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Abstract. Neutrosophic linguistic numbers (NLNs) can depict the uncertain and imperfect infor-

mation by linguistic variables (LVs). As the classical aggregation operator, the Maclaurin sym-

metric mean (MSM) operator has its prominent characteristic that reflects the interactions among

multiple attributes. Considering such circumstance: there are interrelationship among the attributes

which take the forms of NLNs and the attribute weights are fully unknown in multiple attribute

group decision making (MAGDM) problems, we propose a novel MAGDM methods with NLNs.

Firstly, the MSM is extended to NLNs, that is, aggregating neutrosophic linguistic information by

two new operators – the NLN Maclaurin symmetric mean (NLNMSM) operator and the weighted

NLN Maclaurin symmetric mean (WNLNMSM) operator. Then, we discuss some characteristics

and detail some special examples of the developed operators. Further, we develop an information

entropy measure under NLNs to assign the objective weights of the attributes. Based on the entropy

weights and the proposed operators, an approach to MAGDM problems with NLNs is introduced.

Finally, a manufacturing industry example is given to demonstrate the effectiveness and superiority

of the proposed method.

Key words: neutrosophic linguistic numbers, Maclaurin symmetric mean (MSM) operator,

MAGDM.

1. Introduction

Multi-attribute decision making (MADM) or MAGDM has drawn great attention and

been widely applied in various industries (Mulliner et al., 2015; Ou, 2016; Stanujkic et

al., 2017; Zavadskas et al., 2017). So how to utilize an effective method to depict the

attributes is an important step of the decision process. In real-world decision process,

the decision reality is uncertain and human cognition is fuzzy and ambiguous. There-

fore, decision makers (DMs) may actually prefer the linguistic terms (LTs) to express the

qualitative evaluation, such as “good”, “better”, “bad” and so on. Zadeh (1975) firstly

presented the notion of LVs. Since their appearance, the research about the MADM or

MAGDM problems based on the LVs have received great efforts (Guan et al., 2017;
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Meng, 2017; Morente-Molinera et al., 2017). Herrera and Herrera-Viedma (2000) built

a linguistic model to cope with MAGDM problems. Cabrerizo et al. (2014) proposed

utilizing the information granularity to reach consensus and solve MAGDM problems.

Herrera and Herrera-Viedma (1996) presented the linguistic ordered weighted averag-

ing (LOWA) operators. Xu (2006a) developed a linguistic hybrid arithmetic average

operator to aggregate LVs. Further, some new ideas such as uncertain linguistic vari-

ables (ULVs) (Xu, 2004), 2-tuple linguistic information (Herrera and Martínez, 2000;

Li et al., 2017) and its extensive form (Ju et al., 2014) were raised by some scholars to

deal with MAGDM problems.

However, there is such a case in real life: during voting process, 30 percent of elec-

tors voted in favour, 20 percent of electors voted against, 10 percent of people abstained

and 40 percent of people were neutral or absent or in other uncertain situations. In order

to express this uncertainty, inconsistent and imperfect information better, Smarandache

(1998) presented the neutrosophic set (NS), which is a common conceptual framework

that expands the fuzzy set and the intuitionistic fuzzy set. On the other hand, Smarandache

(1998, 2013, 2014) introduced a new definition of neutrosophic number (NN), denoted by

A = u + vI , where u represents a determinate part and vI represents an indeterminate

part. When there is no indeterminacy related to A (A = u), it will be the best situation,

otherwise when A = vI , it will be the worst situation. As we have known, the decision-

making methods based on NS (Liu and Shi, 2015; Peng et al., 2014; Ye, 2014), including

its subsets: simplified NSs (SNSs), single-valued NSs (SVNSs) and interval NSs (INSs),

cannot solve such problems under NN environment. Because the NN and the NS are two

different subclasses of neutrosophy (Smarandache, 1998), and they take different forms to

express information. Now, the NSs have been applied in various fields (Liu and Shi, 2015;

Peng et al., 2014), clustering analysis (Ye, 2014), medical diagnosis (Ye, 2016a) etc., while

little research has been done in dealing with indeterminate problems by NNs. To further

develop the application about NNs, Kong et al. (2015) defined the cosine similarity mea-

sure between NNs. Ye (2016b) developed a possibility degree ranking method under NNs

environment. Ye (2017) also proposed a new method which utilizes bidirectional projec-

tion model to handle MAGDM problems with NNs.

Because DMs have vague recognition for the complex objective things, linguistic eval-

uation may more easily express the fuzzy information than crisp numbers or fuzzy num-

bers. However, the LVs cannot depict uncertain, inconsistent and imperfect information,

therefore Smarandache (2015) presented a new notion of neutrosophic linguistic numbers

(NLNs) by combining the LVs and NNs. Then, Ye (2016c) put forward the operational

laws of NLNs and presented the corresponding operators – the NLN weighted arithmetic

average (NLNWAA) and NLN weighted geometric average (NLNWGA) operators.

Usually, the evaluation information given by DMs is fuzzy, uncertain and imperfect.

But so far, there are few studies on the NLNs to handle uncertain and fuzzy problems.

For this, we develop a new method for MAGDM problems under neutrosophic linguistic

environment. The information aggregation operators perform well in information fusion

and have received increasing concerns. Furthermore, the different aggregation operators

have its distinctive characteristics, such as PA operator, it can assign the weight based on

the support degree between integrated arguments. In addition, some aggregation operators
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can reflect the interactions between integrated arguments, such as Bonferroni mean (BM)

(Liu et al., 2017a), Heronian mean (HM) (Liu and Chen, 2017) and Maclaurin symmetric

mean (MSM) (Qin, 2017). Xu and Yager (2011) make a comparison between the MSM

and the BM, the unique advantage of the MSM is that it can reflect the interactions among

the multiple attributes (of course, it can include two attributes), while the BM or HM can

only consider the interaction between two attributes. Therefore, the MSM demonstrates

more flexibility and robustness in the process of information integration than BM and HM.

Now Qin (2017) extended MSM to pythagorean fuzzy numbers; Yu et al. (2017) extended

MSM to hesitant fuzzy linguistic numbers.

Obviously, DMs have limited judgements due to the fuzziness and complicacy of prac-

tical MAGDM problems. To select an optimal alternative in a decision problem, we need to

simultaneously consider the following requirements: (1) There exists unreasonable weight

vector of attribute values given by DMs because of their own bias or limitation on knowl-

edge (Liu et al., 2017b). In order to obtain objective weight and relieve unreasonable

influences, we can use an objective entropy model to get the attributes weights. (2) In

real decision problems, the interrelationship between attributes is common, and then the

BM or MSM can realize the function. Based on above analysis, we have known the MSM

operator has the advantage over BM because the former considers the interrelationships

among multiple attributes whereas the latter can only reflect the interrelationship between

two attributes. Therefore, we can extend MSM to NLNs.

So, we concentrate on applying the MSM to accommodate neutrosophic linguistic

environment and develop a novel MAGDM method with NLNs in the paper. And the

purposes of this paper are: (1) to establish a weight model utilizing entropy measure-

ment under NLNs. (2) to propose the weighted neutrosophic linguistic MSM operators

(WNLNMSM) and to investigate their characteristics, and (3) to develop a new MAGDM

method based on the WNLNMSM operators under neutrosophic linguistic environment.

The main contributions of the proposed method are that it is able to depict uncertain and

imperfect linguistic information in qualitative decision environments and can consider the

interrelationships among the attributes.

The rest of this paper is organized as follows. In Section 2, we take a brief look at some

basic concepts, including LVs, NNs, NLNs and the MSM operator. In Section 3, we de-

velop the NLNMSM and WNLNMSM operators, then we investigate some characteristics

and detail some special examples. In Section 4, we develop a method of determiningobjec-

tive entropy weights. In Section 5, we detail a novel method based on WNLNMSM oper-

ator for the MAGDM problems that use NLNs to describe evaluation values. In Section 6,

a practical example of manufacturing is demonstrated to show the practicality, effective-

ness and advantages of the proposed approach. In Section 7, we summarize this paper.

2. Preliminaries

2.1. The Linguistic Variables

Zadeh (1975) firstly came up with the LV to describe the linguistic information, and the

definition is as follows:
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Fig. 1. A neutrosophic number.

S[0,τ ] = {s0, s1, s2, . . . , sτ−1}, (1)

where τ is the odd value, such as 3, 5, 7, 9, etc. Given an example as τ = 5, a set

S[0,4] is shown as follows: S[0,4] = {s0 = worse, s1 = poor, s2 = good, s3 = better, s4 =

excellent}.

In general, the LVs can meet:

(1) Sm ≻ Sn, if m > n;

(2) The negation operator is: neg(Sm) = Sn where m + n = τ − 1.

There exists a loss of information if the form of LVs is discrete, so Xu (2006a) proposed

a continuous LV:

S =
{

Sα |α ∈ R+
}

. (2)

Then Xu (2006a, 2006b) put forward the operational rules of LVs as follows:

(1) λSm = Sλ×m, (3)

(2) Sm + Sn = Sm+n, (4)

(3) Sm × Sn = Sm×n, (5)

(4) Sm/Sn = Sm/n (n 6= 0), (6)

(5) (Sm)λ = Smλ , λ > 0. (7)

2.2. Neutrosophic Numbers and Neutrosophic Linguistic Numbers

Smarandache (1998, 2013, 2014) proposed NN, and the form is A = u + vI , where

u,v ∈ R, I depicts indeterminacy satisfying In = I if n ≻ 0, and 0 × I = 0, and there

is no relevant definition for bI/nI .

A NN can be graphically shown in Fig. 1.

For example, suppose that there is a NN A = 4 + 3I . If I ∈ [0.4,0.6], it is equivalent

to A ∈ [5.2,5.8], and it is certain for A > 5. We can see that its determinate part is 4 and
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its indeterminate part is 3I . When the indeterminacy is I ∈ [0.4,0.6], the possibility for

“A” is within the interval [5.2,5.8].

Definition 1. (See Smarandache, 1998, 2013, 2014.) Let A1 = u1 + v1I and A2 = u2 +

v2I be two NNs for real n u1, v1, u2, v2 ∈ R. The operational rules for A1 and A2 are

shown as follows:

(1) A1 + A2 = u1 + u2 + (v1 + v2)I, (8)

(2) A1 − A2 = u1 − u2 + (v1 − v2)I, (9)

(3) A1 × A2 = u1u2 + (u1v2 + v1u2 + v1v2)I, (10)

(4) A2

1
= (u1 + v1I)2 = u2

1
+ ((u1 + v1)

2 − u2

1
)I, (11)

(5)
A1

A2

=
u1 + v1I

u2 + v2I
=

u1

u2

+
u2v1 − u1v2

u2(u2 + v2)
I for u2 6= 0 and u2 6= v2. (12)

Let A = u+ vI be a NN. We called A is the positive NN when u,v > 0, and we would

assume all NNs are positive, unless they are stated.

Definition 2. Let A = u + vI be a NN and I ∈ [IL, IH ]. Then, we define the expected

value of the NN A as

EX(A) = (u + v × I l) + (u + v × Iu). (13)

Based on Definition 2, we can compare two NNs by the expected value of the NNs.

For example, let A = 2 + 4I and B = 3 + 2I be two NNs for I ∈ [0.20.4], the expected

values of the NNs A and B are EX(A) = (2 + 4 × 0.2)+ (2 + 4 × 0.4) = 6.4, EX(B) =

(3 + 2 × 0.2) + (3 + 2 × 0.4) = 7.2, so we can get A ≺ B because of EX(A) < EX(B).

That is, min(A,B) = A, max(A,B) = B .

To better depict the uncertain and incomplete information Smarandache (2015) pre-

sented the concept of NLN, which is denoted as su+vI , where u + vI is NN. Then Ye

(2016c) gave the operational laws and the expected value of NLNs.

Definition 3. (See Ye, 2016c.) Assume that s̃1 = su1+v1I and s̃2 = su2+v2I are two NLNs,

then the operational rules are defined as follows:

(1) s̃1 + s̃2 = su1+u2+(v1+v2)I , (14)

(2) s̃1 − s̃2 = su1−u2+(v1−v2)I , (15)

(3) s̃1 × s̃2 = su1u2+(u1v2+u2v1+v1v2)I , λ > 0, (16)

(4)
s̃1

s̃2

= s u1
u2

+
u2v1−u1v2
u2(u2+v2) I

, (17)

(5) λs̃1 = sλu1+λv1I , λ> 0, (18)

(6) s̃λ
1

= suλ
1
+[(u1+v1)

λ−uλ
1
]I , λ> 0. (19)

Obviously, the above results are still NLNs.



716 P. Liu, X. You

Table 1

The advantages and disadvantages of NLNs and NNs.

Advantages Disadvantages

NNs The NNs can express uncertain, inconsistent, and

imperfect information by a determinate part u and an

indeterminate part vI ;

The indeterminate degree I can be assigned by DMs

according to their preference or real requirements.

It is difficult to express the complex

determinate part, such that during a voting

process, the results of voting include

determinate part: five votes in favour and

two votes against, indeterminate part: one

absent vote.

NLNs The NLNs combine LVs and NNs so that they can

more easily depict incompleteness, indeterminacy,

and inconsistency than crisp numbers or fuzzy

numbers; The indeterminate degree I can be

assigned by DMs.

The indeterminate part cannot distinguish

the falsity-membership degree.

Definition 4. (See Ye, 2016c.) Let S = {s0, s1, . . . , st−1} be a finitely linguistic term set

(LTS) and s̃ = su+vI be an NLN for S and I ∈ [IL, IH ]. Then, the expected value of the

NLN s̃ is defined as

EX(s̃) =
(u + v × IL) + (u + v × IH )

2(t − 1)
. (20)

Based on Definition 4, the bigger the value of EX(s̃) is, the greater the NLN s̃ is. So,

a comparison method for NLNs is defined below.

Definition 5. (See Ye, 2016c.) Let s̃1 and s̃2 be two NLNs. Then,

1. If EX(s̃1) ≻ EX(s̃2), then s̃1 ≻ s̃2;

2. If EX(s̃1) = EX(s̃2), then s̃1 = s̃2.

Example 1. Let s̃1 = s2+3I and s̃2 = s4+I be two NLNs, where I ∈ [0.1,0.3] , t = 6.

Then, we haveEX(s̃1) = 0.52 ≺ EX(s̃2) = 0.84 according to Eq. (1), so the ranking order

is s̃1 ≺ s̃2.

To better depict and compare the differences and correlation between NLNs and NNs,

we briefly summarize the advantages and disadvantages of NLNs and NNs in Table 1.

2.3. MSM Operator

The MSM originally presented by Maclaurin (1729), which is a well-known and useful

mean type operator which can reflect the interactions among multiple attributes.

Definition 6. (See Maclaurin, 1729.) Suppose zi (i = 1,2, . . . , n) be a set of non-

negative real numbers. The MSM is defined as

MSM(k)(z1, z2, . . . , zn) =

(

∑

16i1<···<ik6n

∏k
j=1

zij

Ck
n

)1/k

, (21)
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where k is a parameter, k = 1,2, . . . , n and i1, i2, . . . , and ik are k integer values taken

from the set {1,2, . . . , n} of n integer values, where 1 6 i1 < i2 < · · · < ik 6 n, Cn
k denotes

the binomial coefficient and Cn
k = n!

k!(n−k)!
.

Remarkably, the MSM has the following characteristics:

(1) MSM(k)(0,0, · · · ,0) = 0, MSM(k)(z, z, . . . , z) = z;

(2) MSM(k)(z1, z2, . . . , zk) 6 MSM(k)(y1, y2, . . . , yk), if xi 6 yi for all i;

(3) min{zi}6 MSM(k)(z1, z2, . . . , zk)6 max{zi}.

3. Neutrosophic Linguistic MSM Aggregation Operators

In this section, we develop the NLNMSM operators and WNLNMSM operators, and then

we will research their characteristics and some special examples.

3.1. NLNMSM Operator

Definition 7. Let s̃1, s̃2, . . . , and s̃n be NLNs, the NLNMSM operator of NLNs

s̃1, s̃2, . . . , and s̃n is defined as follows:

NLNMSM(k)(s̃1, s̃2, . . . , s̃n) =

(

∑

16i1<···<ik6n

∏k
j=1

s̃ij

Ck
n

)
1

k

. (22)

Theorem 1. Let s̃1, s̃2, . . . , and s̃n be NLNs, where s̃i = sui+viI (i = 1,2, . . . , n), then the

aggregated result of NLNs s̃1, s̃2, . . . , and s̃n can be denoted as

NLNMSM(k)(s̃1, s̃2, . . . , s̃n)

= s
(

∑

16i1<···<ik6n

k
∏

j=1

uij

Ck
n

)
1

k +
((

∑

16i1<···<ik6n

k
∏

j=1

(uij
+vij

)

Ck
n

)
1

k −
(

∑

16i1<···<ik6n

k
∏

j=1

uij

Ck
n

)
1

k
)

I

. (23)

Proof. On the basis of the Eqs. (14), (16), (18), (19), we have

k
∏

j=1

s̃ij = s∏k
j=1

uij
+

(

∏k
j=1

(uij
+vij

)−
∏k

j=1
uij

)

I

and

∑

16i1<···<ik6n

k
∏

j=1

s̃ij

= s
∑

16i1<···<ik6n

k
∏

j=1

uij
+

(

∑

16i1<···<ik6n

k
∏

j=1

(uij
+vij

)−
∑

16i1<···<ik6n

k
∏

j=1

uij

)

I

.
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Then we obtain

1

Ck
n

(

∑

16i1<···<ik6n

k
∏

j=1

s̃ij

)

= s
∑

16i1<···<ik6n

k
∏

j=1

uij

Ck
n

+
(

∑

16i1<···<ik6n

k
∏

j=1

(uij
+vij

)−
∑

16i1<···<ik6n

k
∏

j=1

uij

Ck
n

)

I

,

(

∑

16i1<···<ik6n

∏k
j=1

s̃ij

Ck
n

)
1

k

= s
(

∑

16i1<···<ik6n

k
∏

j=1

uij

Ck
n

)
1

k +
((

∑

16i1<···<ik6n

k
∏

j=1

(uij
+vij

)

Ck
n

)
1

k −
(

∑

16i1<···<ik6n

k
∏

j=1

uij

Ck
n

)
1

k
)

I

.

Therefore,

NLNMSM(k)(s̃1, s̃2, . . . , s̃n)

= s
(

∑

16i1<···<ik6n

k
∏

j=1

uij

Ck
n

)
1

k +
((

∑

16i1<···<ik6n

k
∏

j=1

(uij
+vij

)

Ck
n

)
1

k −
(

∑

16i1<···<ik6n

k
∏

j=1

uij

Ck
n

)
1

k )I

.

Next, we investigate the desirable properties of NLNMSM.

Property 1 (Idempotency). If s̃i = s̃ = su+vI (i = 1,2, . . . , n) all are equal, then

NLNMSM(k)(s̃, s̃, . . . , s̃) = su+vI . (24)

Proof. Since s̃ = st+vI , based on Theorem 1, we have

NLNMSM(k)(s̃, s̃, . . . , s̃)

= s
(

∑

16i1<···<ik6n

k
∏

j=1

u

Ck
n

)
1

k +
((

∑

16i1<···<ik6n

k
∏

j=1

(u+v)

Ck
n

)
1

k −
(

∑

16i1<···<ik6n

k
∏

j=1

u

Ck
n

)
1

k
)

I

= s
(uk)

1

k +((u+v)
k× 1

k −u
k× 1

k )I

= su+vI .

Property 2 (Commutativity). Let s̃1, s̃2, . . . , and s̃n be NLNs, and s̃′
1
, s̃′

2
, . . . , and s̃′

n is

any permutation of s̃1, s̃2, . . . , and s̃n, then

NLNMSM(k)(s̃′
1
, s̃′

2
, . . . , s̃′

n) = NLNMSM(k)(s̃1, s̃2, . . . , s̃n). (25)
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Proof. Based on Definition 7, the conclusion is obvious

NLNMSM(k)(s̃′
1
, s̃′

2
, . . . , s̃′

n)

=

(

∑

16i1<···<ik6n

∏k
j=1

s̃′
ij

Ck
n

)
1

k

=

(

∑

16i1<···<ik6n

∏k
j=1

s̃ij

Ck
n

)
1

k

= NLNMSM(k)(s̃1, s̃2, . . . , s̃n).

Property 3 (Monotonicity). Let s̃1, s̃2, . . . , and s̃n be NLNs, where s̃i = sui+viI , and

i = 1,2, . . . , n, and let g̃1, g̃2, . . . , and g̃n be NLNs, where g̃i = sti+fiI and i = 1,2, . . . , n,

which meet the condition ui 6 ti , vi 6 fi for all i , then

NLNMSM(k)
(

s̃α1
, s̃α2

, . . . , s̃αn

)

6 NLNMSM(k)
(

s̃β1
, s̃β2

, . . . , s̃βn

)

. (26)

Proof. Since ui 6 ti , then

(

∑

16i1<···<ik6n

∏k
j=1

uij

Ck
n

)
1

k

6

(

∑

16i1<···<ik6n

∏k
j=1

tij

Ck
n

)
1

k

.

Since ui 6 ti , vi 6 fi , then ui + vi 6 ti + fi

(

∑

16i1<···<ik6n

∏k
j=1

(uij + vij )

Ck
n

)
1

k

6

(

∑

16i1<....<ik6n

∏k
j=1

(tij + fij )

Ck
n

)
1

k

.

And according to the Definition 3 and Definition 4, we can get E(s̃α) 6 E(s̃β), so, finally,

we have NLNMSM(k)(s̃α1
, s̃α2

, . . . , s̃αn)6 NLNMSM(k)(s̃β1
, s̃β2

, . . . , s̃βn).

Property 4 (Boundedness). Suppose s̃− = min(s̃1, s̃2, . . . , s̃n), s̃
+ = max(s̃1, s̃2, . . . , s̃n)

then

s̃−
6 NLNMSM(k)(s̃1, s̃2, . . . , s̃n)6 s̃+. (27)

Proof. Based on Properties 1 and 3, we have

NLNMSM(k)(s̃1, s̃2, . . . , s̃n)> NLNMSM(k)(s̃−
1

, s̃−
2

, . . . , s̃−
n ) = s̃−,

NLNMSM(k)(s̃1, s̃2, . . . , s̃n)6 NLNMSM(k)(s̃+
1

, s̃+
2

, . . . , s̃+
n ) = s̃+.

Thus the property is proved.

In addition, we give some special examples of the NLNMSM operator by different

parameter k.
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(1) When k = 1, the NLNMSM operator in (23) will become the NLNA (NLN averaging)

operator

NLNMSM(1)(s̃1, s̃2, . . . , s̃n) =

(

∑

16i1<···<ik6n

1
∏

j=1

s̃ij

C1
n

)
1

1

= s ∑

16i16n
uij

n
+

(

∑

16i16n
(uij

+vij
)

n
−

∑

16i16n
uij

n

)

I

= s ∑

16i16n

uij

n +
(

∑

16i16n

vij

n

)

I

(let i1 = i)

=
1

n

n
∑

i=1

s̃i

= NLNA(s̃1, s̃2, . . . , s̃n). (28)

(2) When k = 2, the NLNMSM operator in (23) will become the NLNBM operator (p = 1,

q = 1)

NLNMSM(2)(s̃1, s̃2, . . . , s̃n) (29)

=

(

∑

16i1<i26n

∏

2

j=1
s̃ij

C2
n

)
1

2

= s
(

∑

16i1<i26n

2
∏

j=1

uij

C2
n

)
1

2 +
((

∑

16i1<i26n

2
∏

j=1

(uij
+vij

)

C2
n

)
1

2 −
(

∑

16i1<i26n

2
∏

j=1

uij

C2
n

)
1

2
)

I

=
2

k(k − 1)

∑

i,j=1

i 6=j

(s̃i s̃j )
1

2 = NLNBM(1,1)(s̃1, s̃2, . . . , s̃n).

(3) When k = n, the NLNMSM operator in (23) will become the NLNG operator

NLNMSM(n)(s̃1, s̃2, . . . , s̃n)

=

(

∑

16i1≺···<ik6n

∏n
j=1

s̃ij

Cn
n

)
1

n

= s
(

∑

16i1<···<ik6n

n
∏

j=1

uij

Cn
n

)
1
n +

((

∑

16i1<···<ik6n

n
∏

j=1

(uij
+vij

)

Cn
n

)
1
n −

(

∑

16i1<···<ik6n

n
∏

j=1

uij

Cn
n

)
1
n

)

I

= s
( n

∏

j=1

uij

)
1
n +

(( n
∏

j=1

(uij
+vij

)
)

1
n −

( n
∏

j=1

uij

)
1
n

)

I
(let ij = j)

=

n
∏

j=1

s̃
1

n

j = NLNG(s̃1, s̃2, . . . , s̃n). (30)
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3.2. WNLNMSM Operator

Definition 8. Let s̃1, s̃2, . . . , and s̃n be NLNs, ω = (ω1,ω2, . . . ,ωn)
T be the weight vec-

tor of l̃i satisfying ωi ∈ [0,1] (i = 1,2, . . . , n) and
∑n

i=1
ωi = 1, then the WNLNMSM

operator is presented as follows:

WNLNMSM(k)(s̃1, s̃2, . . . , s̃n) =

(

∑

16i1<···<ik6n

∏k
j=1

wij s̃ij

Ck
n

)
1

k

, (31)

where (i1, i2, . . . , ik) represents k integrated values of (1,2, . . . , n), Ck
n denotes the bino-

mial coefficient.

Theorem 2. Let s̃1, s̃2, . . . , and s̃n be NLNs, where s̃i = sui+viI , and ω = (ω1,ω2, . . . ,ωn)
T

be the weight vector of s̃i satisfying ωi ∈ [0,1] (i = 1,2, . . . , n) and
∑n

i=1
ωi = 1. The

aggregated result of NLNs s̃1, s̃2, . . . , and s̃n obtained by the WNLNMSM operator in (31)

is also a NLN, shown as follows:

WNLNMSM(k)(s̃1, s̃2, . . . , s̃n)

= s
(

∑

16i1<···<ik6n

k
∏

j=1

wij
uij

Ck
n

)
1

k +
((

∑

16i1<···<ik6n

k
∏

j=1

(wij
uij

+wij
vij

)

Ck
n

)
1

k −
(

∑

16i1<···<ik6n

k
∏

j=1

wij
uij

Ck
n

)
1

k
)

I

.

(32)

On basis of Eqs. (14)–(19), the WNLNMSM operator has the same characteristics as

follows:

Property 5 (Idempotency). Let s̃1, s̃2, . . . , and s̃n all are equal, then

WNLNMSM(k)(s̃, s̃, . . . , s̃) = s̃. (33)

Property 6 (Commutativity). Let s̃1, s̃2, . . . , and s̃n be NLNs, and s̃′
1
, s̃′

2
, . . . , and s̃′

n is

any permutation of s̃1, s̃2, . . . , and s̃n, then

WNLNMSM(k)(s̃′
1
, s̃′

2
, . . . , s̃′

n) = WNLNMSM(k)(s̃1, s̃2, . . . , s̃n). (34)

Property 7 (Monotonicity). Let s̃1, s̃2, . . . , and s̃n be NLNs, where s̃i = sui+viI , and

i = 1,2, . . . , n, and let g̃1, g̃2, . . . , and g̃n be NLNs, where g̃i = sti+fiI and i = 1,2, . . . , n,

which meet the condition ui 6 ti , vi 6 fi for all i , then

WNLNMSM(k)(s̃α1
, s̃α2

, . . . , s̃αn)6 WNLNMSM(k)(s̃β1
, s̃β2

, . . . , s̃βn). (35)

Property 8 (Boundedness). Suppose s̃− = min(s̃1, s̃2, . . . , s̃n), s̃
+ = max(s̃1, s̃2, . . . , s̃n)

then

s̃−
6 WNLNMSM(k)(s̃1, s̃2, . . . , s̃n)6 s̃+. (36)
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Similar to Property 1–4 of NLNMSM, the proofs of the above Property 5–8 are omit-

ted.

4. The Objective Weights Model Based on Entropy Measure

The DMs usually give weights of attribute values from a subjective view, but this kind of

judgement often has subjectivity and blindness due to the limitation of knowledge struc-

ture, personal bias and so on. It’s important to apply appropriate weight of attributes dur-

ing the decision process, so it is necessary to develop a weight determination model when

weights of attribute values are fullly unknown.Then we develop an objective weight model

based on entropy of NLNs. The steps are as follows.

Firstly, a standardized decision matrix D = [s̃ij ]m×n = [suij +vij I ]m×n for R =

[rij ]m×n = [su′
ij +v′

ij I ]m×n,

rij =

{

s̃ij /s̃
+
j (for benefit attribute),

s̃−
j /s̃ij (for cost attribute),

(37)

where s̃+
j = maxi(s̃ij ), s̃−

j = mini(s̃ij ).

Next, a transformed decision matrix R = [rij ]m×n = [su′
ij +v′

ij I ]m×n into X = [x̃ij ]m×n

by the expected value of the NLN, and have

x̃ij =
(u′

ij + v′
ij × I l) + (u′

ij + v′
ij × Iu)

2(t − 1)
. (38)

Then, calculate the entropy values for the j th attribute is

Hj = −
1

lnm

m
∑

i=1

x̃ij ln x̃ij . (39)

Finally, the attribute weights can be gotten:

wj =
1 − Hj

n −
∑n

j=1
Hj

. (40)

5. An Approach to Group Decision Making with the WNLNMSM Operator

In this section, we will give decision steps for the MAGDM problems based on the

WNLNMSM operators.

Let R = {R1,R2, . . . ,Rm} be a set of alternatives, M = {M1,M2, . . . ,Mp} be the set

of DMs and λ = (λ1, λ2, . . . , λp)T be the weight vector of DMs Ml (l = 1,2, . . . , p).

Let U = {U1,U2, . . . ,Un} be the set of attributes and suppose the attributes weights are

unknown.
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The lth (l = 1,2, . . . , p) DM uses NLN s̃l
ij = suij +vij I (ul

ij , v
l
ij ∈ R) to evaluate the

attribute Uj (j = 1,2, . . . , n) of the alternative Ri (i = 1,2, . . . ,m). Now, the lth NLN

decision matrix M l can be obtained:

M l =













s̃l
11

s̃l
12

· · · s̃l
1n

s̃l
21

s̃l
22

· · · s̃l
2n

...
...

. . .
...

s̃l
n1

s̃l
n2

· · · s̃l
nn













.

Based on this information, the best selection should be given. Then we give specific

decision steps as follows:

Step 1: Based on Eq. (32), aggregate the attribute values from decision matrix M l =

(s̃l
ij )m×n (l = 1,2, . . . , p) by WNLNMSM operator,

s̃ij = WNLNMSM(k)(s̃1

ij , s̃
2

ij , . . . , s̃
p
ij )

= s

(

∑

16i1<···<ik6n

k
∏

j=1

wl
ij

ul
ij

Ck
n

)
1

k +
((

∑

16i1<···<ik6n

k
∏

j=1

(wl
ij

ul
ij

+wl
ij

vl
ij

)

Ck
n

)
1

k

−
(

∑

16i1<···<ik6n

k
∏

j=1

wl
ij

ul
ij

Ck
n

)
1

k
)

I.

(41)

Step 2: Obtain attribute weight vector ωj = (ω1,ω2, . . . ,ωn)
T of the {U1,U2, . . . ,Un}

by Eqs. (37)–(40).

Step 3: Based on Eq. (32), obtain the collective evaluation information of alternative Ri .

s̃i = WNLNMSM(k)(s̃i1, s̃i2, . . . , s̃in)

= s

(

∑

16j1<···<jk6n

k
∏

q=1

wjq uijq

Ck
n

)
1

k +
((

∑

16j1<···<jk6n

k
∏

q=1

(wjq uijq +wjq vijq )

Ck
n

)
1

k

−
(

∑

16j1<···<jk6n

k
∏

q=1

wjq uijq

Ck
n

)
1

k
)

I,

(42)

where i = 1,2, . . . ,m.

Step 4: Transform a NLN s̃i (i = 1,2, . . . ,m) into an interval NLN s̃i = sui+viI ∈

s[ui+vi×IL,ui+vi×IH ]. Then, the expected value of EX(s̃i) (i = 1,2, . . . ,m) is obtained

by Eq. (20).

Step 5: Rank s̃i (i = 1,2, . . . ,m) in terms of EX(s̃i) of NLNs and the comparison method

in Definition 5.
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6. Numerical Examples

In this section, two practical examples (adopted from Ye, 2016c, 2017) are demonstrated

to illustrate the proposed MAGDM method. In order to better show the superiority of the

proposed method, we will suppose the attribute weights are unknown and revise some

data to suit corresponding needs.

Example 2. (See adopted from Ye, 2016c.) Suppose there are four manufacturing alter-

natives R = {R1,R2,R3,R4} in a flexible manufacturing system, and there are three at-

tributes to be considered: (1) U1: quality; (2) U2: the market prospect; (3) U3: technique.

A group of three DMs (DM1, DM2, DM3) gives evaluation information based on the LTs

S = {s0 = worst, s1 = worse, s2 = bad, s3 = medium, s4 = good, s5 = better,

s6 = excellent},

and the weight vector of the three DMs is λ = (0.30,0.36,0.34). During the decision

process, we consider the variation range of indeterminacy I to reflect DMs’ preference.

So we suppose the lower limit of I is IL = 0 and the upper limit of I is IH = 0.1. DMp

(p = 1,2,3) gives the attribute values on the alternative Ri (i = 1,2,3,4) by NLNs, and

three NLN decision matrices are listed as follows

M1 =









s5 s4+I s3+I

s4 s5 s4+I

s5+I s4+2I s4+I

s5 s4+I s5+2I









, M2 =









s4+I s5 s3

s5 s4+I s3+I

s5 s4+I s4

s4+I s5 s5+I









,

M3 =









s5+I s4 s3+I

s4+I s4 s3+I

s5+I s5 s4+I

s4+2I s4+I s4









.

The goal is to select the best flexible manufacturing system.

6.1. The Procedure of Decision-Making Based on the WNLNMSM Operator

To distinguish the most desirable alternative(s), the concrete steps are taken as following:

Step 1: Based on Eq. (41), aggregate the attribute values from each DM by WNLNMSM

operator. We take k = 2 in here, and the aggregated matrix M is shown as follows:

M =









s1.54+0.23I s1.44+0.11I s1.00+0.21I

s1.44+0.11I s1.43+0.12I s1.10+0.33I

s1.66+0.21I s1.44+0.33I s1.33+0.21I

s1.43+0.34I s1.44+0.22I s1.55+0.31I








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Step 2: Obtain attribute weight vector ωj = (ω1,ω2, . . . ,ωn)
T of the {C1,C2, . . . ,Cn}

by Eqs. (37)–(39), and we can get

R =









s0.93+0.02I s1.00−0.07I s1

s0.87−0.04I s0.99−0.06I s0.91

s1 s1.00+0.06I s0.75+0.03I

s0.86+0.08I s1 s0.65+0.01I









,

X =









0.15 0.17 0.17

0.14 0.17 0.15

0.17 0.17 0.13

0.14 0.24 0.26









,

Hj = (0.83,0.89,0.86)T ,

ωj = (0.41,0.26,0.33)T .

Step 3: Based on Eq. (42), obtain the collective evaluation value of each alternative (k =

2), we have

s̃1 = s0.436+0.062I , s̃2 = s0.436+0.064I , s̃3 = s0.490+0.082I , s̃4 = s0.487+0.097I .

Step 4: Calculate expectations about each s̃i (i = 1,2,3,4), then by applying Eq. (20),

we have

EX(s̃1) = 0.07315, EX(s̃2) = 0.07316,

EX(s̃3) = 0.08231, EX(s̃4) = 0.08200.

Step 5: Rank the alternatives. Since EX(s̃3) ≻ EX(s̃4) ≻ EX(s̃2) ≻ EX(s̃1), the ranking

result is R3 ≻ R4 ≻ R2 ≻ R1.

6.2. Discussion of the Influence of Parameters

6.2.1. The Influence of the Indeterminate Ranges for I in NLNs

Because NLNs can express the uncertain information by LVs which can cope with the

difficulty of existing linguistic format, it will be necessary to consider how the change of

the ranking of alternatives with different indeterminate range for I is. For conveniency,

we take different variation ranges of the indeterminacy I by Steps 3–6, and the results are

listed in Table 2.

From Table 2, it is obvious that there are different ranking orders where R3 ≻ R4 ≻

R1 ≻ R2 from I ∈ [−0.7,0] to I = 0 and R3 ≻ R4 ≻ R2 ≻ R1 from I = 0 to I ∈ [0,0.3],

and then R4 ≻ R3 ≻ R2 ≻ R1 from I ∈ [0,0.5] to I ∈ [0,0.7]. The illustrative example

shows that there are different ranking results of alternatives with different variation ranges

of the indeterminacy I of NLNs. In addition, if there is no indeterminacy I in NLNs, that
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Table 2

Ranking results by utilizing the different ranges for I in NLNs.

I E(s̃i ) Ranking

I ∈ [−0.7, 0] EX(s̃1) = 0.0690, EX(s̃2) = 0.0689, EX(s̃3) = 0.0769, EX(s̃4) = 0.0755 R3 ≻ R4 ≻ R1 ≻ R2

I ∈ [−0.5, 0] EX(s̃1) = 0.0700, EX(s̃2) = 0.0699, EX(s̃3) = 0.0782, EX(s̃4) = 0.0771 R3 ≻ R4 ≻ R1 ≻ R2

I ∈ [−0.3, 0] EX(s̃1) = 0.0711, EX(s̃2) = 0.0710, EX(s̃3) = 0.0796, EX(s̃4) = 0.0788 R3 ≻ R4 ≻ R1 ≻ R2

I ∈ [−0.1, 0] EX(s̃1) = 0.07211, EX(s̃2) = 0.07210, EX(s̃3) = 0.081, EX(s̃4) = 0.08 R3 ≻ R4 ≻ R1 ≻ R2

I = 0 EX(s̃1) = 0.072632, EX(s̃2) = 0.072631, EX(s̃3) = 0.0816, EX(s̃4) = 0.0812 R3 ≻ R4 ≻ R1 ≻ R2

I ∈ [0, 0.1] EX(s̃1) = 0.07315, EX(s̃2) = 0.07316, EX(s̃3) = 0.0823, EX(s̃4) = 0.0820 R3 ≻ R4 ≻ R2 ≻ R1

I ∈ [0, 0.3] EX(s̃1) = 0.07419, EX(s̃2) = 0.07422, EX(s̃3) = 0.0837, EX(s̃4) = 0.0836 R3 ≻ R4 ≻ R2 ≻ R1

I ∈ [0, 0.5] EX(s̃1) = 0.0752, EX(s̃2) = 0.0753, EX(s̃3) = 0.0850, EX(s̃4) = 0.0852 R3 ≻ R4 ≻ R2 ≻ R1

I ∈ [0, 0.7] EX(s̃1) = 0.07625, EX(s̃2) = 0.07634, EX(s̃3) = 0.0864, EX(s̃4) = 0.0869 R3 ≻ R4 ≻ R2 ≻ R1

Table 3

Ranking results by utilizing the different k.

EX(s̃1) EX(s̃2) EX(s̃3) EX(s̃4) Ranking

k = 1 0.07485 0.07421 0.08379 0.08268 R3 ≻ R4 ≻ R1 ≻ R2

k = 2 0.07315 0.07316 0.08231 0.08200 R3 ≻ R4 ≻ R2 ≻ R1

k = 3 0.07180 0.07231 0.08108 0.08125 R4 ≻ R3 ≻ R2 ≻ R1

is I = 0, our proposed MAGDM method will reduce to classical one with LVs. Therefore,

the prominent advantage of the proposed method is it can successfully solve the deci-

sion problems with NLN information (uncertain linguistic information). In such case, our

proposed method can give a more general and more suitable way to express the DMs’

preference by assigning different ranges of indeterminacy I during the decision process.

Therefore, the ranking result we obtain is more scientific and rational due to considering

DMs’ preference in real decision problems.

6.2.2. The Influence of the Parameter k in WNLNMSM Operator

When DMs take different parameter k, there are different significance and results. So we

take different parameter k to rank the alternatives which reflect the influence of the pa-

rameter k. The ranking results can be obtained in Table 3.

As we see from Table 3, the ranking result of the alternatives will change when the

parameter k changes, which shows how flexible the WNLNMSM operator can be. When

k = 1, there will be no interrelationship among the attributes and the proposed operator

will be only a simple arithmetic average operator; when k = 2, we will consider the inter-

relationships between any two attributes which are similar to BM or HM operators; when

k=3, we will consider the interrelationships among any three attributes. So we can know

that the WNLNMSM operator is more general than the other operators. As Qin and Liu

(2014) stated, the parameter k reflects the DMs’ subjective preferences. If the DM prefers

risk, he will take a larger parameter; otherwise, he may select a smaller parameter. In

other words, it is more effective and necessary for DMs to adopt an appropriate parameter

k based on their risk decision. Because the DMs are usually risk neutral and we need to

fully consider the interactions of the individual arguments, we usually select k = [n/2] in
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practical decision problems (Qin and Liu, 2014), where symbol [ ] is the round function

and n is the number of aggregated arguments.

6.3. Comparative Analysis

This example is fully cited from reference (Ye, 2016c) with the same data and the attribute

weights, so we can compare it with the result in Ye (2016c). The initial information is

shown as follows:

M1 =









s5 s4+I s3+I

s4 s5 s4+I

s4+I s4+I s4

s5 s4+I s4









, M2 =









s4+I s5 s3

s5 s4 s3+I

s5 s4+I s4

s4+I s5 s5+I









,

M3 =









s5+I s4 s3+I

s4+I s4 s3

s5 s5 s4+I

s4 s4+I s4









.

The weight vector of the three DMs is λ = (0.30,0.36,0.34)T and the weight vector

of the three attributes is V = (0.20,0.50,0.30)T .

Firstly, we will use the proposed method based on WNLNMSM operator to get the

ranking result. Now, aggregate the evaluation information of DMs by WNLNMSM oper-

ator in formula (41). We take k = 2, and we get an integrated matrix M based on above

decision matrices as follows:

M =









s1.54+0.23I s1.44+0.11I s1.00+0.21I

s1.44+0.11I s1.43 s1.10+0.21I

s1.56+0.11I s1.44+0.22I s1.33+0.11I

s1.43+0.12I s1.44+0.22I s1.44+0.10I









.

Next, based on formula (42), we obtain the collective evaluation value of overall alter-

natives, suppose k = 2, we have

s̃1 = s0.421+0.057I , s̃2 = s0.423+0.034I , s̃3 = s0.460+0.050I , s̃4 = s0.463+0.049I .

Then, calculate expectations about each s̃i (i = 1,2,3,4), then by applying Eq. (20),

we have

EX(s̃1) = 0.0706, EX(s̃2) = 0.0709,

EX(s̃3) = 0.0771, EX(s̃4) = 0.0775.

Finally, we obtain the ranking result R4 ≻ R3 ≻ R2 ≻ R1, which is the same as the

result in Ye (2016c). This shows the effectiveness of the proposed method.

The weights of attribute values play an important role in typical MADM methods.

There exist two types of attribute weights: subjective weights and objective weights. The
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subjective weights in Ye (2016c) are usually determined on the basis of the DMs’ pref-

erence or judgements while the proposed method in this paper utilizes the information

entropy model to determinate the attribute weights which can effectively relieve the sub-

jective influence from DMs. Therefore, the experimental result of the proposed method is

more subtle than of the method based on the initial information in Ye (2016c). Because

the objective weight method can avoid the subjectivity due to the DM’s personal bias, it’s

necessary to develop an objective entropy weight method to distribute the weight under

such circumstances.

With the NLNs, whatever the method is based on subjective weight or objective en-

tropy weight, they both can make full use of the decision information, including the deter-

minate part and the indeterminate part. Furthermore, the WNLNMSM operator can con-

sider the interactions among the multi-attributes, and produce more reasonable ranking

results. In a word, these two methods can better express uncertain linguistic information

under linguistic decision-making environments, which results in much more reasonable

decisions.

For the purpose of comparison, we discuss the case by extending the MSM operator

with the LVs called WLMSM operator. That is, there is no indeterminacy I of NLNs

(i.e. I = 0), therefore, this MAGDM method becomes the classical LVs. In this case, the

decision matrix can be constructed as follows:

M1 =









s5.0 s4.0 s3.0

s4.0 s5.0 s4.0

s4.0 s4.0 s4.0

s5.0 s4.0 s4.0









, M2 =









s4.0 s5.0 s3.0

s5.0 s4.0 s3.0

s5.0 s4.0 s4.0

s4.0 s5.0 s5.0









,

M3 =









s5.0 s4.0 s3.0

s4.0 s4.0 s3.0

s5.0 s5.0 s4.0

s4.0 s4.0 s4.0









.

The decision making Steps 1–3 are similar to the procedure of the WNLNMSM oper-

ator, then we can obtain the result s̃1 = s0.444, s̃2 = s0.442, s̃3 = s0.478, s̃4 = s0.475. Clearly,

the ranking order is R3 ≻ R4 ≻ R1 ≻ R2 according to the comparison rule of LVs, which

is almost the same as WNLNMSM operator, because the determinate part of decision ma-

trix is identical to the initial decision matrix when I = 0. On the other hand, we can see

the indeterminacy I plays an important role in NLNs, particularly when we handle un-

certain, inconsistent and imperfect information in the decision process. DMs can choose

the different indeterminate degrees ranges for I on the basis of their preference in real

decision-making situation. In a word, NLNs can depict more comprehensive information

than LVs.

NLNs can depict the uncertain and imperfect information by LVs. Therefore, to high-

light the priority of NLNs, we use the proposed method to cope with an investment prob-

lem from Ye (2017).

Example 3. A company plans to develop a new investment and there are four possible

alternatives and there are three criteria shown as follows (suppose the weight vector is
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W = (0.35,0.25,0.4)T ): the risk management (C1), the growth development (C2), the so-

cial environmental (C3). Three DMs (suppose the weight vector is λ = (0.37,0.33,0.3)T )

gives the evaluation information of the alternatives {R1,R2,R3,R4} with the criteria Cj

(j = 1,2,3) by LNNs based on the LTs: S = {s0 = worst, s1 = worse, s2 = bad, s3 =

medium, s4 = good, s5 = better, s6 = excellent}. For simplicity, we omit the specific steps.

Then we obtain the corresponding expected values of the collective evaluation value

on each alternative (k = 2): EX(s̃1) = 0.0764, EX(s̃2) = 0.1049, EX(s̃3) = 0.0868,

EX(s̃4) = 0.1039, and the alternatives’ ranking is R2 ≻ R4 ≻ R3 ≻ R1, while the sorting

result by Ye’s method (2017) is R4 ≻ R2 ≻ R3 ≻ R1.

Compared to the proposed approach, the approach in Ye (2017) is a traditional deci-

sion approach – the bidirectional projection model, which obtains an optimal alternative

by calculating the bidirectional projection value between each alternative and the ideal

solution. Although traditional decision approaches may adhere to the intuitive features of

DMs through comparison between each alternative Ri , they do not consider the interac-

tions among multiple attributes. As we know, the interrelationship between attributes is

common, such as in Example 2, whether risk or growth in investment, there is a connection

with social environment. Therefore, our proposed approach by using aggregation operator

is closer to reality, especially since it can consider interactions among multiple attributes

on the basis of DMs’ preference. In addition, the form of decision information by NLNs

can depict more fuzzy contents than NNs. As a conclusion, the proposed approach is more

suitable in practice than NNs.

Due to the operations of NLNs is similar to NNs’, we don’t take any transfer approach

between NLNs and NNs in Example 2. Actually, there are 2-tuple linguistic approach

or linguistic scale functions to realize the interconversion between linguistic information

and numerical information. In the future research, we can try to improve operations of

NLNs and develop new transformation between NLNs and NNs which can reflect the

psychological process of DMs and reduce information loss.

In summary, because the proposed MAGDM method can consider the interactions

among multiple attributes, and obtain attribute weights from an objective view, which is

more general and more effective than existing approaches under neutrosophic linguistic

environment. Furthermore, because NLNs can depict the uncertain and imperfect infor-

mation by LVs, the proposed approach is more suitable in practice than other linguistic

expression.

7. Conclusion

NLNs can better depict the uncertain, inconsistent and imperfect by LVs, and the tradi-

tional MSM operator can consider interactions among the multiple attributes. Combin-

ing the advantages of both, we extend the NLNs to the traditional MSM and make full

use of their advantages in the practical applications. Firstly, we developed the NLNMSM

and WNLNMSM operators, and discussed some characteristics and its special examples

if the parameter k takes different values. Then, a novel MAGDM method based on the
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WNLNMSM operator is established in NLN setting. The main contribution of our devel-

oped method is that it can consider the interaction among the multiple attributes by the

form of NLNs. In addition, the proposed MAGDM method under neutrosophic linguistic

environment is more suitable than other existing methods because it easily depicts and

handles the uncertain and imperfect linguistic information which widely exists in reality.

Finally, a practical example of manufacturing alternative is given to detail the process of

the proposed method. Based on this paper, we argue that in future research, other methods

with NLNs, such as TOPSIS and ELECTRE of NLNs should be developed and applied in

real MAGDM problems, especially when the uncertain information is in specified ranges.

On the other hand, we can improve the basic theory of NLNs, such as operational rules,

score function and so on. We can also extend the proposed operators to other various

domains.
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