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Abstract. In this work, the discrete time risk model with two seasons is considered. In such model,
the claims repeat with time periods of two units, i.e. claim distributions coincide at all even instants
and at all odd instants. Our purpose is to derive an algorithm for calculating the values of the par-
ticular case of the Gerber–Shiu discounted penalty function E(e−δT

1{T<∞}), where T is the time
of ruin, and δ is a constant nonnegative force of interest. Theoretical results are illustrated by some
numerical examples.
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1. Introduction and Main Results

In this paper, we consider the so called bi-seasonal discrete time risk model, which is the
direct generalization of the classical discrete time risk model.

Definition 1. We say that the insurer’s surplus Wu varies according to the bi-seasonal
risk model if

Wu(n)= u+ n−

n
∑

i=1

Zi

for each n ∈N0 = {0,1,2, . . .} and the following assumptions hold:

• the initial insurer’s surplus u ∈ N0,
• the random claim amounts {Z1,Z2, . . .} are nonnegative integer-valued independent

r.v.s.,

• there exist r.v.s. X and Y such that Z2k+1
d
=X, k ∈N0, and Z2k

d
=Y , k ∈N.

If X
d
=Y , then the bi-seasonal discrete time risk model becomes the classical discrete

time risk model.

*Corresponding author.
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There exists practical motivation for seasonal risk models in different spheres of in-
surance risks. In Bischoff-Ferrari et al. (2007) the effect of seasonality on fracture risk is
found to be statistically significant. Another example of risk influenced by seasonality is
dairy production loss risk, as found by Deng et al. (2007).

The Gerber–Shiu discounted penalty function 9δ,w is one of the main critical charac-
teristics for risk models of any types. According to the definition presented in Gerber and
Shiu (1998) for the discrete time risk model

9δ,w(u)= E
(

e−δTu w
(

Wu(Tu − 1), |Wu(Tu)|
)

1I{Tu<∞}

)

,

where force of interest δ > 0, w(x,y) is an arbitrary function of two nonnegative argu-
ments, and Tu denotes the time of ruin, i.e.

Tu =

{

min{n> 1 :Wu(n)6 0},

∞, if Wu(n) > 0 for all n ∈N.

Functionw has practical interpretations. For example, if w was interpreted as the ben-
efit amount of reinsurance payable at the time of ruin, then9δ,w(u) is the single premium
of the reinsurance.

In the particular case considered in this paper when w(x,y)= 1 for all nonnegative x
and y , the discounted penalty function is equal to the following expression

ψδ(u)=9δ,1(u)= E
(

e−δTu1I{Tu<∞}

)

.

If, in addition, force of interest δ = 0, then the Gerber–Shiu discounted penalty func-
tion is equal to the ruin probability

ψ(u)=ψ0(u)=90,1(u)= P(Tu <∞).

After Gerber and Shiu (1998) presented the concept of function named on their behalf,
various properties of this function were considered by many authors. The main part of the
known results on the Gerber–Shiu function is related with the Sparre Andersen model and
various generalizations of this model. For instance, several cases of the Sparre Andersen
model were considered by Dickson and Qazvini (2016), Landriault and Willmot (2008),
Li and Garrido (2004), Li and Sendova (2015), Lin et al. (2003), Schmidli (1999), Willmot
and Dickson (2003). Properties of the Gerber–Shiu function in the risk renewal models
perturbedby diffusion were investigated by Chi et al. (2010),Tsai (2003),Tsai and Willmot
(2002), Xu et al. (2014), Zhang and Cheung (2016), Zhang et al. (2012, 2017b, 2014). The
Gerber–Shiu function of the risk models with various special strategies were considered
by Avram et al. (2015), Bratiichuk (2012), Cheung and Liu (2016), Cheung et al. (2015),
Dong et al. (2009), Lin and Pavlova (2006), Lin and Sendova (2008), Liu et al. (2015),
Marciniak and Palmowski (2016), Shi et al. (2013), Shiraishi (2016), Woo et al. (2017),
Zhang et al. (2017a), Zhou et al. (2015). This function for the risk models with various
dependence structures or for risk models with investment strategies was considered by
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Cheung et al. (2011), Cossette et al. (2011), Li and Lu (2013), Mihálýko and Mihálýk
(2011), Schmidli (2015), among others.

In the above articles, the general risk renewal models of continuous time were consid-
ered. In such a case, the defective renewal equation is the main tool to obtain a suitable
information about the exact values or the asymptotic behaviour of the Gerber–Shiu func-
tion. If we consider the discrete time risk model, then the recursive relations between
values of the Gerber–Shiu function play role of the defective renewal equation. Recursive
methods were successfully analysed in many diverse fields, ranging from queuing models
(Ferreira et al., 2017) to dynamical systems (De La Sen, 2016). Various properties of the
Gerber–Shiu function in the discrete time risk models were considered by Bao and Liu
(2016), Cheng et al. (2000), Li and Wu (2015), Li (2005), Li and Garrido (2002), Li et

al. (2009), Liu et al. (2017), Liu and Guo (2006), Marceau (2009), Pavlova and Willmot
(2004). For instance, in Li and Garrido (2002), it is shown that values of function9δ,w of
the homogeneous discrete time risk model can be calculated using the following formulas

9δ,w(0) = e−δ
∞
∑

k=0

∞
∑

l=0

̺kw(k, l)P(Z = k + l + 1),

9δ,w(u) = e−δ
u−1
∑

k=0

9δ,w(u− k)

∞
∑

l=0

̺l P(Z = k + l + 1)

+e−δ̺−u
∞
∑

k=u

̺k
∞
∑

l=0

w(k, l)P(Z = k + l + 1),

where Z with EZ < 1 is the integer-valued random variable generating the homogeneous
discrete time risk model, and ̺ ∈ (0,1) is the root of equation

seδ =

∞
∑

k=0

sk P(Z = k).

By arguments provided in Li and Garrido (2002), such a solution exists and is unique for
δ > 0.

If the discrete time risk model is generated by possibly differently distributed random
variables Z1,Z2, . . . , then the above formulas do not hold anymore. The situation in the
nonhomogeneous discrete time risk model is much more complicated.

In this paper, we consider the behaviour of the special case of Gerber–Shiu penalty
function for the bi-seasonal discrete time risk model which is a particular case of non-
homogeneous discrete time risk models. Our results supplement the results of Castañer
et al. (2013), Răducan et al. (2015a) and Răducan et al. (2015b). We derive the specific
recursive equality for functionψδ . Using the derived formula we construct an algorithm to
calculate approximate values of this function. The running of the algorithm is illustrated
by several examples. The ideas from Bieliauskienė and Šiaulys (2012), Damarackas and
Šiaulys (2014), De Vylder and Goovaerts (1988), Dickson and Waters (1991) were used
to get the main results of this paper.
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We consider the bi-seasonal discrete time risk model generated by two nonnegative,
independent and integer valued random variables X and Y . By

xk = P(X = k), yk = P(Y = k), qk = P(Q= k), k ∈N0

we denote the local probabilities of random variables X, Y and Q=X+ Y respectively.
Distribution functions of these random variables we denote by FX , FY and FQ, i.e.

FX(u)= P(X 6 u)=

⌊u⌋
∑

k=0

xk,

FY (u)= P(Y 6 u)=

⌊u⌋
∑

k=0

yk,

FQ(u)= P(Q6 u)=

⌊u⌋
∑

k=0

qk,

for each real u. The notation F is used for the tail of an arbitrary distribution function F ,
i.e. F(u)= 1 − F(u) for each u ∈R.

The following two assertions enable us to construct an algorithm for calculating values
of function ψδ(u) in the bi-seasonal discrete time risk model.

Theorem 1. Let the bi-seasonal discrete time risk model be generated by two nonnega-

tive, independent and integer valued random variables X and Y . If EX + EY < 2, then

limu→∞ψδ(u) = 0 for an arbitrary fixed δ > 0. In addition, if max{EehX,EehY } <∞

for some positive h, then
∑∞
l=0ψδ(l) <∞ for each fixed δ > 0.

Theorem 2. Let all the conditions of Theorem 1 be satisfied. Furthermore, let δ > 0, and

ψδ denote the Gerber–Shiu function with w(x,y)= 1 for all nonnegative x and y . Also

denote Sδ :=
∑∞
l=0ψδ(l).

• If q0 = P(X+ Y = 0) > 0, then

ψδ(n)= anψδ(0)+ bnSδ + dn (1)

for each n ∈ N0, where an, bn, dn are three sequences of real numbers defined recursively

by the following equations:

a0 = 1, a1 = −
1

y0
, an =

1

q0

(

e2δan−2 −

n−1
∑

i=1

qian−i − xn−1

)

,

n ∈ {2,3, . . .};

b0 = 0, b1 = −
e2δ − 1

y0
,
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bn =
1

q0

(

e2δbn−2 −

n−1
∑

i=1

qibn−i − xn−1(e
2δ − 1)

)

, n ∈ {2,3, . . .};

d0 = 0, d1 =
eδEX + y0 +EY − 1

y0
,

dn =
1

q0

(

e2δdn−2 −

n−1
∑

i=1

qidn−i + xn−1y0d1 − eδFX(n− 2)−

n−2
∑

i=0

xiF Y (n− 1 − i)

)

,

n ∈ {2,3, . . .}.

• If x0 = P(X = 0)= 0 and y0 = P(Y = 0) 6= 0, then

ψδ(n)= ãnψδ(0)+ b̃nSδ + d̃n (2)

for each n ∈ N0, where ãn, b̃n, d̃n are three sequences of real numbers defined recursively

by the following equations:

ã0 = 1, ã1 = −
1

y0
, ãn =

1

q1

(

e2δãn−1 −

n−1
∑

i=1

qi+1ãn−i − xn

)

,

n ∈ {2,3, . . .};

b̃0 = 0, b̃1 = −
e2δ − 1

y0
,

b̃n =
1

q1

(

e2δb̃n−1 −

n−1
∑

i=1

qi+1b̃n−i − xn(e
2δ − 1)

)

, n ∈ {2,3, . . .};

d̃0 = 0, d̃1 =
eδEX + y0 +EY − 1

y0
,

d̃n =
1

q1

(

e2δd̃n−1 −

n−1
∑

i=1

qi+1d̃n−i + xny0d̃1 − eδFX(n− 1)

−

n−2
∑

i=0

xi+1F Y (n− 1 − i)

)

, n ∈ {2,3, . . .}.

• If x0 6= 0 and y0 = 0, then

ψδ(n)= b̂nSδ + d̂n (3)

for each n ∈ N0, where b̂n, d̂n are two sequences of real numbers defined recursively by

the following equations:

b̂0 = −(e2δ − 1),
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b̂n =
1

q1

(

e2δb̂n−1 −

n−1
∑

i=1

qi+1b̂n−i

)

, n ∈ N;

d̂0 = eδEX+EY − 1,

d̂n =
1

q1

(

e2δd̂n−1 −

n−1
∑

i=1

qi+1d̂n−i − eδFX(n− 1)−

n−1
∑

i=0

xiF Y (n− i)

)

, n ∈N.

Remark 1. We observe that case x0 = y0 = 0 is impossible due to requirement E(X +

Y ) < 2. This observation shows that all possible cases of the discrete r.v.s. X and Y are
considered in Theorem 2.

The rest of the paper is organized in the following way: in Section 2 we describe an

algorithm for calculating values of Gerber–Shiu function; next, in Section 3 we present a
few numerical examples which illustrate the applicability of our algorithm; in Section 4

some concluding remarks and directions for future work are provided; Section 5 deals with
proofs of the main results; in Section 6 some lower and upper bounds for Gerber–Shiu

function are derived; finally, in Section 7 the algorithm code in R language is provided.

2. Algorithm for Finding the Values of Function ψδ

In this section, we describe an algorithm for calculating values of ψδ(u) in the case of
the bi-seasonal risk model. The algorithm was implemented with R language, using in-

creased numerical precision package Rmpfr. Our algorithm is based on formula (1) from
Theorem 2 and the results of Theorem 1. As usual, it is assumed that we have a posi-

tive force of interest δ, and the bi-seasonal discrete time risk model is generated by two
nonnegative, integer-valued and differently distributed r.v.s. X, Y with local probabilities

xk = P(X = k), yk = P(Y = k), k ∈ N0. Of course, these two r.v.s. should satisfy all re-
quirements of Theorem 2. Below we present the detailed, step by step algorithm for calcu-

latingψδ(u), u ∈ N0 in the case when x0y0 > 0. The other possible cases:{x0 = 0, y0 > 0},
and {x0 > 0, y0 = 0}, which were described in Theorem 2, can be considered similarly.

Step 1: Select N ∈ {10,20,30, . . .,100} and K ∈ {1, . . . ,5}.
Step 2: Calculate coefficients an, bn, dn for all n ∈ {0,1, . . . ,N} using formulas from

Theorem 2.
Step 3: Find ψ̂δ(0) and Ŝδ satisfying the following system of linear equations

{

aN−K ψ̂δ(0)+ bN−K Ŝδ + dN−K = 0,

aN ψ̂δ(0)+ bN Ŝδ + dN = 0.
(4)
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Due to the main formula (1) of Theorem 2 the desired quantity ψδ(0) together with

sum Sδ satisfy the following system

{

aN−Kψδ(0)+ bN−KSδ + dN−K =ψδ(N −K),

aNψδ(0)+ bNSδ + dN =ψδ(N).
(5)

However, according to Theorem 1 ψδ(N −K) andψδ(N) are close to zero for sufficiently

largeN . We get system (4) from (5) by changing values ofψδ(N−K) andψδ(N) to zeroes.

Step 4: Test the error |ψδ(0)− ψ̂δ(0)|.
Using the Cramer’s rule for both systems of linear equations (4), (5) and the trivial esti-

mate |ψδ(n)|6 1, n ∈ N0, we derive that

∣

∣ψδ(0)− ψ̂δ(0)
∣

∣6
e−δ

(

|bN−K | + |bN |
)

|aN−KbN − bN−KaN |
.

Numerical simulations have shown that the upper estimate of ψδ(0) approximation
error tends to 0 as N grows. This is consistent with the behaviour of the approximation
error itself. As for parameterK , its choice does not have a clear effect on the upper estimate
of ψδ(0) approximation error.

Step 5: If the size of error in Step 4 is suitable, then pass to Step 6. If the size of error
is not suitable, then return to Step 1 choosing different parameters N and K .

We remark only that the sets provided in Step 1 for choosing these parameters are not

strictly defined, and different sets can be used successfully. However, choosing N much

larger than 100 would result in very large coefficients aN , bN and dN , and owing to that

some computational difficulties may arise. Besides that, in this case computational speed

would be reduced. And conversely, choosing N too small would result in big approxima-

tion error of ψδ(0) when changing system (5) to (4), since ψδ(N) does not converge to

zero so quickly. As for parameter K , it should be chosen to minimize the upper estimate

of ψδ(0) approximation error.
Step 6: Calculateψδ(1) according to the formula (1) by supposing thatψδ(0)= ψ̂δ(0)

and Sδ = Ŝδ .
Step 7: Calculate values of ψδ(u) for u> 2 while the algorithm works correctly, ap-

plying either formula (1) from Theorem 2 or the main recursive formula (7) from the proof
of Theorem 2.

By saying that the algorithm works correctly, we mean that its results do not conflict

with mathematical properties. Namely, ψδ(u) is a function taking values between 0 and 1,

nonincreasing with respect to u and decreasing with respect to δ. However, sometimes al-

gorithm produces results that are not compatible with these properties. This could happen

due to the following reasons:

• In some particular cases of X, Y and δ, coefficients an, bn, dn, n ∈ N0 in the main

equality of Theorem 2 are rapidly growing and fluctuating. Consequently, it is quite

difficult to get precise values of these coefficients.
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• Also, computational errors could arise because by using formula (1) from Theo-

rem 2, we are calculating “small” quantity ψδ(u) as a sum containing “large” in

absolute value summands.

Remark 2. Many ideas for constructing a recursive algorithm were taken from Dama-
rackas and Šiaulys (2014). In this article infinite time ruin probability, which is a special
case of Gerber–Shiu function with δ = 0 and w(x,y)= 1, was considered. In the paper
we have extended the results to the case δ > 0.

Remark 3. In Bieliauskienė and Šiaulys (2012), an analogous problem to ours is consid-
ered. While we analyse a less general model than the one provided in their paper, there
are some advantages in our algorithm. Namely, our approach of finding ψδ(0) is more ef-
ficient. The formula provided in Theorem 3 of Bieliauskienė and Šiaulys (2012) is appli-
cable to all numerical examples of Section 3 except the last one, which deals with random
variables having infinite support. But the problem with this formula is its combinatorial
form, and even for relatively simple distributions it is not easy to implement. The compu-
tational speed is also reduced for the same reason. Furthermore, our proposed algorithm
is less prone to computational errors, because we do not use multiple way recursion.

3. Numerical Examples

In this section, we present four numerical examples for calculating the values of ψδ(u),
u ∈ N0, in the bi-seasonal discrete time risk model. In all examples we consider function
ψδ with three different values of the interest force δ ∈ {0; 0.01; 0.1}. Our algorithm does
not allow to compute function values for case δ = 0, so the algorithm and its ψδ(0) ap-
proximation error upper estimate provided in Damarackas and Šiaulys (2014) were used
for this case. Since the function ψδ(u) seems to decay exponentially, all the figures are
plotted in log scale (with base 10).

Example 1. Let us assume that the bi-seasonal discrete time risk model is generated by
the following independent random claim amounts X and Y

X 0 1 2

P 0.6 0.2 0.2
;

Y 0 1 2 3

P 0.5 0.2 0.2 0.1
.

In this example, both claim amounts are “good” because max{EX,EY }< 1, and all
conditions of Theorem 2 are satisfied. Using the algorithm presented in Section 2 we
obtain values of ψδ(u) for u ∈ {0,1, . . . ,15}. These values are presented in Table 1 and
are shown in (Fig. 1). The upper estimate ofψδ(0) approximation error, described in Step 4
of algorithm, is provided in the parenthesis near the value of δ. The results of this example
are based on the value of ψδ(0) which is obtained with N = 50 and K = 2.
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Table 1
Values of ψδ(u) in Example 1.

u δ = 0 (<0.000000001) δ = 0.01 (0.083494161) δ = 0.1 (0.000001786)

0 0.735808540 0.715289725 0.588111815

1 0.528382921 0.505099453 0.379732449

2 0.308008652 0.283691781 0.168950439

3 0.186932507 0.166883336 0.082819297

4 0.109425467 0.094115383 0.036822099

5 0.064774209 0.053789118 0.016949434

6 0.038352631 0.030752904 0.007818717

7 0.022665488 0.017539770 0.003572849

8 0.013406572 0.010015276 0.001640920

9 0.007928948 0.005717783 0.000753055

10 0.004688946 0.003263965 0.000345342

11 0.002773172 0.001863371 0.000158466

12 0.001639884 0.001063758 0.000072701

13 0.000970174 0.000607275 0.000033353

14 0.000573054 0.000346681 0.000015302

15 0.000340345 0.000197913 0.000007020

Fig. 1. Values of ψδ(u) in Example 1 (log scale).

Example 2. Suppose now that the bi-seasonal discrete time risk model is generated by
r.v.s. X and Y having the following distributions

X 0 1

P 0.4 0.6
;

Y 0 1 2

P 0.1 0.6 0.3
.

We observe that EX < 1, EY > 1, but EX + EY < 2 in this case. Consequently, the
model is “good” only on average and all conditions of Theorem 2 are satisfied. Using the
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Table 2
Values of ψδ(u) in Examples 2 and 3

u Example 2 Example 2 Example 2 Example 3 Example 3 Example 3
δ = 0 δ = 0.01 δ = 0.1 δ = 0 δ = 0.01 δ = 0.1

(<0.000000001) (0.006459348) (<0.000000001) (<0.000000001) (0.001104494) (<0.000000001)

0 0.850000000 0.826902130 0.697524567 0.950000000 0.936126346 0.839178292

1 0.500000000 0.455345718 0.274354439 0.625000000 0.588031587 0.427209666

2 0.250000000 0.207339723 0.075270358 0.312500000 0.267757665 0.117206868

3 0.125000000 0.094411255 0.020650757 0.156250000 0.121922306 0.032156225

4 0.062500010 0.042989761 0.005665627 0.078125010 0.055516800 0.008822203

5 0.031250000 0.019575203 0.001554390 0.039062510 0.025279337 0.002420411

6 0.015625000 0.008913485 0.000426454 0.019531260 0.011510838 0.000664050

7 0.007812502 0.004058717 0.000116999 0.009765629 0.005241411 0.000182185

8 0.003906251 0.001848120 0.000032099 0.004882816 0.002386654 0.000049983

9 0.001953125 0.000841533 0.000008807 0.002441409 0.001086753 0.000013713

10 0.000976563 0.000383189 0.000002416 0.001220706 0.000494848 0.000003762

11 0.000488281 0.000174483 0.000000663 0.000610354 0.000225327 0.000001032

12 0.000244141 0.000079450 0.000000182 0.000305178 0.000102602 0.000000283

13 0.000122070 0.000036177 0.000000050 0.000152590 0.000046719 0.000000078

14 0.000061035 0.000016473 0.000000014 0.000076296 0.000021273 0.000000021

15 0.000030518 0.000007501 0.000000004 0.000038149 0.000009687 0.000000006

algorithm from Section 2, Table 2 is filled out with values of ψδ(u) for u ∈ {0,1, . . . ,15}.
Results of this example are based on the value of ψδ(0) which is obtained with N = 40

and K = 1. Values of ψδ(u) are also shown in (Fig. 2).

Example 3. Let us consider the mirror reflection of the bi-seasonal discrete time risk
model from Example 2, i.e. the order of claims appearance is reversed.

From the obtained calculations we can easily see that when the positions of claims are
changed, the values of ψδ(u) are also changing. The numerical values of ψδ(u) of this
model are given in the Table 2 and shown in (Fig. 2) with N = 50 and K = 3.

Example 4. Suppose that the bi-seasonal discrete time risk model is generated by r.v.s.
X and Y , where X has Poisson distribution with parameter λ= 0.8 and Y has geometric
distribution with parameter p = 0.7.

In this case, the model generators have infinite supports, but all requirements of The-
orem 2 are satisfied. So we can use the algorithm from Section 2 to calculate values of
ψδ(u). These values are given in Table 3 and shown in (Fig. 3). The results are obtained
by choosing N = 60 and K = 4 in the first step of the algorithm.

4. Concluding Remarks

In this work, the bi-seasonal discrete time risk model is considered. We derived a recursive
algorithm for calculating the values of a special case of Gerber–Shiu discounted penalty
function. Theoretical results are illustrated by some numerical examples.

The results obtained in this paper could be improved in the following directions:
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Fig. 2. Values of ψδ(u) in Examples 2 and 3 (log scale).

Table 3
Values of ψδ(u) in Example 4.

u δ = 0 (<0.000000001) δ = 0.01 (0.089541014) δ = 0.1 (0.000002568)

0 0.678504300 0.667146224 0.582922968

1 0.357239100 0.346815995 0.278446415

2 0.170682700 0.162951735 0.116632815

3 0.080801850 0.075772347 0.047817117

4 0.038827470 0.035788750 0.020007214

5 0.018862780 0.017104346 0.008536891

6 0.009203741 0.008213946 0.003676915

7 0.004496317 0.003949953 0.001588588

8 0.002197207 0.001900018 0.000686862

9 0.001073798 0.000913991 0.000297021

10 0.000524834 0.000439670 0.000128443

11 0.000256585 0.000211501 0.000055544

12 0.000125498 0.000101741 0.000024019

13 0.000061448 0.000048942 0.000010387

14 0.000030139 0.000023543 0.000004492

15 0.000014871 0.000011325 0.000001942

• Instead of taking w(x,y) = 1 in the Gerber–Shiu function, arbitrary function
w(x,y) could be taken. This would allow to reflect insurer’s economic costs at the
time of ruin in a more realistic way.

• Our results could be generalized to the models with more complex structure of
claims’ non-homogeneity. For instance, models with cyclically distributed claims
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Fig. 3. Values of ψδ(u) in Example 4 (log scale),

with an arbitrary cycle length could be considered. In this paper, the model with
cycle length equal to 2 is considered.

• Other model extensions may be useful to consider. For example, a model may include
investment strategies on premiums or claims following some dependence structure.

• In the Step 4 of our presented algorithm, more subtle estimation of ψδ(0) approxi-
mation error could be derived.

• In the bi-seasonal discrete time risk model, claims with distributions satisfyingEX+

EY > 2 could be considered. The difficulty arises here because limiting relations
in Theorem 1 and Theorem 2 do not hold anymore. Therefore an alternate way of
finding ψδ(0) and ψδ(1) should be derived.

5. Proofs of the Main Results

Proof of Theorem 1. According to Theorem 2.3 of (Damarackas and Šiaulys, 2014), we
have that

lim
u→∞

ψ(u)= 0.

This implies that limu→∞ψδ(u) = 0 for an arbitrary fixed δ > 0, because 0 6 ψδ(u) 6

ψ(u) for all δ,u> 0.
Furthermore, for i ∈N denote ηi =Zi − 1. The conditions of Theorem 1 imply that

sup
i∈N

E
(

ehηi
)

= max
{

E
(

ehX
)

,E
(

ehY
)}

<∞,
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lim
u→∞

sup
i∈N

E
(

|ηi |1I{ηi6−u}

)

= lim
u→∞

max
{

E
(

(1 −X)1I{X61−u}

)

,E
(

(1 − Y )1I{Y61−u}

)}

= 0,

lim sup
n→∞

1

n

n
∑

i=1

Eηi =
EX+EY − 2

2
< 0.

Hence, according to Lemma 1 by (Andrulytė et al., 2015), we have

ψδ(u)6ψ(u)= P

(

sup
k>1

k
∑

i=1

ηi > u

)

6 c1e−c2u, u> 0,

for some positive constants c1, c2.
Therefore, it follows immediately that

∑∞
l=0ψδ(l) <∞ for each fixed δ > 0. �

Proof of Theorem 2. Suppose that δ > 0 and u ∈ N0. According to definition of function
ψδ we have

ψδ(u) =

∞
∑

m=1

E
(

e−δm1I{Tu=m}

)

=

∞
∑

m=1

e−δm
P

( j
∑

i=1

Zi < j + u for j ∈ {1,2, . . . ,m− 1}

and
m

∑

i=1

Zi >m+ u

)

= e−δ
P(Z1 > 1 + u)+ e−2δ

P(Z1 < 1 + u,Z1 +Z2 > 2 + u)

+

∞
∑

m=3

e−δm
P

( j
∑

i=1

Zi < j + u for j ∈ {1,2, . . . ,m− 1}

and
m

∑

i=1

Zi >m+ u

)

.

Since X
d
=Z1

d
=Z3

d
=Z5

d
= . . . and Y

d
=Z2

d
=Z4

d
=Z6

d
= . . . we get that

ψδ(u) = e−δ
∑

l>1+u

xl + e−2δ
∑

l6u

∑

k>2+u−l

xlyk

+

∞
∑

m=3

e−δm
P

(

Z1 6 u,Z1 +Z2 6 1 + u,Z1 +Z2 +

j
∑

i=3

Zi < j + u
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for j ∈ {3, . . . ,m− 1} and Z1 +Z2 +

m
∑

i=3

Zi >m+ u

)

= e−δFX(u)+ e−2δ
u

∑

l=0

xlF Y (1 + u− l)

+

u
∑

l=0

1+u−l
∑

k=0

xlyk

∞
∑

m=3

e−δm
P

( j
∑

i=3

Zi < j + u− l − k

for j ∈ {3, . . . ,m− 1} and
m

∑

i=3

Zi >m+ u− k − l

)

= e−δFX(u)+ e−2δ
u

∑

l=0

xlF Y (1 + u− l)

+e−2δ
u

∑

l=0

1+u−l
∑

k=0

xlyk

∞
∑

m=3

e−δ(m−2)
P

( j
∑

i=1

Zi < j + u− l − k

for j ∈ {1, . . . ,m− 3} and
m−2
∑

i=1

Zi >m+ u− k − l

)

= e−δFX(u)+ e−2δ
u

∑

l=0

xlF Y (1 + u− l)

+ e−2δ
u

∑

l=0

1+u−l
∑

k=0

xlyk ψδ(u+ 2 − k− l). (6)

For each m ∈N0

qm = P(Q=m)=

m
∑

k=0

xkym−k.

Therefore the last sum in equality (6) can be expressed by

1+u
∑

l=0

1+u−l
∑

k=0

xlyk ψδ(u+ 2 − (k + l))− xu+1y0ψδ(1)

=

1+u
∑

l=0

qlψδ(u+ 2 − l)− xu+1y0ψδ(1)

=

u
∑

l=0

qlψδ(u+ 2 − l)+ (qu+1 − xu+1y0)ψδ(1).
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Substituting this expression into equality (6) we obtain that

ψδ(u) = e−δFX(u)+ e−2δ
u

∑

l=0

xlF Y (1 + u− l)

+ e−2δ

( u
∑

l=0

qlψδ(u+ 2 − l)+ (qu+1 − xu+1y0)ψδ(1)

)

(7)

for each u ∈ N0.
By summing these last equalities from u= 0 to u=N ∈ N we get that

N
∑

u=0

ψδ(u) = e−δ
N

∑

u=0

FX(u)+ e−2δ
N

∑

u=0

u
∑

l=0

xlF Y (1 + u− l)

+ e−2δ

( N
∑

u=0

u
∑

l=0

qlψδ(u+ 2 − l)+ψδ(1)

N
∑

u=0

(qu+1 − xu+1y0)

)

. (8)

We observe that

N
∑

u=0

u
∑

l=0

xlF Y (1 + u− l)=

N+1
∑

u=1

F Y (u)FX(N + 1 − u)

and, similarly,

N
∑

u=0

u
∑

l=0

qlψδ(u+ 2 − l)=

N+2
∑

u=2

ψδ(u)FQ(N + 2 − u).

Hence, it follows from (8) that

N+2
∑

u=0

ψδ(u)
(

1 − e−2δFQ(N + 2 − u)
)

= e−δ
N

∑

u=0

FX(u)+ e−2δ
N+1
∑

u=1

F Y (u)FX(N + 1 − u)

+ψδ(N + 1)+ψδ(N + 2)+ e−2δψδ(1)

N
∑

u=0

(qu+1 − xu+1y0)

−e−2δ
(

ψδ(0)FQ(N + 2)+ψδ(1)FQ(N + 1)
)

(9)

for each N ∈ N.
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Now we are in a position to let N → ∞. It is obvious that:

lim
N→∞

N
∑

u=0

FX(u)= EX, lim
N→∞

FQ(N + 1)= lim
N→∞

FQ(N + 2)= 1, (10)

lim
N→∞

N
∑

u=0

qu+1 = 1 − q0, lim
N→∞

N+1
∑

u=0

xu+1 = 1 − x0. (11)

Theorem 1 implies that

lim
N→∞

ψδ(N + 1)= lim
N→∞

ψδ(N + 2)= 0. (12)

Consider the second term in the right side of equality (9). Obviously

lim
N→∞

N+1
∑

u=1

F Y (u)FX(N + 1 − u)6

∞
∑

u=1

F Y (u).

On the other hand, for an arbitraryM ∈N

lim
N→∞

N+1
∑

u=1

F Y (u)FX(N + 1 − u)> lim
N→∞

FX(N + 1 −M)

M
∑

u=1

F Y (u)=

M
∑

u=1

F Y (u).

Consequently,

lim
N→∞

N+1
∑

u=1

F Y (u)FX(N + 1 − u) =

∞
∑

u=1

F Y (u)= y2 + 2y3 + 3y4 + . . .

= y0 +EY − 1. (13)

Only the left side of equality (9) is left for consideration. Due to Theorem 1

lim
N→∞

N+2
∑

u=0

ψδ(u)= Sδ <∞.

In addition,

lim
N→∞

N+2
∑

u=0

ψδ(u)FQ(N + 2 − u)6

∞
∑

u=0

ψδ(u)= Sδ,

and, for an arbitrary chosen M ∈ N,

lim
N→∞

N+2
∑

u=0

ψδ(u)FQ(N + 2 − u)> lim
N→∞

FQ(N + 2 −M)

M
∑

u=0

ψδ(u).
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Hence,

lim
N→∞

N+2
∑

u=0

ψδ(u)
(

1 − e−2δFQ(N + 2 − u)
)

=
(

1 − e−2δ
)

Sδ . (14)

Substituting all limiting relations (10)–(14) into equality (9) we get

(

1 − e−2δ
)

Sδ = e−δ
EX+ e−2δ(y0 +EY − 1)− e−2δψδ(1)y0 − e−2δψδ(0). (15)

From this point we consider the three cases described in the formulation of Theorem
separately.

(I) If q0 > 0 then equality (15) implies that

ψδ(1)= a1ψδ(0)+ b1Sδ + d1

where a1, b1 and d1 are as defined in formulation of Theorem. So, we have that the main
equality (1) holds if n ∈ {0,1}.

Now we need to prove this equality for all n ∈ N. For this we use induction. Suppose
that equality (1) holds for all n ∈ {0,1, . . . ,K} for the defined sequences an, bn and dn.

The induction hypothesis and equality (7) with u=K − 1 imply that

e2δψδ(K − 1) = e2δ
(

aK−1ψδ(0)+ bK−1 Sδ + dK−1

)

= eδFX(K − 1)+

K−1
∑

l=0

xlF Y (K − l)+ q0ψδ(K + 1)

+

K−1
∑

l=1

ql
(

aK+1−lψδ(0)+ bK+1−l Sδ + dK+1−l

)

+ (qK − xKy0)
(

a1ψδ(0)+ b1Sδ + d1

)

.

Therefore,

q0ψδ(K + 1) = ψδ(0)
(

e2δaK−1 −

K
∑

l=1

qlaK+1−l + xKy0a1

)

+ Sδ

(

e2δbK−1 −

K
∑

l=1

qlbK+1−l + xKy0b1

)

+

(

e2δdK−1 −

K
∑

l=1

qldK+1−l + xKy0d1 − eδFX(K − 1)

−

K−1
∑

l=0

xlF Y (K − l)

)

,
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or

ψδ(K + 1)= aK+1ψδ(0)+ bK+1Sδ + dK+1

due to the definition of sequences an, bn and dn.
The induction principle implies that equality (1) holds for all n ∈ N0. The first part of

Theorem 2 is proved.
(II) If x0 = 0, y0 6= 0, then equality (15) implies that

ψδ(1)= ã1ψδ(0)+ b̃1Sδ + d̃1

where ã1, b̃1 and d̃1 are as defined in formulation of Theorem. So, we have that the main
equality (2) holds if n ∈ {0,1}. Similarly as in case (I), we finish the proof using induction
method and equality (7).

(III) If x0 6= 0, y0 = 0, then equality (15) implies that

ψδ(0)= b̂0Sδ + d̂0,

where b̂0 and d̂0 are as defined in formulation of Theorem. So, we have that the main
equality (3) holds if n = 0. Similarly as in case (I), we finish the proof using induction
method and equality (7).

Now Theorem 2 is proved. �

6. Bounds for the Gerber–Shiu Discounted Penalty Function

Let us consider the bi-seasonal risk modelWu(n)=Wu(n|X,Y ) defined in Section 1. Let
Tu = Tu(X,Y ) be the time of ruin for the model.

Also, let us consider homogeneousdiscrete time risk model generated by claim amount
(X+ Y )/2. Suppose that T̂u((X+ Y )/2) denotes the ruin time of this model, i.e.

T̂u((X+ Y )/2)=

{

min{n> 1 : Ŵu(n)6 0},

∞, if Ŵu(n) > 0 for all n ∈ N,

where Ŵu(n)= u+ n−
∑n
i=1 Ẑi with independent r.v.s. Ẑ1, Ẑ2, . . . distributed as (X+

Y )/2.
Then we have that Wu(n|X,Y )>Wu(n|X+ Y,0), and hence

Tu(X,Y ) = min
{

n ∈N :Wu(n|X,Y )6 0
}

> min
{

n ∈N :Wu(n|X+ Y,0)6 0
}

= min

{

n ∈ 2N− 1 : u+ n−

[(n+1)/2]
∑

i=1

(Xi + Yi)6 0

}
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= 2 min

{

k ∈ N : u+ 2k − 1 −

k
∑

i=1

(Xi + Yi)6 0

}

− 1

= 2T̂(u−1)/2

(

(X+ Y )/2
)

− 1.

Thus we get

ψδ(u) = ψ̂δ
(

Tu(X,Y )
)

6 ψ̂δ
(

2T̂(u−1)/2

(

(X+ Y )/2
)

− 1
)

= eδψ̂2δ

(

T̂(u−1)/2

(

(X+ Y )/2
))

,

where

ψ̂1(T )= E
(

e−1T 1I{T<∞}

)

for a r.v. T and arbitrary 1 > 0. We also have Wu(n|X,Y ) 6Wu(n|0,X + Y ). Hence,
similarly as above we obtain

ψδ(u)> ψ̂2δ

(

T̂u/2
(

(X+ Y )/2
))

.

To summarize, upper and lower bounds for ψδ(u) were obtained:

ψ̂2δ

(

T̂u/2((X+ Y )/2)
)

6ψδ(u)6 eδψ̂2δ

(

T̂(u−1)/2

(

(X+ Y )/2
))

for all δ > 0 and u> 1.

7. Algorithm Code in R

library(Rmpfr)

# set the values of parameters

delta = 0.1; N = 30; K = 2; umax = 20

# initialise vectors

q = numeric(N)

a = mpfrArray(0, precBits = 1024, dim = c(N,1))

b = mpfrArray(0, precBits = 1024, dim = c(N,1))

d = mpfrArray(0, precBits = 1024, dim = c(N,1))

psi = mpfrArray(0, precBits = 1024, dim = c((umax+1),1))

FX = numeric(N)

FY = numeric(N)

# choose the distributions of claims (4 different distributions are

considered as described in Numerical examples section)

x = c(0.6, 0.2, 0.2); y = c(0.5, 0.2, 0.2, 0.1)
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# x = c(0.4,0.6); y = c(0.1,0.6,0.3)

# y = c(0.4,0.6); x = c(0.1,0.6,0.3)

# lambda = 0.8; prob = 0.7; x = dpois(c(0:N),lambda);

y = dgeom(c(0:N),prob)

# compute quantities related with claims’ distributions

Xmax <- length(x)-1; Ymax <- length(y)-1

X = 0:Xmax; Y = 0:Ymax

EX = sum(X * x); EY = sum(Y * y)

x[(Xmax+2):N] = 0; y[(Ymax+2):N] = 0

for (i in 0:(Xmax+Ymax)) {

for (k in 1:(i+1))

q[i+1] = q[i+1] + x[k] * y[(i+2) - k] }

FX[1] = x[1]

for (u in 1:(N-1)) {FX[u+1] = FX[u] + x[u+1]}

F_X = 1 - FX

FY[1] = y[1]

for (u in 1:(N-1)) {FY[u+1] = FY[u] + y[u+1]}

F_Y = 1 - FY

# calculate the coefficients of algorithm

a[1] = mpfr(1,1024)

a[2] = mpfr(-1,1024) / mpfr(y[1],1024)

for (n in 2:(N-1)) {

a[n + 1] = mpfr(1,1024) / mpfr(q[1],1024) * (mpfr(exp(2 * delta),1024)

* mpfr(a[(n + 1) - 2],1024) + mpfr(x[n],1024) * mpfr(y[1],1024)

* mpfr(a[2],1024))

for (i in 2:n)

a[n + 1] = mpfr(a[n + 1],1024) - (mpfr(1,1024) / mpfr(q[1],1024))

* (mpfr(q[i],1024) * mpfr(a[n - i + 2],1024)) }

b[1] = 0

b[2] = -(exp(2 * delta) - 1) / mpfr(y[1],1024)

for (n in 2:(N-1)) {

b[n + 1] = 1 / mpfr(q[1],1024) * (exp(2 * delta)

* mpfr(b[(n + 1) - 2],1024) + mpfr(x[n],1024) * mpfr(y[1],1024)

* mpfr(b[2],1024))

for (i in 2:n)

b[n + 1] = mpfr(b[n + 1],1024) - (1 / mpfr(q[1],1024))

* (mpfr(q[i],1024) * mpfr(b[n - i + 2],1024)) }

d[1] = 0

d[2] = (exp(delta) * mpfr(EX,1024) + mpfr(y[1],1024) + mpfr(EY,1024) - 1)

/ mpfr(y[1],1024)

for (n in 2:(N-1)) {

d[n + 1] = 1 / mpfr(q[1],1024) * (exp(2 * delta)

* mpfr(d[(n + 1) - 2],1024)

+ mpfr(x[n],1024) * mpfr(y[1],1024) * mpfr(d[2],1024)

- exp(delta) * mpfr(F_X[n - 1],1024))

for (i in 2:n)

d[n + 1] = mpfr(d[n + 1],1024) - (1 / mpfr(q[1],1024))
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* (mpfr(q[i],1024) * mpfr(d[n - i + 2],1024)

+ mpfr(x[i - 1],1024) * mpfr(F_Y[n - i + 2],1024)) }

# solve the system of linear equations

eqA = array(c(mpfr(a[N-K],1024), mpfr(a[N],1024), mpfr(b[N-K],1024),

mpfr(b[N],1024)),

dim = c(2, 2))

eqb = array(c(mpfr(-d[N-K],1024), mpfr(-d[N],1024)))

detA = mpfr(eqA[1,1],1024) * mpfr(eqA[2,2],1024)

- mpfr(eqA[1,2],1024) * mpfr(eqA[2,1],1024)

eqA_inv = 1/detA * array(c(mpfr(eqA[2,2],1024), mpfr(-eqA[2,1],1024),

mpfr(-eqA[1,2],1024), mpfr(eqA[1,1],1024)), dim = c(2, 2))

eqx = mpfr(eqA_inv,1024) %*% mpfr(eqb,1024)

id_mat = mpfr(eqA_inv,1024) %*% mpfr(eqA,1024)

psi[1] = eqx[1]

S = eqx[2]

# check the accuracy of solutions

acc_psi0 = mpfr(exp(-delta),1024) * (abs(mpfr(b[N-K],1024))

+ abs(mpfr(b[N],1024))) / abs(mpfr(detA,1024))

acc_S = exp(-delta) * (abs(a[N-K]) + abs(a[N])) / abs(detA)

# calculate the values of Gerber--Shiu function

psi[2] = a[2] * psi[1] + b[2] * S + d[2]

psi[3:(umax+1)] = a[3:(umax+1)] * psi[1] + b[3:(umax+1)] * S

+ d[3:(umax+1)]

psi2 = asNumeric(psi)
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Bieliauskienė, E., Šiaulys, J. (2012). Gerber–Shiu function for the discrete inhomogeneous claim case. Interna-

tional Journal of Computer Mathematics, 89, 1617–1630.
Bischoff-Ferrari, H.A., Orav, J.E., Barrett, J.A., Baron, J.A. (2007). Effect of seasonality and weather on fracture

risk in individuals 65 years and older. Osteoporosis International, 18(9), 1225–1233.
Bratiichuk, M. (2012). On the Gerber–Shiu function for a risk model with multi-layer dividend strategy. Statistics

& Probability Letters, 82, 496–504.



754 O. Navickienė et al.
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