
INFORMATICA, 1993, VolA, No.3-4, 295-302

A PSEUDO-DIRECT EXECUTION
OF ALGORITHMS USING

. TURBO PASCAL APPLIED
IN PROGRAMMING TEACHING PROCESS

Valentina DAGIENE

Institute of Mathematics and Informatics
2600 Vilnius, Akademijos St. 4, Lithuania

Abstract. An algorithm testing methodology used in the programming
teaching process is presented. Turbo Pascal system is used. Due to systematic
use of some features of this system a pseudo-direct execution of algorithms ex­
pressed by Pascal procedures and functions may.be ensured. The need to use
data read and write statements is excluded. This enables a novice learner to
concentrate himself on the main actions of an algorithm.

Key words: algorithm, program, programming, teaching of programming,
distance teaching, Turbo Pascal.

1. Introduction. An algorithm describes a sequence of ac­
tions describing how to get output data from input data. A com­
puter program adds to the algorithm a set of extra actions de­
scribing how to get the input data and how to display the results.
Using Pascal these actions are expressed by read, write and other
statements operating on files. On the other hand, the main task of
the development of an algorithm is to find a solution of the. given
problem while a program includes all phases of problem solving by
computer.

There are several teaching cases when it is desirable to concen­
trate on main actions of an algorithm and thus learning of actions
concerned with data input and output are irrelevant and redun­
dant. Let us mention two samples of such cases.

1. Student's access to a computer and/or communication be-

296 A pseudo-direct execution of algorithms

tween a student and a teacher is limited. This situation is common
in a distance teaching of informatics.

2. There is a tendency to achieve more general goals in the
algorithm teaching process. Such goals may be as follows: .to de­
velop thinking, especially logic thinking, to develop problem solv­
ing abilities, especially ifthe problems are unusual and require deep
thinking or consideration analytic.

From the methodological viewpoint of teaching (Dagiene and
Grigas, 1991). Pascal procedures and functions are more suitable
entities for algorithms representation than programs. However,
Pascal translators can't accept these constructions (procedures and
functions) for direct execution. Turbo Pascal is no exception. The­
refore, procedures and functions have be incorporated into a com­
puter program.

Therefore, a demand for a direct execution of Pascal proce­
dures and functions is evident. This problem can be solved in two
ways.

1. Using software designed a specially for direct execution of
the procedures and functions. An interpreter of algorithms (Da­
giene and Zandaris, 1992) may be given as an example of such
software.

2. Systematically using some peculiarities of a standard soft­
ware in order to imitate direct execution of algorithms. Let us call
such approaches as pseudo-direct.

Later on we will describe the approach which corresponds the
second way.

2. Turbo Pascal features useful for algorithm testing.
The purpose of the design of Pascal was to te~ch the discipline
of programming. Turbo Pascal was designed for professional pro­
gramming. It contains a great number of the Standard Pascal ex­
tensions. (To be precise - of a subset.very close to the Standard
Pascal.) Let us denote the Standard Pascal by letter S and Turbo
Pascal by letter T and use the Pascal notations for presenting oper-'
ations. Let us divide all extension of Turbo Pascal into two groups:
TP - those, which are useful (positive) for teaching (e.g., operations

v. Dagiene 297

with strings, structured constants) and TN - those, which are use­
less (negative) or even harmful in this respect (e.g., operations with
codes of the values). So, we have

T-S=TP+TN,

TP*TN=[].

Turbo Pascal was designed for professional programming, so it
is reasonable to expect that

TP > TN.

It is reasonable to use a set of

S+TP

for teaching purpose. The systematic use of TP (or its subset) to­
gether with S (or its subset) may increase the chances for Turbo
Pascal to regain some pedagogical power which was lost because
of TN. Here we concentrate ourselves on some distinguishable fea­
tures of TP which make Turbo Pascal suitable for executing and
testing of algorithms presented by procedures and functions.

1. We can use typed constants of structured data types in the
constant definition part.

EXAMPLE:

type point = record
z, y: real

end;
vector == array [0 .. 1] of point;

const M : point = (z : 0.0; y : 0.0);
line i vector = ({z : 3.1; y : 1.5),

(z : 5.9; y : 3.0»;

2. Structured values of variables (and constants) can be dis­
played on the screen by Turbo Pascal compiler when we use the
debugging option.

3. Program heading can be omitted.

298 A pseudo-direct execution oj algorithms

4. The order of definitions and declarations is unimportant.
Definition or declaration parts of the same sort may appear more
than once.

EXAMPLE:

const pi = ...
var z: ...

const u = .. .
function p .. .

type t = ...
var z: ...

Features named in the points 1,3 and 4 concern the language
of Turbo Pascal and that in the second point the compiler.

The most significant points in our context are the last two.
They allow us to reconstruct relationship between the main part
of a program and of the procedure or function. According to the
Standard Pascal syntax the components of programs may be laid
out in the strictly prescribed order as follows:

program heading,
label declaration part,
constant definition part,
type definition part,
variable declaration part,
procedure and function declaration part,
statement part.
The procedures and functions are enclosed inside the program,

and the structure of the whole program text may be expressed by
this scheme:

prOf ram

algorithm:
procedure or function

This scheme suits for the Turbo Pascal too.
Turbo Pascal however, allows program headings to be omitted,

and the order of definition and declaration parts to be arbitrary,
e. g.,

V. Dagiene

procedure and function declaration part,

label declaration part,

constant definition part,

type definition part,

variable declaration part,

statement part.

299

So we considered, that procedures and functions can be pre­
sented in the very beginning of the program text. It makes an
impression that an algorithm is not enclosed in a program. rhe
situation can be expressed by a scheme:

algorithm:
proced ure or function

program

EXAMPLE:

{ algorithm}
procedQ.re minmax (a, b: integerj

var min, max: integer)j
begin

if a < b

endj

then begin
min:= aj

max:= b
end

else begin
min:= bj
max:= a

end

{----------------------}

300 A pseudo-direct ezecution of algorithms

{program}

var mn, mz : integer;
begin

minmaz (6,7,mn,mz)
end.

3. Methodologies of algorithm testing. The Turbo Pascal
features described earlier ensure convenient direct-like communica­
tion with an algorithm (procedure or function). This communi­
cation is achieved by presenting data values directly on a display
screen and thus excluding the use of data read and write state­
ments. The procedure and function calls are written in the pro­
gram. All values of scalar input data are put down directly into
procedure or function call statement. Such values, which are of
structured data types or which change within a loop (in the case
of a multiple execution of the algorithm), are denoted by identi­
fiers and can be changed appropriately (as a loop variable or by
a structured constant definition). All output data values are de­
noted by variable identifiers in the procedure call. The values of
these variables (including structured ones) can be observed in the
watch window of debugging option. This is valid for functions too,
but function call must be written in the left side of an assignment
statement.

Thus the testing scheme consists of to parts:

1) an algorithm (procedure or function or their collection);

2) an executing program.

Procedure or function can have parameters, whose types are
defined by a user. In this case their type definitions must (immedi­
ately) proceed the algorithm. Those definitions may be considered
las a component part of the algorithm.

Let us give the pattern of testing algorithm.

v. Dagiene 301

const {constant and}
type {type (of parameters) definitions}

algorithm:

procedure or function

an executing program:

const { structured constant definition }
var { variable parameters declaration }

begin
{ call statement}

end.

4. Conclusions. Turbo Pascal allows more freedom using the
particular language constructions than the Standard Pascal. In
particular the program heading may be omitted, the order of defini­
tion and declaration parts may be arbitrary. Systematic and objec­
tive use of these features together with certain debugging options
of Turbo Pascal system may ensure direct supply of procedures
and functions with input test data and direct observation of their
results. On the basis of these features an approach of the pseudo­
direct execution of Pascal procedures and functions is elaborated.
The approach is useable for programming teaching especially in
distance teaching.

REFERENCES

Dagiene, V., and G. Grigas (1991). An environment for teaching of algorithms.
Informatica, 2(4), 473-477.

Dagieue, V., and G. Grigas (1991). Informatika. to-I!. Sviesa, Kaunas (In
Lithuanian).

Dagiene, V., and A. Zandaris (1992). Algorithms interpreter for schools. In­
formatika, 20, 39-51 (In Lithuanian).

Received 1993 November

302 A pseudo-direct execution of algorithms

v. Dagiene graduated Vilnius University in 1978 and re­
ceived the Degree of Doctor of Mathematics (Ph.D) from Vytautas
Magnus University (Kaunas, Lithuania) in 1993. She is a senior
research worker of the Department of Programming Methodology
at the Institute of Mathematics and Informatics. Published ten
books and many articles of programming. Her research interests
include teaching of informatics, programming and algorithmization
methodology ..

