during the modification process. With such a structure, a mi-

nor change of the plain-image may result in a totally different cipher-image with several

overall rounds of encryption. Following Fridrich’s pioneer work, a growing number of

chaos-based image encryption algorithms and their improvements have been suggested.

A brief overview of some major contributions is given below.

Conventionally, three area-preserving invertible chaotic maps, i.e. the cat map (Fu et

al., 2013), the baker map (Fu et al., 2016), and the standard map (Wong et al., 2008), are

widely used for image scrambling. Unfortunately, this kind of permutation strategy suffers

from two main disadvantages: (1) the periodicity of discretized version of chaotic maps,

and (2) only applicable to square images. To address these two drawbacks, Fu et al. (2011)

suggested an image scrambling scheme using a chaotic sequence sorting mechanism. Un-

fortunately, this method takes a whole row/column of an image as the scrambling unit

and results in weaker confusion effect compared with many of the schemes working on

individual pixels. Inspired by the natural ripple-like phenomenon that distorts a reflection

on a water surface, Wu et al. (2014) suggested a novel scrambling algorithm that shuffles

images in an n dimensional (n D) space using wave perturbations. Chen et al. (2014) and

Chen et al. (2015a) suggested image scrambling schemes using a pixel-swapping mecha-

nism respectively. In their schemes, each pixel in the input image is swapped with another

pixel chosen by keystream sequence generated from a chaotic system.

To better meet the challenge of online secure image communication, much research

has been done on improving the efficiency of chaos-based image ciphers. For instance,

(Xiang et al., 2007) investigated the feasibility of selective image encryption on a bit-

plane. It’s concluded that only selectively encrypting the higher four bit-planes of an image

can achieve an acceptable level of security. As only 50% of the whole image data are

encrypted, the execution time is reduced. Wong et al. (2009) proposed a more efficient

diffusion mechanism using simple table lookup and swapping techniques as a light-weight

replacement of the 1-D chaotic map iteration. Following this work Chen et al. (2015b)

presented an efficient image encryption scheme with confusion and diffusion operations

being both performed based on a lookup table. The other advantage of their approach

is that it can effectively tolerate the channel errors, which may lead to the corruption of

cipher data. It has been demonstrated that images recovered from the damaged cipher

data have satisfactory visual perception. Wang et al. (2011) suggested a mechanism for

combining the permutation and diffusion stages. Compared with other existing schemes

with separated permutation and diffusion stages, their proposed scheme reduces the image-

scanning cost by half, thereby increasing the execution speed. Fu et al. (2012) proposed

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 653

a fast image cipher using a novel bidirectional diffusion mechanism. Simulation results

indicated that their scheme requires only one round of permutation and two rounds of

substitution to satisfy the plaintext sensitivity requirement. Zhu et al. (2011), Fu et al.

(2014), Zhang et al. (2016) and Chen et al. (2017) suggested chaos-based image ciphers

using a bit-level permutation respectively. Owing to the substitution effect introduced in

the permutation stage, the number of iteration rounds required by the time-consuming

substitution procedure is reduced, and hence a shorter encryption time is needed. Chen

et al. (2015c) proposed a method for obtaining diffusion keystream sequence from the

permutation matrix, which is produced and preserved in the permutation stage. As no extra

chaotic iteration and quantization is required in the diffusion procedure, the computational

efficiency is thereby improved.

Through the exploration of above schemes, one can find that all these schemes can

be thought of as the extensions of the Fridrich’s approach, where the permutation and

substitution stages are indispensable. In this paper, we propose a novel fast colour image

encryption algorithm consisting of only a single substitution part. The keystream sequence

is generated from a 4-D hyperchaotic system, whose initial conditions are determined by

both the secret key and the SHA-224 cryptographic hash value of the plain-image. As

is known, a cryptographic hash function is extremely sensitive to an input message and

a chaotic system is extremely sensitive to initial conditions. As a result, a small change

in a plain-image can be diffused to the entire cipher-image after only a single round of

substitution operation, whereas at least two encryption rounds are required by the state-

of-the-art permutation-substitution type image ciphers. Besides, our proposed algorithm

does not suffer from the key distribution problem as the hash value is not part of the secret

key.

The remainder of this paper is organized as follows. Section 2 presents the architec-

ture of the new image cipher. The detailed encryption algorithm is described in Section 3,

followed by the implementation of SHA-224 hash function in Section 4. In Section 5, ex-

tensive analysis of the security of the encryption algorithm is carried out, and the diffusion

performance of the encryption algorithm is compared with that of a typical permutation-

substitution type image cipher. In Section 6, the speed performance of the proposed al-

gorithm is measured and the results are compared with those of AES algorithm in CBC

mode. Finally, conclusions are drawn in the last section.

2. Architecture of the New Image Encryption Algorithm

The architecture of the proposed image encryption algorithm is illustrated in Fig. 1. Com-

pared with the widely studied permutation-substitution type image ciphers, the proposed

algorithm consist of only a single substitution part. The substitution keystream sequence

is extracted from the trajectory of a 4-D hyperhaotic system, whose initial conditions are

determined by both the secret key and the SHA-224 cryptographic hash value of the plain-

image. More specifically, the 224-bit hash value is split into four equal parts, and each part

is involved in determining one of the four initial conditions of the hyperchaotic system.

654 C. Fu et al.

Fig. 1. Architecture of the proposed image encryption algorithm.

To analyse the diffusion efficiency improvement obtained from the above change, the dif-

fusion mechanism of the permutation-substitution type image cipher is discussed first.

Generally, the diffusion operation is done from left to right and top to bottom. Conse-

quently, we assume a worst case that two plain-images (M × N pixels), (I) and (II), have

only 1-bit difference at the last, lower-right pixel, as illustrated in Figs. 2(a) and (b). We

suppose that the differential pixel is moved to (p, q) during the first round of permutation

operation, as illustrated in Figs. 2(c) and (d). During the subsequent substitution operation,

the pixel values are modified sequentially and the modification made to a particular pixel

depends on both the keystream element and the accumulated effect of all the previous pixel

values. Obviously, the influence of the differential pixel will be spread out to all its suc-

ceeding ones, as illustrated in Figs. 2(e) and (f). During the second round of permutation

operation, the pixels containing the influence of the differential pixel are scattered over a

wider area inside the intermediate cipher-image, and the subsequent substitution operation

further increases the percentage difference between the two intermediate cipher-images.

Generally, the influence of each individual pixel can be diffused over the whole cipher-

image after at least three rounds of permutation-substitution operation.

It’s obvious that if desired diffusion effect can be achieved with fewer number of en-

cryption rounds, the computational efficiency will be increased. Recently, some plaintext-

dependent keystream generation mechanisms have been proposed to strengthen the robust-

ness against chosen-plaintext attack and increase the diffusion intensity. Unfortunately,

these schemes can only generate different keystream elements for differential pixels. As

the substitution operation can only diffuse the influence of a pixel to its succeeding ones,

only some of the pixels have increased their diffusion intensity. Experimental results show

that many of these schemes may take two encryption rounds to achieve desired diffusion

effect. Clearly, if two totally different keystream sequences can be generated for any two

different images, the desired diffusion effect will be achieved after only a single encryption

round, as illustrated in Figs. 3(c) and (d).

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 655

Fig. 2. Encryption process of permutation-substitution type image cipher.

(a) plain-image (I) (b) 1st round of substitution

(c) plain-image (II) (d) 1st round of substitution

Fig. 3. Encryption process of our proposed cipher.

As is known, good hash functions, including the SHA-224, hold the following prop-

erties. 1) Every binary digit, bit, of input message data influences the content of its hash

value. That is, any change to a message will almost surely result in a different hash value.

2) It is computationally infeasible to find a message that corresponds to a given message

digest, or to find two different messages that produce the same message digest. Clearly,

if the initial conditions of a chaotic system depend on the hash value of the input image

as well as the secret key, a slight change of the plain-image can lead to a totally differ-

ent keystream sequence. Besides, as the hash value is not part of the secret key, it can

be transmitted in plaintext form together with the cipher-image. Therefore, our proposed

656 C. Fu et al.

algorithm does not suffer from the key distribution problem, a serious practical drawback

of one-time pads.

Moreover, as the differential or diffused pixel(s) no longer need(s) to be transferred to

different positions of the original or intermediate cipher-image, the permutation part can

be removed, which further decreases the computational complexity. The detailed image

encryption algorithm and the SHA-224 cryptographic hash function will be discussed in

the next two sections.

3. Colour Image Encryption Using Hyperchaotic System

In the present paper, a hyperchaotic system (Li et al., 2005), which is formulated by intro-

ducing an additional state into the third-order generalized Lorenz equation, is employed

to generate the substitution keystream sequence. The system is described by









ẋ

ẏ

ż

u̇









=









a11 a12 0 0

a21 a22 0 0

0 0 a33 0

−k 0 0 0

















x

y

z

u









+ x









0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

















x

y

z

u









, (1)

where a11, a12, a21, a22, a33 are the system parameters, and k is the control parameter that

determines the dynamical behaviour of the system. When parameters a11 = −a12 = −35,

a21 = 7, a22 = 12, a33 = −3, and either 0 < k 6 21.84 or 37.44 < k 6 41.84, the system

exhibits hyperchaotic behaviour.The projections of phase portrait of one typical case, with

k = 20, are depicted in Fig. 4.

The secret key of the proposed encryption algorithm consists of four real numbers

{subkeyx, subkeyy , subkeyz, subkeyu} corresponding to the four state variables of system

(1). The value of each subkey can be chosen in a range a little wider than that of its cor-

responding state variable. Taking a 24-bit true colour image of size H × W as input, the

detailed encryption algorithm is described as follows:

Step 1: Arrange the coloured subpixels in the input image to a one-dimensional byte

array imgData = {p0,p1, . . . , p3×W×H−1} in the order from left to right, top to bottom.

Step 2: Generate a chaotic sequence of length Lcs = 3×W ×H by iterating system (1).

Step 2.1: Calculate the SHA-224 hash of imgData, and the result is denoted by

SHAimg.

Step 2.2: Divide SHAimg into four 56-bit parts, which are denoted by SHAimg(p1) −

SHAimg(p4), respectively, from which four real numbers between 0 and 1 can be obtained

according to















hrx =
[

SHAimg(p1)/(1 ≪ 56)
]

,

hry =
[

SHAimg(p2)/(1 ≪ 56)
]

,

hrz =
[

SHAimg(p3)/(1 ≪ 56)
]

,

hru =
[

SHAimg(p4)/(1 ≪ 56)
]

,

(2)

where “≪ s” denotes a left shift by s bit.

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 657

(a) (d) (e)

(d) (e) (f)

Fig. 4. Projections of phase portrait of system (1) with a11 = −a12 = −35, a21 = 7, a22 = 12, a33 = −3 and

k = 20. (a) x–y plane. (b) x–z plane. (c) x–u plane. (d) y–z plane. (e) y–u plane. and (f) z–u plane.

Step 2.3: Set the initial conditions of system (1) according to















x0 = subkeyx + hrx ,

y0 = subkeyy + hry ,

z0 = subkeyz + hrz,

u0 = subkeyu + hru,

(3)

Step 2.4: Pre-iterate system (1) for T0 times to avoid the harmful effect of transitional

procedure, where T0 is a constant. The system can be numerically solved by using fourth-

order Runge–Kutta method, as given by















xn+1 = xn + (h/6)(K1 + 2K2 + 2K3 + K4),

yn+1 = yn + (h/6)(L1 + 2L2 + 2L3 + L4),

zn+1 = zn + (h/6)(M1 + 2M2 + 2M3 + M4),

un+1 = un + (h/6)(N1 + 2N2 + 2N3 + N4),

(4)

where















Kj = a11xn + a12yn,

Lj = a21xn + a22yn + un − xnzn,

Mj = a33zn + xnyn,

Nj = −kxn,

(with j = 1)

658 C. Fu et al.



























Kj = a11(xn + hKj−1/2) + a12(yn + hLj−1/2),

Lj = a21(xn + hKj−1/2) + a22(yn + hLj−1/2) + (un + hNj−1/2)

− (xn + hKj−1/2)(zn + hMj−1/2), (with j = 2,3)

Mj = a33(zn + hMj−1/2) + (xn + hKj−1/2)(yn + hLj−1/2),

Nj = −k(xn + hKj−1/2),



























Kj = a11(xn + hKj−1) + a12(yn + hLj−1),

Lj = a21(xn + hKj−1) + a22(yn + hLj−1) + (un + hNj−1)

−(xn + hKj−1)(zn + hMj−1),

Mj = a33(zn + hMj−1) + (xn + hKj−1)(yn + hLj−1),

Nj = −k(xn + hKj−1),

(with j = 4)

and the step size h is chosen as 0.005.

Step 2.5: Continue to iteration for Ti = Lcs/4 times. For each iteration, the cur-

rent states (xn, yn, zn, un) of the system(1) are in turn stored into array subSeq =

{ss0, ss1, . . . , ss3×W×H−1}.

Step 3: Extract a substitution keystream sequence subKstr = {sk0, sk1, . . . ,

sk3×W×H−1} by quantifying subSeq according to

skn = mod
[

sig((abs(ssn),m),GL

]

, (5)

where abs(x) returns the absolute value of x , sig(x,m) returns the m most significant

decimal digits of x , mod(x, y) divides x by y and returns the remainder of the division, and

GL is the number of gray levels in the input image (for a 24-bit RGB image, GL = 256).

An m value of 15 is recommended as all the state variables in our scheme are declared as

double-precision type, which has 15 or 16 decimal places of accuracy.

Step 4: Encipher the coloured subpixels in imgData sequentially according to Eq. (6).

cn = pn ⊕ skn, (6)

where pn and cn are the currently operated plain-subpixel and the resulting cipher-

subpixel, respectively, and ⊕ performs bit-wise exclusive OR operation.

As can be seen from the above description, each pixel in the original image is encrypted

using XOR operation. Therefore, the decryption uses the same algorithm as encryption.

4. Implementation of SHA-224 Cryptographic Hash Function

As discussed above, the initial conditions of the employed hyperchaotic system are de-

termined by both the secret key and the SHA-224 cryptographic hash value of the plain-

image. In this section, the implementation of SHA-224 cryptographic hash function is

briefly discussed.

SHA-224 may be used to hash a message, M , having a length of l bits, where 0 6 l 6

264. The algorithm uses 1) a message schedule of sixty-four 32-bit words, 2) eight working

variables of 32 bits each, 3) sixty-four constant 32-bit words, and 4) a hash value of eight

32-bit words. The final result of SHA-224 is a 224-bit message digest.

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 659

The words of the message schedule are labelled W0,W1, . . . ,W63. The eight working

variables are labelled a, b, c, d , e, f , g, and h. The sixty-four constant words are labelled,

K
(256)
0 ,K

(256)
1 , . . . ,K

(256)
63 . These words represent the first thirty-two bits of the fractional

parts of the cube roots of the first sixty-four prime numbers. In hex, these constant words

are (from left to right)

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5

d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174

e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da

983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967

27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85

a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070

19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3

748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

The words of the hash value are labelled H
(i)
0 ,H

(i)
1 , . . . ,H

(i)
7 , which will hold the

initial hash value, H (0), replaced by each successive intermediate hash value (after each

message block is processed), H (i), and ending with the final hash value, H (N). SHA-224

also uses two temporary words, T1 and T2.

SHA-224 uses six logical functions, where each function operates on three 32-bit

words, which are represented as x , y , and z. The result of each function is a new 32-bit

word.











































Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),

Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z),
∑{256}

0 (x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
∑{256}

1 (x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x),

σ
{256}
0 (x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),

σ
{256}
1 (x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x),

(7)

where ∧,⊕,¬ performs bitwise AND, XOR and complement operations, respectively,

ROTLn(x) circularly left shifts x by n bits, and SHRn(x) right shifts x by n bits.

The detailed hash procedures are described as follows.

Step 1: Set the initial hash value, H (0), which shall consist of the following five 32-bit

words, in hex:























































H
(0)
0 = c1059ed8,

H
(0)
1 = 367cd507,

H
(0)
2 = 3070dd17,

H
(0)
3 = f 70e5939,

H
(0)
4 = ff c00b31,

H
(0)
5 = 68581511,

H
(0)
6 = 64f 98f a7,

H
(0)
7 = bef a4fa4.

660 C. Fu et al.

Step 2: Pad the message. The purpose of this padding is to ensure that the padded

message is a multiple of 512 bits. Suppose that the length of the message, M , is l bits.

Append the bit “1” to the end of the message, followed by k zero bits, where k is the

smallest, non-negative solution to the equation l + 1 + K ≡ 448 mod 512. Then append

the 64-bit block that is equal to the number l expressed using a binary representation.

Step 3: Parse the message. The message and its padding are parsed into N 512-bit

blocks, M(1),M(2), . . . ,M(N). As the 512 bits of the input block may be expressed as

sixteen 32-bit words, the first 32 bits of message block i are denoted M
(i)
0 , the next 32 bits

are M
(i)
1 , and so on up to M

(i)
15 .

Step 4: Compute the hash value. Each message block, M(1),M(2), . . . ,M(N), is pro-

cessed in order, using the following substeps. Notice that addition (+) is performed mod-

ulo 232.

For i = 1 to N :

{

1. Prepare the message schedule, {Wt}:

Wt =

{

M
(i)
t , 0 6 t 6 15,

σ
{256}
1 (Wt−2) + Wt−7 + σ

{256}
0 (Wt−15) + Wt−16, 16 6 t 6 63,

2. Initialize the eight working variables, a, b, c, d , e, f , g, and h, with the

(i − 1)st hash value:

a = H
(i−1)
0 ; b = H

(i−1)
1 ; c = H

(i−1)
2 ; d = H

(i−1)
3 ;

e = H
(i−1)
4 ; f = H

(i−1)
5 ; g = H

(i−1)
6 ; h = H

(i−1)
7 .

3. For t = 0 to 63

{

T1 = h +
∑{256}

1 (e) + Ch(e,f, g) + K
{256}
t + Wt ;

T2 = h +
∑{256}

0 (a) + Maj(a, b, c);

h = g; g = f ; f = e; e = d + T1;

d = c; c = b; b = a; a = T1 + T2.

}

4. Compute the ith intermediate hash value H (i):

H
(i)
0 = a + H

(i−1)
0 ; H

(i)
1 = b + H

(i−1)
1 ; H

(i)
2 = c + H

(i−1)
2 ; H

(i)
3 = d + H

(i−1)
3 ;

H
(i)
4 = e + H

(i−1)
4 ; H

(i)
5 = f + H

(i−1)
5 ; H

(i)
6 = g + H

(i−1)
6 ; H

(i)
7 = h + H

(i−1)
7 .

After repeating steps one through four a total of N times (i.e. after processing M(N)),

the resulting 224-bit message digest of the message, M , is obtained by truncating the final

hash value, H(N), to its left-most 224 bits:

H
(N)
0 ||H

(N)
1 ||H

(N)
2 ||H

(N)
3 ||H

(N)
4 ||H

(N)
5 ||H

(N)
6 .

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 661

Table 1

Changes made to the original images.

Test image Colour Pixel position Pixel value

name component (x, y) Original Revised

avion blue (294, 305) 172 173

baboon red (511, 335) 67 68

house blue (403, 196) 182 181

Lena red (263, 67) 102 103

peppers blue (159, 496) 151 150

Table 2

Numbers derived from the SHA-224 hash values of the original images and the revised ones.

Test image SHA-224 hash value hrx hry hrz hru
name (in hexadecimal)

avion
947b1df5535a75c1d1795f06877e3a2f668324e

86db6b2842daf6473

0.5800036

16708703

0.7571025

71200930

0.2272857

73294087

0.7136614

42903133

avion_d
f1cf6371f51471a2f11f0ce6257cfd956a60b17b

d2350c5ea77cbd4f

0.9445707

46728532

0.6364917

18911335

0.9905611

50175821

0.2072199

97301526

baboon
463e400b54801f1016af594bc0c7c63c745aaf8

3cb066c2abe888a94

0.2743873

62257131

0.0628461

44963035

0.7743599

62596932

0.0250879

96975837

baboon_d
37f04e09ab5bcc5129c41155b52a53d3a03d23

abc5bb00ea06e25c61

0.2185105

10788618

0.3170435

46898010

0.3274479

05470463

0.7304826

99089735

house
e3e7ed6a9e388c3d884a5e32f46f22e6912958a

65b8ef717a27abc4e

0.8902576

81398199

0.2403608

77988637

0.1363306

73784550

0.5584578

29635573

house_d
60c1557a08214949fe79d0495d7226547fcd56

3dba288c7faf35d741

0.3779500

410966011

0.2890392

430793918

0.1497268

558798543

0.1583938

410529671

Lena
8dc2aa5443716576ffa84d70de9502aa160827

d42e99d1faa376118b

0.5537516

07486850

0.4648385

22821874

0.0104078

07341679

0.6008602

76134034

Lena_d
75a27e579ae70d47d0c1dbf16d9cc4b375ef408

1121144f8db6a9f58

0.4595107

04410516

0.2805291

33030930

0.7683633

52690816

0.0674586

80695038

peppers
bd6d29d3f43017d1384f8d23c3637e5658a5a2

6ad5730ba66066bd7b

0.7399469

51147602

0.8172654

83816084

0.4935050

39632889

0.4493965

13495904

peppers_d
eb9af3ee28c9f9b94b39b5fa0a8f276cf761a982

53a7272eb85e6727

0.9203331

42895096

0.7238040

99014197

0.1540064

44304750

0.6529416

27513795

To evaluate the dependency of the initial conditions of the employed hyperchaotic

system on input image, we first select five standard test images (512 × 512 pixels, 24-bit

RGB colour) from the USC-SIPI image database. Then, we randomly choose a pixel in

each test image and change its least significant bit, as illustrated in Table 1. A differential

image is named by append a “_d” to the name of its original version. Finally, we calculate

the SHA-224 hash values of all the original images and the revised ones, from which the

four real numbers hrx , hry , hrz, and hru are derived. The results are given in Table 2, from

which it can be seen that changing 1-bit of the plain-image will lead to the trajectory of

the hyperchaotic system starting from totally different initial conditions.

662 C. Fu et al.

5. Security Analysis

5.1. Key Size

In cryptography, key size or key length is the size measured in bits of the key used in a

cryptographic algorithm. As is known, even if a symmetric cipher is currently unbreak-

able by exploiting structural weaknesses in its algorithm, it is possible to run through the

entire space of keys in what is known as a brute force attack. As longer keys require ex-

ponentially more work to brute force search, the key length of an effective cryptosystem

should be sufficiently long to make this line of attack impractical. Generally, cryptographic

algorithms use keys with a length greater than 100 bits are considered to be “computa-

tional security” as the number of operations required to try all possible 2100 keys is widely

considered out of reach for conventional digital computing techniques for the foreseeable

future. As aforementioned, the secret key of the proposed algorithm consists of four inde-

pendent floating-point numbers. A 64-bit double-precision type gives 53 bits of precision,

and therefore the key length of the proposed algorithm is 4 × 53 = 212 bits, which is long

enough to make exhaustive search impractical.

5.2. Chosen-Plaintext Attack

A chosen-plaintext attack is an attack model for cryptanalysis which presumes that the at-

tacker can obtain the ciphertexts for arbitrary plaintexts. As is known, a chosen-plaintext

attack is more powerful than known-plaintext attack. This is because the attacker can di-

rectly target specific terms or patterns without having to wait for these to appear naturally,

allowing faster gathering of data relevant to cryptanalysis. Therefore, any cipher that pre-

vents chosen-plaintext attacks is also secure against known-plaintext and ciphertext-only

attacks. To carry out a chosen-plaintext attack on a XOR cipher, the simplest way is to

input an all-zero (black) image, and the output is exactly the same as the keystream se-

quence. Obviously, the proposed encryption algorithm cannot be broken in such a way,

because it never reuses a keystream sequence for encrypting different images, i.e. different

keystream sequences are used for encrypting different images. Differential cryptanalysis is

the most powerful chosen-plaintext attack that analyses how the differences in two plain-

text messages affect the differences between the corresponding ciphertexts. To do this, an

opponent may firstly create two plain-images with a slight difference, and then encrypt

the two images using the same secret key. If some meaningful relationship between the

plain-image and cipher-image can be found by comparing the two cipher images, the se-

cret key may be determined with the help of some other analysis methods. Obviously, this

kind of cryptanalysis may become impractical if a slight change in the plain-image can

be effectively diffused to the entire cipher-image, i.e. changing one bit of the plain-image

affects every bit in the cipher-image.

The diffusion effect of an image cryptosystem is usually measured using two criteria,

i.e. NPCR (the number of pixel change rate) and UACI (the unified average changing

intensity). The NPCR is used to measure the percentageof different pixel numbers between

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 663

two images. Let I1(i, j, k) and I2(i, j, k) be the (i, j)th pixel in kth colour channel (k =

1, 2, 3 denotes the red, green, and blue colour channels, respectively) of two images I1

and I2, the NPCR can be defined as:

NPCR =

∑3
k=1

∑H
i=1

∑W
j=1 D(i, j, k)

3 × H × W
× 100%, (8)

where D(i, j, k) is defined as

D(i, j, k) =

{

0 I1(i, j, k) = I2(i, j, k),

1 I1(i, j, k) 6= I2(i, j, k).
(9)

The second criterion, UACI is used to measure the average intensity of differences

between the two images. It is defined as

UACI =
1

3 × H × W

[3
∑

k=1

H
∑

i=1

W
∑

j=1

|I1(i, j, k) − I2(i, j, k)|

GL − 1

]

× 100%. (10)

Clearly, no matter how similar the two input images are, a good image cryptosystem

procedure outputs with NPCR and UACI values ideally being equal to that of two random

images, which are given by

NPCRrandom =

{

1 −
1

2log2 GL

}

× 100% (11)

and

UACIrandom =
1

G2
L

(
∑GL−1

i=1 i(i + 1)

GL − 1

)

× 100%. (12)

For instance, the NPCR and UACI values for two random colour images in 24-bit RGB

format (GL = 256) are 99.609% and 33.464%, respectively.

To evaluate the worst-case diffusion performance,we use the five test image pairs listed

in Table 1. The two images in each image pair are encrypted using the same secret key.

Table 3 gives the NPCR and UACI values for each ciphered image pair generated by the

proposed algorithm and the conventional permutation-substitution type encryption algo-

rithm. As can be seen from this table, to achieve the desired diffusion effect, the proposed

scheme takes only a single round of encryption, whereas two more rounds are required by

conventional permutation-substitution type encryption algorithm. Therefore, the proposed

algorithm provides significantly superior computational efficiency.

5.3. Statistical Analysis

5.3.1. Frequency Distribution of Pixel Values

A good image cryptosystem should flatten the frequency distribution of cipher-pixel val-

ues so as to make frequency analysis infeasible. That is, the redundancy of plain-image or

664 C. Fu et al.

Table 3

Results of NPCR and UACI tests.

No. of cipher rounds

(proposed algorithm)

No. of cipher rounds

(conventional algorithm)

Test image 1 1 2 3

name NPCR UACI NPCR UACI NPCR UACI NPCR UACI

avion 0.99604 0.33443 0.50649 0.00397 0.99604 0.33661 0.99618 0.33405

baboon 0.99612 0.33484 0.72392 0.00568 0.99619 0.33359 0.99620 0.33460

house 0.99616 0.33440 0.24593 0.01544 0.99625 0.33367 0.99610 0.33434

Lena 0.99607 0.33450 0.21977 0.00086 0.99532 0.32542 0.99615 0.33492

peppers 0.99615 0.33428 0.72565 0.00284 0.99594 0.33318 0.99614 0.33449

Fig. 5. Histogram analysis. (a) and (h) are the test image and its output cipher-image, respectively. (b)–(d) and

(i)–(k) are the three colour channels of (a) and (h), respectively. (e)–(g) and (l)–(n) are the histograms of (b)–(d)

and (i)–(k), respectively.

the relationship between plain-image and cipher-image should not be observed from the

cipher-image as such information has the potential to be exploited in a statistical attack.

The frequency distribution of pixel values in an image can be easily determined by using

histogram analysis. An image histogram is a graph showing the number of pixels in an

image at each different intensity value found in that image. The histograms of the RGB

colour channels of the “Lena” test image and its corresponding cipher-image are shown

in Fig. 5. It’s clear from Figs. 5(l)–(n) that the pixel values in all the three colour channels

of the resulting cipher-image are fairly evenly distributed over the whole intensity range,

and therefore no information about the plain-image can be gathered through histogram

analysis.

The distribution of pixel values can be further quantitatively determined by calculating

the information entropy of the image. Information entropy, introduced by Claude E. Shan-

non in his classic paper “A Mathematical Theory of Communication”, is a key measure

of the randomness or unpredictability of information content. The information entropy

is usually expressed by the average number of bits needed to store or communicate one

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 665

Table 4

Information entropies of the test images and their

corresponding cipher-images.

Test image Information entropy

name Plain-image Cipher-image

Avion 6.663908 7.999799

Baboon 7.762436 7.999773

House 7.485787 7.999759

Lena 7.750197 7.999723

Peppers 7.669826 7.999741

symbol in a message, as described by

H(S) = −

N
∑

i=1

p(si) log2 P(si), (13)

where S is a random variable with N outcomes {s1, . . . , sN } and P(si) is the probability

mass function of outcome si . It is obvious from Eq. (13) that the entropy for a random

source emitting N symbols is logN
2 . For instance, for a ciphered image with 256 colour

levels per channel, the entropy should ideally be 8, otherwise there exists a certain degree

of predictability which threatens its security.

The information entropies of the test images and their corresponding cipher-images are

calculated, and the results are listed in Table 4. As can be seen from this table, the entropy

of all the output cipher-images are very close to the theoretical value of 8. This means the

proposed scheme produces outputs with perfect randomness and hence is robust against

frequency analysis.

5.3.2. Correlation Between Neighbouring Pixels

Pixels in an ordinary image are usually highly correlated with their neighbours either

in horizontal, vertical or diagonal direction. However, an effective image cryptosystem

should process cipher-images with sufficiently low correlation between neighbouring pix-

els. A scatter diagram is commonly used to qualitatively explore the possible relationship

between two data sets. To plot a scatter diagram for image data, the following procedures

are carried out. First, randomly select Sn pairs of neighbouring pixels in each direction

from the image. Then, the selected pairs are displayed as a collection of points, each hav-

ing the value of one pixel determining the position on the horizontal axis and the value of

the other pixel determining the position on the vertical axis.

Figures 6(a)–(c) and (d)–(f) show the scatter diagrams for horizontally, vertically

and diagonally neighbouring pixels in the red channel of the “Lena” test image and its

corrsponding cipher-image with Sn = 5000, respectively. Similar results can be obtained

for the other two colour channels. As can be seen from Fig. 6, most points in (a)–(c) are

clustered around the main diagonal, whereas those in (d)–(f) are fairly evenly distributed.

The results indicate that the proposed scheme can effectively eliminate the correlation

between neighbouring pixels in an input image.

666 C. Fu et al.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Graphical analysis for correlation of neighbouring pixels. (a)–(c) and (d)–(f) are scatter diagrams for

horizontally, vertically and diagonally neighbouring pixels in the red channel of the “Lena” test image and its

output cipher-image, respectively.

To further quantitatively measure the correlation between neighbouring pixels in an

image, the correlation coefficients rxy for the sampled pairs are calculated according to

the following three formulas:

rxy =

1
Sn

∑Sn

i=1(xi − x̄)(yi − ȳ)
√

(

1
Sn

∑Sn

i=1(xi − x̄)2
)(

1
Sn

∑Sn

i=1(xi − x̄)2
)

, (14)

x̄ =
1

Sn

Sn
∑

i=1

xi, (15)

ȳ =
1

Sn

Sn
∑

i=1

yi, (16)

where xi and yi form the ith pair of neighbouring pixels.

Table 5 gives the calculated correlation coefficients for neighbouringpixels in the three

colour channels of the five test images and their corresponding cipher-images. As can be

seen from this table, the correlation coefficients for neighbouring pixels in all the three

colour channels of the output cipher-images are practically zero, and it further supports

the conclusion drawn from Fig. 6.

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 667

Table 5

Correlation coefficients between neighbouring pixels in the test images and their corresponding cipher-images.

Test image Direction Plain-image Cipher-image

name R G B R G B

avion horizontal 0.9575 0.9671 0.9316 0.0269 −0.0240 0.0259

vertical 0.9728 0.9634 0.9658 −0.0122 0.0156 0.0307

diagonal 0.9370 0.9336 0.9115 0.0045 0.0215 0.0141

baboon horizontal 0.8787 0.7757 0.8769 0.0027 −0.0022 −0.0092

vertical 0.9291 0.8655 0.8995 −0.0383 -0.018 −0.0006

diagonal 0.8671 0.7462 0.8314 −0.0221 −0.0074 −0.0215

house horizontal 0.9566 0.9526 0.9672 0.0222 0.0030 −0.0118

vertical 0.9507 0.9333 0.9719 0.0243 0.0028 0.0183

diagonal 0.9165 0.8988 0.9421 0.0034 0.0162 −0.0155

Lena horizontal 0.9896 0.9823 0.9585 −0.0026 0.0117 −0.0199

vertical 0.9799 0.9680 0.9381 0.0163 −0.0226 −0.0154

diagonal 0.9685 0.9566 0.9229 0.0120 −0.0178 0.0062

peppers horizontal 0.9667 0.9796 0.9672 0.0107 0.0081 −0.0176

vertical 0.9633 0.9808 0.9678 0.0122 0.0002 −0.0076

diagonal 0.9580 0.9671 0.9461 −0.0057 −0.0118 −0.0369

5.4. Key Sensitivity Analysis

Key sensitivity, a basic design principle of cryptographic algorithms, ensures that no infor-

mation about the plaintext can be revealed even if there is only a slight difference between

the decryption and encryption keys. To evaluate the key sensitivity property of the pro-

posed scheme, the “Lena” test image is firstly encrypted using a randomly generated se-

cret key: (x0 = 8.28751887014337, y0 = 6.61047141256491, z0 = 25.4548941736193,

u0 = −42.9012685104726), and the resulting cipher-image is shown in Fig. 7(a). Then

the cipher-image is tried to be decrypted using five decryption keys with the first one ex-

actly the same as the encryption key and the other four have only one-bit difference to

each part of the encryption key, respectively, as given in Table 6. The resulting deciphered

images are shown in Figs. 7(b)–(f), respectively, from which we can see that even an al-

most perfect guess of the key does not reveal any information about the original image.

It can, therefore, be concluded that the proposed scheme fully satisfies the key sensitivity

requirement.

5.5. Robustness to Noise and Data Loss

In the real world, transmission errors are unavoidable, especially given the presence of

noise in any communication channel, leading to the change of some pixels values. Besides,

digital images may also lose data if they are corrupted due to intrusion. Consequently, an

image encryption algorithm should have the robustness to resist noise and the data loss.

As can be derived from Eq. (6), the proposed algorithm does not suffer from the problem

of “error propagation”, that is, a one-pixel error in the transmitted cipher-image would

result in a one-pixel error in the reconstructed plain-image.

To demonstrate the robustness of the proposed algorithm against noise and data loss,

we first encrypt the “Lena” test image using a randomly generated secret key, and the

668 C. Fu et al.

Table 6

Decryption keys used for key sensitivity test.

Figure Decryption key

7(b) x0 = 8.28751887014337, y0 = 6.61047141256491,

z0 = 25.4548941736193, u0 = −42.9012685104726

7(c)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

x0 = 8.28751887014338, y0 = 6.61047141256491,

z0 = 25.4548941736193, u0 = −42.9012685104726

7(d) x0 = 8.28751887014337,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

y0 = 6.61047141256492,

z0 = 25.4548941736193, u0 = −42.9012685104726

7(e) x0 = 8.28751887014337, y0 = 6.61047141256491,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

z0 = 25.4548941736194, u0 = −42.9012685104726

7(f) x0 = 8.28751887014337, y0 = 6.61047141256491,

z0 = 25.4548941736193,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

u0 = −42.9012685104727

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results of key sensitivity test.

resulting cipher-image is shown in Fig. 8(a). Then we add four main types of noise, i.e.

the Gaussian noise, the Poisson noise, the salt & pepper noise, and the speckle noise,

to the cipher-image, and the results are shown in Figs. 8(b)–(e), respectively. Next we

crop part of the cipher-image and the result is shown in Fig. 8(f). Finally, we reconstruct

plain-images from Figs. 8(a)–(f), and the results are shown in Figs. 8(g)–(l), respectively.

To quantitatively measure the quality of the reconstructed plain-images, their PSNR are

calculated, and the results are given in Table 7. As can be seen from Fig. 8 and Table 7,

when a cipher-image is with noise or data loss, our algorithm can still reconstruct the

plain-image with a high visual quality. Therefore, it can be concluded that the proposed

algorithm is robust against noise and data loss.

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 669

Fig. 8. Results of robustness analysis against noise and data loss. (a) cipher-image. (b) cipher-image with Gaus-

sian noise (mean = 0 and variance = 0.01). (c) cipher-image with Poisson noise. (d) cipher-image with salt

& pepper noise (density = 0.05). (e) cipher-image with speckle noise (mean = 0 and variance = 0.04). (f) ci-

pher-image with data loss. (g)–(l) are reconstructed plain-images corresponding to (a)–(f), respectively.

Table 7

PSNR values for plain-images reconstructed from cipher-images with noise and data loss.

Figure Fig. 8(h) Fig. 8(i) Fig. 8(j) Fig. 8(k) Fig. 8(l)

PSNR 20.2106 27.1379 18.1460 18.7766 26.6073

6. Speed Performance

To demonstrate the efficiency of the proposed algorithm, we compare its performancewith

that of the AES algorithm, one of the most frequently used and most secure encryption

algorithms available today. Tables 8–10 show the time required by the proposed algorithm

and the AES algorithm to encrypt/decrypt 24-bit true colour images of size 512 × 512,

1024 × 1024 and 2048 × 2048, respectively. The AES algorithm works in CBC mode

and the performance of all its three versions (128-bit, 192-bit and 256-bit) are measured.

670 C. Fu et al.

Table 8

Time (in seconds) taken to encrypt/decrypt a 24-bit true colour image of size 512∗512.

Trial Proposed algorithm AES-128 AES-192 AES-256

No. Encryption Decryption Encryption Decryption Encryption Decryption Encryption Decryption

1 0.028 0.024 0.088 0.092 0.113 0.117 0.134 0.122

2 0.028 0.021 0.094 0.100 0.106 0.105 0.130 0.130

3 0.029 0.023 0.095 0.090 0.107 0.105 0.133 0.131

4 0.030 0.022 0.092 0.116 0.11 0.112 0.131 0.137

5 0.030 0.022 0.091 0.108 0.109 0.107 0.129 0.127

6 0.030 0.021 0.090 0.089 0.108 0.106 0.125 0.141

7 0.028 0.021 0.089 0.087 0.107 0.104 0.127 0.128

8 0.029 0.022 0.090 0.087 0.108 0.109 0.133 0.127

9 0.029 0.025 0.090 0.095 0.104 0.106 0.136 0.128

10 0.028 0.026 0.091 0.095 0.106 0.111 0.125 0.124

Mean 0.029 0.023 0.091 0.096 0.108 0.108 0.130 0.130

Table 9

Time (in seconds) taken to encrypt/decrypt a 24-bit true colour image of size 1024*1024.

Trial Proposed algorithm AES-128 AES-192 AES-256

No. Encryption Decryption Encryption Decryption Encryption Decryption Encryption Decryption

1 0.115 0.085 0.363 0.355 0.430 0.439 0.495 0.508

2 0.114 0.097 0.358 0.396 0.427 0.432 0.500 0.491

3 0.114 0.085 0.354 0.351 0.429 0.429 0.494 0.496

4 0.117 0.087 0.363 0.374 0.424 0.435 0.499 0.497

5 0.117 0.085 0.370 0.352 0.426 0.439 0.495 0.492

6 0.117 0.089 0.368 0.364 0.424 0.449 0.494 0.500

7 0.115 0.091 0.364 0.352 0.423 0.437 0.496 0.500

8 0.114 0.088 0.358 0.363 0.431 0.429 0.503 0.509

9 0.116 0.096 0.364 0.377 0.427 0.440 0.502 0.505

10 0.113 0.089 0.359 0.366 0.430 0.444 0.501 0.518

Mean 0.115 0.089 0.362 0.365 0.427 0.437 0.498 0.502

All the algorithms have been implemented using C programming language on Windows

7 64-bit platform, and the tests have been done on a personal computer with an Intel

i7-7700 3.6 GHz processor and 8 GB RAM. To make the comparison fair, we run each

algorithm 10 times on each test image and compute the average running time. As can be

seen from Tables 8-10, the proposed algorithm is approximately three times faster than the

simplest version of the AES algorithm, i.e. AES-128. Besides, it’s found that our algorithm

takes less time to decrypt than encrypt. This is because the decryption procedure does

not include the step of calculating the digest of the original image. It can therefore be

concluded from these results that the proposed algorithm provides a good candidate for

online secure image transmission over public networks.

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 671

Table 10

Time (in seconds) taken to encrypt/decrypt a 24-bit true colour image of size 2048∗2048.

Trial Proposed algorithm AES-128 AES-192 AES-256

No. Encryption Decryption Encryption Decryption Encryption Decryption Encryption Decryption

1 0.459 0.348 1.426 1.415 1.719 1.821 1.994 2.108

2 0.455 0.340 1.430 1.431 1.707 1.764 2.002 2.003

3 0.492 0.348 1.421 1.421 1.718 1.745 1.991 2.087

4 0.457 0.346 1.437 1.414 1.722 1.726 2.001 2.053

5 0.454 0.341 1.431 1.414 1.713 1.736 1.995 2.043

6 0.456 0.345 1.428 1.422 1.704 1.738 2.014 2.031

7 0.452 0.341 1.426 1.414 1.706 1.732 2.003 2.020

8 0.459 0.341 1.428 1.426 1.704 1.728 1.997 1.992

9 0.456 0.341 1.420 1.417 1.706 1.716 1.991 1.972

10 0.457 0.344 1.421 1.417 1.701 1.735 1.997 2.015

Mean 0.460 0.344 1.427 1.419 1.710 1.744 1.999 2.032

7. Conclusions

In this paper, we have proposed a fast and robust approach for image data protection. We

first calculate the SHA-224 hash value of the original image, and then the hash value,

together with the secret key, is used to generate the initial conditions of a 4-D hyper-

chaotic system. Subsequently, the hyperchaotic system is iterated for appropriate times to

produce a keystream sequence used for the substitution operation. Due to the avalanche

effect of hash functions, a slight change of the plain-image can lead to a totally different

keystream sequence. Consequently, desired diffusion effect can be achieved with only a

single round of substitution operation, whereas at least two encryption rounds are required

by the state-of-the-art permutation-substitution type image ciphers. We have also demon-

strated the computational efficiency of the proposed algorithm by comparing it with the

AES encryption algorithm. Our theoretical analysis and experimental results have indi-

cated that the proposed algorithm has a high security level, which can effectively resist

all common attacks, such as brute force attack, statistical attack and differential attack. In

conclusion, the proposed image encryption algorithm is particularly suitable for online

applications.

Acknowledgements. This work was supported by the Fundamental Research Funds for

the Central Universities (Nos. N150402004 and N171903003) and the National Nature

Science Fundation of China (No. 61802055).

References

Chen, J.X., Zhu, Z.L., Fu, C., Yu, H. (2014). A fast image encryption scheme with a novel pixel swapping-based

confusion approach. Nonlinear Dynamics, 77(4), 1191–1207.

Chen, J.X., Zhu, Z.L., Fu, C., Zhang, L.B., Zhang, Y. (2015a). An image encryption scheme using nonlinear

inter-pixel computing and swapping based permutation approach. Communications in Nonlinear Science

and Numerical Simulation, 23(1), 294–310.

672 C. Fu et al.

Chen, J.X., Zhu, Z.L., Fu, C., Zhang, L.B., Zhang, Y. (2015b). An efficient image encryption scheme using

lookup table-based confusion and diffusion. Nonlinear Dynamics, 81(3), 1151–1166.

Chen, J., Zhu, Z., Fu, C., Yu, H., Zhang, Y. (2015c). Reusing the permutation matrix dynamically for efficient

image cryptographic algorithm. Signal Processing, 111, 294–307.

Chen, J., Zhu, Z., Zhang, L., Yang, B. (2017). Exploiting self-adaptive permutation-diffusion and DNA random

encoding for secure and efficient image encryption. Signal Processing, 142.

Fridrich, J. (1998). Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifur-

cation and chaos, 8(06), 1259–1284.

Fu, C., Lin, B.B., Miao, Y.S., Liu, X., Chen, J.J. (2011). A novel chaos-based bit-level permutation scheme for

digital image encryption. Optics Communications, 284(23), 5415–5423.

Fu, C., Chen, J.J., Zou, H., Meng, W.H., Zhan, Y.F., Yu, Y.W. (2012). A chaos-based digital image encryption

scheme with an improved diffusion strategy. Optics Express, 20(3), 2363–2378.

Fu, C., Meng, W.H., Zhan, Y.F., Zhu, Z.L., Lau, F.C., Chi, K.T., Ma, H.F. (2013). An efficient and secure medical

image protection scheme based on chaotic maps. Computers in Biology and Medicine, 43(8), 1000–1010.

Fu, C., Huang, J.B., Wang, N.N., Hou, Q.B., Lei, W.M. (2014). A symmetric chaos-based image cipher with an

improved bit-level permutation strategy. Entropy, 16(2), 770–788.

Fu, C., Wen, Z., Zhu, Z., Yu, H. (2016). A security improved image encryption scheme based on chaotic Baker

map and hyperchaotic Lorenz system. International Journal of Computational Science and Engineering,

12(2–3), 113–123.

Li, Y., Tang, W.K., Chen, G. (2005). Hyperchaos evolved from the generalized Lorenz equation. International

Journal of Circuit Theory and Applications, 33(4), 235–251.

Wang, Y., Wong, K.W., Liao, X., Chen, G. (2011). A new chaos-based fast image encryption algorithm. Applied

Soft Computing, 11(1), 514–522.

Wong, K.W., Kwok, B.S.H., Law, W.S. (2008). A fast image encryption scheme based on chaotic standard map.

Physics Letters A, 372(15), 2645–2652.

Wong, K.W., Kwok, B.S.H., Yuen, C.H. (2009). An efficient diffusion approach for chaos-based image encryp-

tion. Chaos, Solitons & Fractals, 41(5), 2652–2663.

Wu, Y., Zhou, Y., Agaian, S., Noonan, J.P. (2014). A symmetric image cipher using wave perturbations. Signal

Processing, 102, 122–131.

Xiang, T., Wong, K.W., Liao, X. (2007). Selective image encryption using a spatiotemporal chaotic system.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(2), 023115.

Zhang, W., Yu, H., Zhao, Y.L., Zhu, Z.L. (2016). Image encryption based on three-dimensional bit matrix per-

mutation. Signal Processing, 118, 36–50.

Zhu, Z.L., Zhang, W., Wong, K.W., Yu, H. (2011). A chaos-based symmetric image encryption scheme using a

bit-level permutation. Information Sciences, 181(6), 1171–1186.

A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function 673

C. Fu received his MS in telecommunication and information systems in 2001 and PhD

in computer software and theory in 2006, both from Northeastern University, Shenyang,

China. He joined the same university in 2001 and is currently a professor and associate

head at the Department of Communication and Electronics Engineering, School of Com-

puter Science and Engineering. In 2010, he spent three months as a visiting researcher in

the Department of Electronics Information Engineering, Hong Kong Polytechnic Univer-

sity. His research interests include multimedia security and computer vision.

G.-Y. Zhang received the BS degree from Dalian University of Technology, China, in

1999, and MS degree in telecommunication and information systems from Northeastern

University, China in 2003. He is currently working toward the PhD degree at the Depart-

ment of Communication and Electronics Engineering, Northeastern University, China.

His research interests include telemedicine and telehealth systems, multimedia security,

and wireless communication, etc.

M. Zhu is currently a PhD student at the Department of Communication and Electron-

ics Engineering, School of Computer Science and Engineering, Northeastern University,

Shenyang,China. Her current research interests include multimedia security and computer

vision.

J.-X. Chen received the BS, MS and PhD degrees all in telecommunications engineering

from Northeastern University, Shenyang, China, in 2007, 2009, and 2016, respectively. He

is currently an assistant professor at Sino-Dutch Biomedical and Information Engineering

School, Northeastern University, Shenyang, China. His research interests include biosig-

nal process, chaos and optical security, genomic privacy, and compressive sensing.

W.-M. Lei received the BE and ME degrees in computer software from Nankai Univer-

sity and Chinese Academy of Sciences in 1992 and 1995, respectively, and the PhD degree

from Dalian University of Technology in 1999. He is currently a professor and head at the

Department of Communication and Electronics Engineering, School of Computer Sci-

ence and Engineering, Northeastern University, Shenyang, China. He has published more

than 80 papers. His recent research interests include real-time multipath transmission op-

timization, IP communication protocols, and future network architecture.

